viernes, 04 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La curiosidad! Siempre con nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

PROFESORADO CURSO 23/24 - Página web de iesbernardino

 

Me ha venido a la memoria escenas y hechos que, en la última charla que pude dar en un Centro Educativo,  en el apartado de Ciencia, para chavales de 2º de Bachillerato, comencé la sesión ilustrándola con la Imagen de arriba, de la que di una breve explicación antes de entrar en materia: Nacimiento, Vida y Muerte de las estrellas y, de lo que hacían durante eseos largos períodos de tiempo y, en qué se convertían al final de sus vidas como estrellas.

El caso fue que, comencé con las explicaciones y, de entre el auditorio de jóvenes llenos de energía y revoltosos, algunos, no prestaban atención y, además, con sus bromas y risas, no dejaban que los demás, se pudieran interesar en lo que allí se trataba.

 

 

Aquella actitud de algunos, me obligó a parar la exposición y, mirando seriamente a los alborotadores, les dije: Chicos, si el tema no os interesa, y queréis salir de aquí siendo un poco más “burros”, sois libres de hacerlo. Sin embargo, os ruego que, si finalmente decidías seguir con nosotros, y al final ser un poco más “sabios”, dejéis de alborotar.

Como ya son “hombrecitos y mujeres”, la reprimenda tuvo su efecto y, a partir de aquel momento, todos estuvieron atentos a mis palabras con las que fui desgranando, despacio y con palabras sencillas, lo que era una explosión de supernova y cómo dejaba regada una amplia región del espacio interestelar por una hermosa e inmensa nebulosa de cuyos materiales, vuelven a nacer nuevas estrellas y nuevos mundos.

 

                                 Imagen de la formación de una estrella tomada por un nuevo telescopio. (Foto: ESA).

 

Apoyaba mis palabras con imágenes  como la de arriba.  La fotografía combina diferentes radiaciones, como rayos X, infrarojos o luz visible, y genera una amalgama de colores que aportan información importante para entender cómo llega una estrella a ser una estrella. Esta imagen ofrece una interesante mirada hacia el interior de la región activa de estrellas en ciernes llamada NGC 346. Los científicos responsables del telescopio aseguran que revela información nueva sobre cómo se forman las estrellas en el Universo.

 

 

La NASA publicó un video (1/09/2011) donde se aprecia el proceso de nacimiento estelar. Con grandes chorros de gas incandescente nacen las estrellas a millones de años luz, algo que ahora está al alcance del ojo humano a través de un vídeo reconstruido con imágenes fijas tomadas por el telescopio Hubble.  El vídeo, publicado en la página web de la agencia espacial estadounidense (NASA), ofrecía nuevos detalles sobre el proceso de nacimiento estelar, en el que se pueden apreciar los chorros de gas que expulsan las estrellas jóvenes con un detalle hasta ahora nunca visto.

 

Tres consejos magistrales para convertirse en el mejor orador en público -  Forbes España

                                          Todos los asientos ocupados, ni una silla libre

A medida que las explicaciones avanzaban, pude notar como el interés de los chicos crecía. Ya no bromeaba nadie, la sala estaba en silencio y todos, sin excepción, se veían interesados e incluso, algunos, tenían la boca abierta por asombro. Allí, lo que al principio era una simple charla para alumnos, se fue convirtiendo en un auditoriun donde, profesores y alumnos de otras clases llegaban y se unían a los ya presentes.

Les pude explicar con todo detalle y de la manera más sencilla posible, como se formaban los elementos en las estrellas a partir del Hidrogeno, el elemento más sencillo de la Naturaleza.

 

Les expliqué el proceso protónprotón que convertía Hidrógeno en Helio y el proceso triple Alfa que convertía Helio en Carbono, el material químicamente más idóneo para la vida -al menos aquí en la Tierra- y, se hizo un largo recorrido por la transmutación que se producía en  todos los elementos, a medida que transcurría el tiempo y la estrella evolucionaba.

 

 

Pude darles una buena noción de las clases de estrellas que existen y de que, no todas tienen las mismas masas y que, como consecuencia de ello, cada una de esas estrellas, viven más o menos tiempo y que, cuando al final mueren, lo hacen de muy diferentes maneras. Ya que, estrellas medianas como nuestro Sol, terminan creando una Nebulosa planetaria al convertirse en Gigante roja y, terminan sus días como enanas blancas de una gran densidad. Les expliqué el proceso que hacían hasta llegar a tal estado y los parámetros que, como ekl principio de exclusión de Pauli, estaban allí presentes. De la misma manera, les expliqué que, estrellas más masivas terminaban como estrellas de neutrones y más masivas aún, como agujeros negros.

El recorrido fue algo largo (más de lo esperado), ya que, vista la gran atención que todos ponían en las explicaciones y en las imágenes que se ivan poniendo en cada fase del proceso explicativo, procuraba que el tema tratado lo fuera en profundidad y amplitud y, de esa manera, la cosa resultó, además de más amena, mucho más completa y, sobre todo, comprensible.

 

                             

 

Cuando al final di la charla por finalizada, pregunté si alguien quería alguna explicación sobre algún aspecto delo que habíamos tratado, y, las manos que se levantaban presagiaban un largo, muy largo debate. Y, así fue. Los jóvenes se interesaban por todo y, de entre todo lo explicado, las cosas que más llamaron su atención fueron, por ejemplo:

 

Ciencia I y II ciclo, Costa Rica: El Sol, fuente de luz y calor. Objetivo  I.B-4

      El Sol es la fuente de Luz y Calor que necesita la Tierra para la presencia de la Vida

Que nuestro Sol, cada segundo, pueda fusionar 4.654.600 toneladas de Hidrógeno en 4.650.000 toneladas de Helio. Y, un observador inquisitivo, me preguntaba: ¿Dónde están las 4.600 Tn que se han perdido? Bueno, le expliqué que habían sido lanzadas al espacio interestelar en forma de luz y de calor y, una pequeña fracción, llegaba a la Tierra para permitir la fotosíntesis y la vida.

 

                   

 

Otra de las cuestiones que les llamó más la atención fue, cómo era posible que estrellas supergigantes, pudieran tener una vida más corta cuando tenían a su disposición mucho más material. Y, cuando les expliqué que, esas estrellas, no consumen sino que devoran literalmente el material nuclear de fusión, comprendieron el por qué de sus cortas vidas.

Y, preguntaban cómo no todas las estrellas tenían el mismo color, amarillas como nuestro Sol. La explicación, como sabemos, está en el hecho de que no todas están formadas por el mismo material: Hay estrellas de Carbono, otras son de Oxígeno, Litio, manganeso…, la diversidad es enorme.

 

     

 

Mostraron mucha curiosidad y más interés aún, al saber -no todos conocían tal hecho- que, los elementos para hacer posible, la bio-química de la vida, se fabrica en las estrellas, es allí, en sus hornos nucleares donde se producen los elementos que conforma la materia del Universo, su diversidad que, bajo ciertas condiciones y, en los mundos adecuados situados en las zonas habitables de sus estrellas, pueden hacer surgir formas de vida que, a veces, llegan incluso a ser conscientes, como ha pasado aquí, en la Tierra.

 

Novas y supernovas | PPTBioquímica - Brasil Escola

    Sin las estrellas la Vida nunca habría surgido en ningún planeta del Universo

Los remanentes de supernovas y de cómo en esas inmensas explosiones se producían oro y platino, también fue uno de los temas que llamó la atención del personal. Todos querían hablar al mismo tiempo y todos -era un auténtico gozo- tenían preguntas que plantear. Al final, el tiempo pasaba sin sentir y tuve que dar por finalizado el evento que, al contrario de lo que parecía al principio, fue todo un éxito, sobre todo, al comprobar que aquellos jóvenes al terminar la charla y el coloquio, eran un poco “más sabios” que antes de empezar.

 

Asociación Nacional de Adultos Mayores de Bolivia apoyan las iniciativas  que conduzcan a un envejecimiento saludable, digno y basado en los derechos  humanos - OPS/OMS | Organización Panamericana de la Salud

Antes del comienzo todos charlaban entre ellos,,, En la Conferencia… ¡Todos dormidos!

Claro que, no siempre las cosas salen tan bien paradas. Recuerdo aquel Asilo de Ancianos al que hace tiempo fui a dar una charla de astronomía y, antes de terminar, estaban todos, prácticamente dormidos. La curiosidad y el interés, les había abandonado y, ese fue un día triste para mí.

emilio silvera

¡Las leyes del Universo! ¿Son las mismas en todas partes?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

 

 

 

La Mente de los individuos de nuestra especie, cuando evolucionó y tuvo consciencia de Ser, comenzó a conjeturar el por qué se sucedían aquellos fenómenos que veían a su alrededor, y, después de algunos cientos de miles de años, se pudo llegar desde el átomo a las galaxias lejanas, de lo muy pequeño hasta lo muy grande. Y, a su manera acorde a los conocimientos del momento, dejaron huellas de lo que  creían saber o imaginar.

 

               Resultado de imagen de Stonehenge

Está claro que el tiempo pasa y cada generación trata de saber lo que hicieron las que las precedieron. Los vestigios del pasado son muchos y, no siempre sabemos traducir sus mensajes pero, los estudiamos y procuramos llegar a explicaciones lógicas de lo que aquello pudo ser, y, para ello, nos transportamos a aquellos contextos del pasado, a las mentalidades de los pobladores que dejaron monumentos que, con una mezcla de lo religioso-astronómico, quería simbolizar lo que ellos creían.

 

Vía Lactea

Desde el Parque Nacional del Teide se puede conseguir una buena vista de nuestra Vía Láctea

La “infinitud” de la Vía Láctea, inconmensurable para nosotros, es sólo una más, de decenas de miles de millones que pueblan nuestro Universo. Así, nuestra Galaxia para nosotros “infinita”, es, sencillamente, un objeto más de los muchos que pueblan las regiones del Cosmos. Cientos de miles de millones de estrellas que brillan por todas partes, asombrosos enjambres de planetas repartidos por cientos de miles de sistemas planetarios, cuásares y púlsares, estrellas enanas blancas, marrones y negras, gigantes rojas, Nebulosas de increíbles dimensiones en las que nacen nuevas estrellas y mundos, explosiones supernovas y agujeros negros gigantes que engullen todo el material que pueda capturar… ¡El Universo! nunca dejará de asombrarnos, ni por su inmensidad, ni por su diversidad.

 

 

Utilizando una cámara nueva y más poderosa, el Telescopio Espacial Hubble, ha descubierto lo que parece ser el objeto más distante jamás observado, una proto galaxia pequeña a 13.200 millones -luz de distancia, que se remonta a tan sólo 480 millones de años después del nacimiento del universo o Big Bang. Es decir, nos ha traído una galaxia en formación a escaso tiempo del comienzo del tiempo.

 

LA DANZA DE LOS UNIVERSOS ISLA | ESO España

                                  Lo cierto es que, una galaxia es un universo en miniatura

 En 1755, el filósofo Immanuel Kant publicó una teoría según la cual nuestro sistema solar pertenecería a un sistema estelar más grande, en forma de disco aplanado; las “nebulosas” observadas con los telescopios serían así sistemas estelares parecidos que él bautizó “Universos Isla

Immanuel Kant llegó a la conclusión de que las galaxias eran universos-islas  pero, él escribió primero que las nebulosas elípticas, ofrecían una visión que se podía asimilar a un “sistema de muchas estrellas” que se hallan a “enormes distancias”. Aquí, por primera vez se hizo un retrato del universo formado por galaxias a la deriva en  la vastedad del espacio cosmológico. El libro de Kant, titulado Historia general de la naturaleza y teoría del cielo, fue publicado -si esta es la palabra apropiada- en 1755, pero su editor quebró, los libros le fueron confiscados para sus deudas y la obra de Kant, cayó en el olvido.

 

 

Los entusiasmos galácticos de Kant, a pesar de todo, contribuyeron a sensibilizar la mente humana a la riqueza potencial y la vastedad del universo. Pero el arrobamiento por sí solo por muy perspicaz que sea, es, un fundamento inadecuado para fundamentar una cosmología científica. Determinar si el universo está constituido realmente por galaxias requería hacer un mapa del universo en tres dimensiones, mediante observaciones muy exactas, si no menos arrobadoras, que la contemplación meditativa de Lambert y Kant.

 

William Herschel, el padre de Urano - OpenMind

 

Entró en escena William Herschel, el primer astrónomo que llevó a cabo observaciones agudas y sistemáticas del universo más allá del Sistema solar, donde está la mayor parte de lo que existe. De hecho, en la primera parte del siglo XIX, miles de galaxias fueron identificadas y catalogadas por William y Caroline Herschel, y John Herschel. 1900, se han descubierto en exploraciones fotográficas gran cantidad de galaxias. Éstas, a enormes distancias de la Tierra, aparecen tan diminutas en una fotografía que resulta muy difícil distinguirlas de las estrellas. La mayor galaxia conocida tiene aproximadamente trece veces más estrellas que la Vía Láctea.

 

 

El observatorio espacial Herschel se apaga definitivamente | Ciencia | elmundo.es

 

El observatorio espacial Herschel ha facilitado a un grupo de astrónomos observar cinco galaxias muy lejanas gracias al efecto lente gravitatoria. Así, de alguna manera, y en memoria de Herschel, el Telescopio que lleva su nombre continua su visión que fue fundamental

 

Conocimos Lowell Observatory en Flagstaff, Arizona (USA): la casa de Plutón - Info ViajeraLowell Observatory - Flagstaff - Grand Canyon Deals

 

 

En 1912 el astrónomo estadounidense Vesto M. Slipher, trabajando en el Observatorio Lowell de Arizona (EEUU), descubrió que las líneas espectrales de todas las galaxias se habían desplazado la región espectral roja. Su compatriota Edwin Hubble interpretó esto como una evidencia de que todas las galaxias se alejaban unas de otras y llegó a la conclusión de que el Universo se expandía. No se sabe si continuará expandiéndose o si contiene materia suficiente para frenar la expansión de las galaxias, de forma que éstas, finalmente, se junten de , parece que ésto último no sucederá nunca. La materia del Universo parece estar aproximadamente en la tasa del la Densidad Crítica. Si es así, el Universo se expandirá para siempre y tendrá una muerte térmica: El frío desolador del Cero Absoluto (273 ºC) donde ni los átomos se mueven.

Es curioso como Herschel, encontró su camino la plenitud siguiendo las huellas de Kepler y Galileo a través del puente que lo llevó de la Música a la Astronomía. La habilidad de Herschel como observador era también muy refinada; sabía utilizar los telescopios. Él decía: “Ver es un arte que es necesario aprender”.

 

 

“La luz de las estrellas fijas es de la misma naturaleza [que] la luz del Sol” nos decía Newton, mientras que E. Hubble, comentaba que: “Las observaciones siempre involucran una teoría”. Ambos llevaban razón. Surgieron dos escuelas de pensamiento sobre la naturaleza de las “nebulosas elípticas” que predominaron en el siglo XIX. Una de ellas, la teoría del universo-isla de Kant y Lambert- la expresión es de Kant-, sostenía qwue nuestro Sol  es una de las muchas estrellas de una Galaxia, la Vía mLáctea, y que hay otras muchas galaxias, que vemos a través de grandes extensiones de espacio nebulosas espirales y elípticas. (como eran llamadas en aquel tiempo a las galaxias que, no se podían ver con la nitidez que nos proporcionan nuestras modernos telescopios.)

Las Tablas Rudolfinas. – Progresion21 – La mente es como un paracaídas, funciona cuando está abiertaTabulae rudolphinae fotografías e imágenes de alta resolución - AlamyLansberghe (Philip van) Tabulae Motuum Coelestium Perpet… | Drouot.com

                                                       Las Tablas Rudolfinas de Kepler

Einstein entra en escena. Nació en Ulm, donde Kepler antaño había deambulado en busca de un impresor, con el manuscrito de las Tablas Rudolfinas Bajo el brazo. Einstein como sabemos, fue un niño aislado y encerrado en sí mismo. No habló los tres años. Daremos un salto hasta 1905, año en el que comenzaron a cristalizar sus pensamientos pudiendo escribir cuatro artículos memorables que lo situaron en ese lugar de privilegio de los verdaderos maestros.

 

N0, Einstein no llegó a la Física y la Cosmología en bicicleta, él cogió una autopista mayor, esa que está conformada por los pensamientos y que nos pueden llevar más lejos, de lo que cualquier vehículo nos podrá llevar nunca. El primero de aquellos -ahora famosos- artículos, fue publicado tres días después de cumplir los veintiséis años, contribuiría a poner los fundamentos de la física cuántica. Otro modificó el curso de la teoría atómica y la mecánica estadística. Los otros dos enunciaron lo que se conoció como la teoría de la relatividad especial.

Cuando Planck, por aquel entonces director editorial de la Revista científica Annalen der Physik, levantó la mirada después de leer el artículo sobre la relatividad especial, sabiendo inmediatamente que el mundo había cambiado. La era Newton había terminado y había surgido una nueva ciencia reemplazarla.

 

                                     

.

La odisea que llevó a Einstein hasta la relatividad especial -y de ella a la relatividad general, que expresaría la cosmología de los espacios curvos- empezó cuando tenía cinco años y su padre le mostró una brújula de bolsillo para que estuviera entretenido pero, aquello, le fascinó y, no podía saber qué magia hacia que la aguja señalara siempre hacia el mismo lugar sin tener en el movimiento. Al preguntar, le dijeron que la Tierra está envuelta dentro de un campo magnético que era el responsable de tal “milagro” y, aquello, al joven Einstein, le maravilló y despertó su curiosidad que nunca le dejó entonces. Él decía que detrás de las cosas debe haber algo profundamente oculto, que nos podría explicar el por qué se comportan de ciertas maneras.

Como antes decía, en el siglo XX hemos podido ser testigos de múltiples y maravillosos descubrimientos científicos que han cambiado la concepción que del mundo podíamos tener: La teoría de Planck del cuanto que nos llevó directamente a la Mecánica Cuántica, el Relatividad de Einstein que nos lleva a un espacio-tiempo de cuatro dimensiones, nos dijo que la luz marcaba el límite de transmitir la información y, también, que la masa y la energía eran una misma cosa, así como que, ¡el Tiempo!, era relativo y no absoluto. Más tarde, en su ampliación de la teoría en 1916, nos dijo que la presencia de grandes masas distorsionaba el espacio-tiempo.

 

                         Deformación de la malla espacio-tiempo

Estos dos claros exponentes de aquella revolución científica nos abrieron los ojos y la mente a un Universo distinto que , después de dichas teorías, tenía más sentido. Otro de aquellos descubrimientos explosivos, fue la teoría cosmológica del big bang, que surgió como combinación de ambas, y, justo es que se diga,  quienes fueron sus protagonistas que, no por sabido, estará demás dejar aquí un pequeño homenaje.

Cuando Einstein publicó en 1916 la teoría de la relatividad general era consciente de que ésta modificaría la universal de Newton: la solución a sus ecuaciones no sólo sustituyo el planteamiento dinámico de fuerza de atracción por otro geométrico de deformación del espacio-tiempo, sino que permitía explicar el universo en su conjunto.

 

El enigma de la expansión del Universo que atormentó a Einstein, ¿a punto de resolverse?

Fue él el primer sorprendido al encontrar que dicha solución global traía como consecuencia un mundo cambiante, un universo que inicialmente estimó en contracción. Como esto no le cabía en la cabeza introdujo un término en las ecuaciones que contrarrestara el efecto gravitatorio: una fuerza repulsiva, a la que llamó constante cosmológica (Λ) constante dotaba al espacio vacío de una presión que mantenía separados a los astros, logrando así un mundo acorde a sus pensamientos: estático, finito, homogéneo e isótropo.

Más tarde, Einstein comentaría que la introducción de constante, había sido el mayor error de su vida, porque (con una mejor estimación de la densidad) podía haber predicho la expansión del universo antes de que fuera observada experimentalmente. Claro que, su excusa era admisible, cuando el introdujo la constante cosmológica, nadie sabía que el universo estaba en expansión. Sin embargo, estudios posteriores han venido a confirmarla.

 

Albert Einstein (1879-1955)". Pensament Socialista.

                       Albert Einstein

Con todo y a pesar de su enorme importancia, la teoría de la relatividad no llegó a tener verdadera importancia hasta que, en 1919, Arthur Eddintong confirmó la predicción del físico alemán con respecto a la curvatura de la luz, aprovechó el eclipse solar de Sol de ese año. De la noche a la mañana, Einstein se convirtió en el físico más popular del mundo al predecir con su ingenio y con su enorme intuición fenómenos que eran reales antes de que éstos fueran comprobados. Así, con carácter desenfadado, expresándose en términos sencillos y muy distintos ( estirados) que los de sus colegas, había dado respuesta a preguntas que habían sido formuladas pero, que nadie hasta entonces, había sabido contestar.

 

1915. El universo relativista de Einstein | Ciencia | elmundo.es

 

El astrónomo holandés Willem de Sitter  obtuvo en 1917 una solución a las ecuaciones del sabio alemán, sugiriendo la posibilidad de que el universo fuera infinito, aparentemente estático y de densidad prácticamente nula en el que tan solo había energía. Por otro lado, el matemático ruso Alexander Friedmann consiguió en 1922 varias soluciones a las ecuaciones proponiendo universos que se contraían o que se expandían, según los valores que tomara la constante cosmológica. Cuando su se publicó en Alemania, Einstein respondió con una nota en la misma revista presumiendo un error matemático. El error resultó finalmente inexistente, pero Einstein tardó en rectificar, por lo que la respuesta de Friedmann quedó en un segundo plano.

 

                                                             

Lo cierto es que Einstein, ha dado en el “blanco” con muchas de sus Ideas y, si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que – el vaticinó-,  todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnéteres creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de suscesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas, nuevos mundos y, muy probablemente… nuevas formas de vida.

Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintas leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos.

 

 

Arriba Satélite Gravity Probe B. Dedicado a medir la curvatura del campo gravitatorio terrestre debido a la teoría de la relatividad de Einstein. Abajo los científicos chinos comandados por Juan Yin crearon fotones entrelazados mediante la estimulación de un cristal con luz ultravioleta, que produjo  un par de fotones con la misma longitud de onda, pero opuestos. Por separado, ambas teorías funcionan muy bien y se pueden medir y comprobar límites excepcionales. Sin embargo, si las juntamos…

Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas. Y, entonces, en eso estamos pero, el casamiento, no se consuma.

 

Imagen relacionada

 

Hay aspectos de la física que me dejan totalmente sin habla y quedan fuera de nuestra realidad que, inmersa en lo cotidiano de un mundo macroscópico, nos aleja de ese otro mundo misterioso e invisible donde residen los cuantos que con su comportamiento, me obligan a pensar y me transportan este mundo material nuestro a ese otro fascinante, donde residen las maravillas del universo, sus cimientos infinitesimales en los que residen las “ladrillos” de las estrellas y galaxias…también de los mundos y de los seres vivos. La materia es tan compleja que aún no hemos podido llegar a comprenderla…del todo.

emilio silvera

¿Qué puede existir dentro de un agujero Negro?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Nuestro contertulio y amigo Kike, en uno de sus comentarios nos viene a comunicar la noticia que ha dado algún medio sobre un hecho insólito: “Un científico dice haber demostrado que dentro de los agujeros negros se forman grandes cantidades de estrellas”. La Incredulidad fue lo primero que sentí cuando leí tal cosa.

 

Representación gráfica del agujero negro GRO J1655-40, en el Sistema Solar

Siempre creí que los A. N. se “comían” a las estrellas vecinas pero, no que dentro de ellos se formaran

Si pensamos un poco en el interior de los agujeros negros, encontramos un lugar en el que, los físicos, han machacado sus sesos luchando con las ecuaciones de Einstein de la  Relatividad General, para buscar el secreto mejor guardado del Universo, ya que, nada que haya entrado en uno de estos exóticos objetos ha podido nunca salir para contarnos lo que allí pueda existir. Unos creen que podríamos encontrar un camino hacia otro universo y, lo más probable es que encontremos una singularidad con gravedad de marea infinita. Es decir, el fin del espacio y del tiempo, el nacimiento de la espuma cuántica.

 

Resultado de imagen de Espuma cuántica

 

“Recientemente, a partir de la observación del comportamiento de los fotones procedentes de los rayos cósmicos, se han obtenido límites para la granularidad del espacio-tiempo, y se ha encontrado que en escalas en las que ya deberían observarse trazas de la espuma cuántica, éste se muestra completamente suave. A la espera de más resultados de este tipo, pues aún son preliminares, surgen preguntas apasionantes. ¿De confirmarse la suavidad del espacio-tiempo implicaría que la mecánica cuántica no se aplica a los campos gravitatorios? ¿Es la escala de Planck inadecuada para resolver la espuma cuántica, y por qué es así, pues la deducción se basa en principios fundamentales bien establecidos? ¿Qué falla entonces en nuestros modelos?

 

Agujero negro de M87

“Los agujeros negros han sido unos de los fenómenos astronómicos más intrigantes y atractivos durante más de un siglo, cautivando nuestra imaginación con su física extrema y el hecho de que lo que entra nunca sale. Pero estos socavones cósmicos han empezado a cobrar importancia recientemente, gracias a la imagen del EHT, así como a estudios ganadores del Nobel sobre objetos que se mueven alrededor del agujero negro supermasivo en el núcleo de la Vía Láctea y el caudal de información derivado de la observación de colisiones de agujeros negros.”

 

Captada la primera imagen de un agujero negro y su chorro de ...

Esta es la primera imagen captada de un agujero negro pero… ¡Del interior…!

No sabemos en realidad lo que puede existir dentro de un agujero Negro. ¿Cómo poder saberlo? sabemos que ninguna señal puede salir nunca de un lugar como ese para poder darnos la respuesta. sea lo que fuese que pudiera existir allí dentro, nunca podrá, ningún intrépido viajero,  volver al exterior para contarnos tal maravilla, un lugar de infinita curvatura y densidad, allí donde el tiempo deja de existir, un lugar que lo que pueda contener nunca podrá influir en nuestro Universo, toda vez que allí estará confinado para siempre.

 

Qué pasaría si fueses succionado hacia un agujero negro? - Quora

No mtiene que ser agradable caer en un Agujero Negro, el efecto espagueti será muy doloroso

Está claro que la curiosidad que llevamos con nosotros, no puede quedar satisfecha con éstas sencilla explicaciones, necesita más argumentación para poder comprender, a ciencia cierta, lo que en el agujero negro se pueda esconder. sin embargo, John Archibal wheeler nos enseñó la importancia de la búsqueda para comprender el “corazón” de un agujero Negro.  Él creía  que el estado final de la materia dentro del agujero Negro, lo que quedaba después de la Implosión de una estrella masiva, era el “Santo Grial” de la física teórica, un conocimiento tan valioso que nos podría llevar a la comprensión final de lo que la materia es.

Intenso campo magnético de agujero negro supermasivo

 

Astrónomos de la Universidad Tecnológica Chalmers han utilizado el telescopio gigante Alma para revelar un extremadamente poderoso campo magnético muy cerca de un agujero negro supermasivo en una galaxia distante. Los resultados aparecen en la edición del 17 de abril de 2015 de la revista Science.
Claro que hablar de agujeros negros sería incomprensible sin escuchar lo que nos decía sobre ellos algunos físicos que dedicaron su vida al estudio de estos extraños objetos cosmológicos. J. Robert Oppenheimer fue el que nos dijo que la singularidad quedaba oculta por el Horizonte de sucesos, y, de esa manera, el interior del agujero quedaba oculto desde el exterior.
Representación de una estrella, el chorro de materia que va hacia el agujero negro y el disco que se forma en torno a este
Lo cierto es que, de lo que no podemos tener ninguna duda es del hecho cierto de que, la fuerza gravitatoria generada por la Singularidad del agujero negro, es tan potente que atrae hacia sí el material circundante que engulle y se hace cada vez mayor.
Está claro que cuando hablamos de los agujeros negros lo hacemos de algo que aún esconde muchos misterios, lo que sucede cuando se forma un agujero negro es muy semejante a lo que dicen que sería el final del universo mediante el Big Crunch, es decir, todo el material de una estrella masiva al final de su vida, al quedar sin material nuclear de fusión que está agotado, se queda a merced de la gravedad e implosiona sobre sí misma, de manera tal que su ingente masa se va contrayendo más y más hasta el punto de que desaparece literalmente de nuestra vista, se ha convertido en una singularidad de energía y densidad infinitas, la curvatura cierra el círculo y el tiempo desaparece.
“Para conservar la “monogamia” cuántica, Polchinski sugirió que el enlazamiento agujero negro-fotón se rompe. Esto produce un muro de energía en el horizonte de sucesos del agujero negro que echa por tierra la relatividad debido a que cualquiera que caiga se quemaría en lugar de volverse espagueti. Bienvenido a la paradoja del muro de fuego (“firewall”) del agujero negro.

Abundan las posibles soluciones, pero ahora dos físicos, Juan Maldacena del Instituto de Estudio Avanzado en Princeton, y Leonard Susskind de la Universidad Stanford, California, han presentado una más audaz: una nueva clase de agujero de gusano en que el enlazamiento no necesita romperse. “
           Nobel de Física: qué es la singularidad, el corazón de los agujeros negros  donde se rompen todas las leyes conocidas de la naturaleza - BBC News Mundo
La Singularidad del Agujero Negro es su “corazón”, y, allí se rompen todas las leyes de la Naturaleza, el Espacio se curva hasta el infinito y el Tiempo se detiene.
Cuando la estrella Implosiona bajo el peso de su propia masa y la fuerza gravitatoria que ésta genera, se crea un horizonte de sucesos alrededor del agujero negro en formación, la estrella esférica original sigue implosionando, inexorablemente, hasta alcanzar la densidad infinita y el volumen cero, después de lo cual crea y se funde en una singularidad espacio-temporal.
La singularidad es una región donde -según las leyes de la relatividad- la curvatura del espacio-tiempo se hace infinitamente grande y el espacio-tiempo deja de existir. Puesto que la gravedad de marea es una manifestación de la curvatura espacio-temporal. Así, podemos decir que una singularidad es también una región de gravedad de marea infinita, es decir, una región en donde la gravedad ejerce un tirón infinito sobre todos los objetos a lo largo de algunas direcciones y una compresión infinita a lo largo de otras.
                    El teorema de singularidad de Penrose de 1965 - La Ciencia de la Mula  Francis
“En 1965 se cumplían 50 años del nacimiento de las ecuaciones de Einstein para la gravitación. Penzias y Wilson publicaron el descubrimiento de la radiación cósmica de fondo (Nobel 1978) y Penrose publicó su famoso teorema de la singularidad en relatividad general (Nobel 2020). Las singularidades, resultado de la existencia de curvas geodésicas incompletas, son una predicción robusta; como lo es la aparición de superficies atrapadas cerradas (compactas y sin borde) y, con ellas, los agujeros negros.”
Fuente: La Ciencia de la Mula Francis
Después de estas sencillas explicaciones, mal podemos comprender lo que dice el científico del que nos habla Kike en su comentario ¡formar estrellas en el interior de un agujero negro! La idiosincrasia del agujero lo impide.
Me gustaría seguir y hacer mucho más largo el trabajo sobre el apasionante tema de los agujeros negros y lo que de ellos podemos esperar pero, sinceramente creo que, encontrar en su interior cúmulos de estrellas… No parece lo más acertado.
emilio silvera

Divagando sin rumbo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                               El Universo? ¡Tenemos que conocerlo mejor! : Blog de Emilio Silvera V.El Universo y la Mente : Blog de Emilio Silvera V.

 

Todos deberíamos tener un mínimo de conocimientos sobre las cuestiones importantes de nuestro mundo y nuestro universo. Saber cuestiones básicas como el por qué brillan las estrellas, cómo se expande el universo y que la Tierra es una nave espacial que nos lleva en un viaje alrededor del Sol a 30 Km/s.

No puedo olvidar la fascinación que sentí (sin entenderlo) cuando vi por vez primera ante mis ojos E = mc2, su sencillez y la enormidad del mensaje que encierra, me dejaron totalmente sorprendido y al mismo tiempo, maravillado.

 

                                               01.El conocimiento del universo - Cultura Científica con Julia

                                         Integrarnos con el Universo es conocerlo mejor

Pues bien, lo mismo que me ocurrió a mí, seguramente le ocurrirá a muchos otros si les damos la oportunidad de conocer, de saber sobre las cosas que les rodea y con las que conviven, sin que tengan la menor idea de qué son y cómo funcionan. La gravedad, el electromagnetismo, las fuerzas nucleares… creo que todo esto, sin tecnicismos ni profundidades científicas, puede ser explicado para dar un conocimiento básico que, al menos, evite la actual ignorancia, y para conseguirlo, el único camino es la divulgación.

Mi amigo José Manuel (alguien muy especial), está empeñado en celebrar reuniones periódicas en las que podamos hablar de todos estos temas. No se encuentra mucho apoyo oficial que subvencione, en este sentido, una actividad que al desarrollarla  no se sienta uno humillado.

 

                                          Emilio Silvera Vázquez

He dado algunas charlas de este tipo, y en personas mayores corrientes no versadas, es difícil crear en una hora una situación que les interese. Te miran sin ver.  No se les nota interés alguno, e incluso, no es raro oír algún bostezo o ver alguna que otra cabezada de los intelectuales del público.

Leer más

Los átomos… Las estrellas… ¡Nuestra curiosidad!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

    James and Katherine Maxwell, 1869.

James Clerk Maxwell, el hombre sintiéndose poeta de la Naturaleza, inspirado escribió:

“En tiempos y lugares totalmente inciertos,

Los átomos dejaron su camino celeste,

Y mediante abrazos fortuitos,

Engendraron todo lo que existe.”

 

Y, al menos en lo que conocemos y que esté hecho de materia bariónica (la que emite radiación), así resulta ser. En la materia, de una u otra manera, están presentes las fuerzas fundamentales que rigen en el Universo, como por ejemplo, la radiactividad, la fuerza nuclear débil, la Gravedad y, en los átomos la fuerza nuclear fuerte.

Tipos de radiación
  • Radiación electromagnética.
  • Radiación ionizante.
  • Radiación térmica.
  • Radiación corpuscular.
  • Radiación solar.
  • Radiación nuclear.
  • Radiación de cuerpo negro.
  • Radiación no ionizante.

En los albores del siglo XX se hacía cada vez más evidente que alguna clase de energía “atómica” tenía que ser responsable de la potencia del Sol y las otras estrellas del cielo. Ya por 1898, sólo dos años después del descubrimiento de la radiactividad por Becquerel, el geólogo norteamericano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de enormes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden… liberar una parte de su energía”. Pero nadie sabía cuál era ese mecanismo, ni cómo podía operar, hasta que no se llegó a saber mucho más sobre los átomos y las estrellas.

formación estelar | Sociedad española de astronomía

El intento de lograr tal comprensión exigió una colaboración cada vez mayor entre los astrónomos y los físicos nucleares. Su trabajo llevaría, no sólo a resolver la cuestión de la energía estelar, sino también al descubrimiento de una trenza dorada en la que la evolución cósmica se entrelazaba con la historia atómica y la estelar.

                          ISÓTOPOS Y RADIOACTIVIDAD

La clave para comprender la energía estelar fue, como previó Chamberlin, conocer la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radiactividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían de ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”). Pero la física atómica aún debía recorrer un largo camino para llegar a comprender su estructura.

                                                  Constituyentes del átomo - La fisica y quimica

De los tres principales constituyentes del átomo -el protón, el neutrón y el electrón-, sólo el electrón había sido identificado (por J.J. Thomson, en los últimos años del siglo XIX). Nadie hablaba de energía “nuclear”, pues ni siquiera se había demostrado la existencia del núcleo atómico, y mucho menos de sus partículas constituyentes, el protón y el neutrón, que serían identificados respectivamente, por Thomson en 1913 y James Chadwick en 1932.

                                          Modelo atómico de Rutherford. Todo lo que debes saber | Meteorología en Red

                               Rutherford con su experimento descubrió el núcleo atómico

                                             El experimento de Rutherford

Rutherford, Hans Geiger y Ernest Marsden se contaban entre los más expertos entendidos sobre la cartografía atómica. En Manchester, de 1909 a 1911, sondearon el átomo lanzando corrientes de “partículas alfa” subatómicas -núcleos de helio- contra delgadas laminillas de oro, plata, estaño y otros metales. La mayoría de las partículas alfa se escapaban a través de las laminillas, pero, para asombro de los experimentadores, algunas rebotaban hacia atrás, Rutherford pensó durante largo tiempo e intensamente en este extraño resultado; era tan sorprendente, señalaba, como si una bala rebotase contra un pañuelo de papel. Finalmente, en una cena en casa en 1911, anunció a unos pocos amigos que había dado con una expliación: que la mayoría de la masa de un átomo reside un un diminuto núcleo masivo. Midiendo las tasas de dispersión hacia atrás obtenida de laminillas compuestas de varios elementos, Rutherford pudo calcular la carga y el diámetro máximo del núcleo atómico del blanco. Esa era, pues, una explicación atómica de los pesos de los elementos. Los elementos pesados son más pesados que los elementos ligeros porque los núcleos de sus átomos tienen mayor masa.

Best Atomo GIFs | Gfycat

El ámbito de los electrones fue explorado luego por el físico danés Niels Bohr, quien demostró que los electrones ocupan órbitas, o capas, discretas que rodean el núcleo. (Durante un tiempo Bohr concibió el átomo como un sistema solar en miniatura, pero este análisis pronto demostró ser inadecuado; el átomo no está regido por la mecánica newtoniana sino por la mecánica cuántica.) Entre sus muchos otros éxitos, el modelo de Bohr revelaba la base física de la espectroscopia. El número de electrones de un átomo está determinado por la carga eléctrica del núcleo, la que a su vez se debe al número de protones del núcleo, que es la clave de la identidad química del átomo.

                                                 I. LUZ Y MATERIA

Cuando un electrón cae de una órbita externa a una órbita interior emite un fotón. La longitud de onda de ese fotón está determinada por las órbitas partículas entre las que el electrón efectúa la transición. Y esta es la razón de que un espectro, que registra las longitudes de onda de los fotones, revele los elementos químicos que forman la estrella u otro objeto que estudie el espectros-copista. En palabras de Max Planck, el fundador de la mecánica cuántica, el modelo de Bohr del átomo proporciona “la llave largamente buscada de la puerta de entrada al maravilloso mundo de la espectroscopia, que desde el descubrimiento del análisis espectral había desafiado obstinadamente todos los itentos de conocerlo”.

             

Las estrellas son enormes aglomeraciones de gas, principalmente Hidrogeno, cuya temperatura es tan alta debido a la fusión de este elemento, que irradian luz a lo largo de todo el espectro electromagnético. Poseen diferentes temperaturas que varían desde los 2000 grados Celsius hasta los 50000.

De la misma forma que al calentar una pieza de metal cambia de color, al principio rojo, luego amarillo hasta llegar al blanco, el color de una estrella varia según su temperatura superficial. Las estrellas más frías son las rojas, y las mas calientes las azules. Estos colores suelen percibirse a simple vista, como por ejemplo Antares (la estrella principal de Scorpius) que es de color rojo, o Rigel (en Orion) de color azul. En astronomía se utiliza la escala Kelvin para indicar temperaturas, donde el cero absoluto es -273 grados Celsius.

Para definir el color de una estrella, Johnson y Morgan (1950), crearon el sistema UBV (del inglés Ultravioleta, Azul, Visible). Las mediciones se realizaban mediante un fotómetro fotoeléctrico para medir la intensidad de la radiación el longitudes de onda específicas:

Linternas ordenas por longitud de Onda - Linternas Profesionales

  • Ultravioleta: 3000 Å a 4000 Å
  • Azul: 3600 Å a 5500 Å
  • Visual: 4800 Å a 6800 Å

 

Con estos datos se pudo crear una serie de escalas: (B-V), (U-B) y (B-V). Cuanto mayor el número, más roja es la estrella. Para ver ejemplos de índices de color de diferentes estrellas, visite la sección de estrellas variables.

La tabla a continuación muestra el espectro electromagnético, con sus longitudes de onda.

Denominación Longitud de Onda
Rayos Gamma 0.00000007 a 0.001 Å
Rayos X 0.001 a 100 Å
Luz Ultravioleta 100 a 3900 Å
Luz Visible 3900 a 7500 Å
Luz Infrarroja (fotográfica) 7500 a 15000 Å
Infrarrojo Cercano 15000 a 200000 Å
Infrarrojo Lejano 0.002 a 0.1 cm.
Microondas (ondas de radar) 0.1 a 250 cm.
Frecuencias elevadas () 2.5 a 15 m.
Onda corta de radio 15 a 180 m.
Banda de control aeronáutico 750 a 1500 m.
Onda larga de radio 1500 m en adelante

Las escalas son las siguientes:

1 Å (Ångstron) = 1×10-8 cm (centímetros) = 1×10-10 m (metros)

El ojo humano solo es capaz de percibir la pequeña porción que corresponde a la luz visible, situada entre los 3900 Å y 7500 Å, donde la menor se encuentra cerca del violeta y la mayor del rojo. El Sol emite en todas las longitudes de onda, pero solo llegan a la superficie una pequeña porción de estas, las demás son frenadas por la atmósfera: el ozono absorbe las mas altas longitudes de onda hasta el ultravioleta, y el vapor de agua absorbe gran parte de las infrarrojas.

Observatorio del Harvard College - Wikipedia, la enciclopedia libre

En el Observatorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban elante de “calculadoras”, mujeres , la mayoría, empleadas como miembros del personal de una facultad que les impedía asistir a clases u obtener un título.

                                          Henrietta Leavitt: la astrónoma cuyos cálculos ayudaron a medir el tamaño  del universo – ANRed

                                                          Ella descubrió las primeras Cefeidas

Una de esas mujeres, Henrietta Leavitt (arriba), fue la investigadora pionera de las estrellas variables cefeidas que tan útiles serían a Shapley y Hubble, ella fue una de esas “calculadoras” de Harvard que, se encargaban de examinar las placas y registrar los datos en una pulcra escritura victoriana para su compilación en volúmenes como el Henry Draper Catalog, así llamado en honor al primer astrofotógrafo y físico que tomó las primeras fotografías del espectro de una estrella. Como presos que marcan el paso de los días en los muros de su celda, señalaban su progreso en totales de estrellas catalogadas. Antonia Maury, sobrina de Draper, contaba que había clasificado los espectros de más de quinientas mil estrellas. Su labor era auténticamente baconiana, del tipo que Newton y Darwin instaban a hacer pero raramente hicieron ellos, y las mujeres se enorgullecían de ella. Como afirmaba la “calculadora” de Harvard Annie Jump Cannon: “Cada dato es un facto valioso en la imponente totalidad”.

Precisamente fue Cannon quien,  en 1915, empezó a discernir la forma de esa totalidad, cuando descubrió que la mayoría de las estrellas pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación (ahora generalizado en la astronomía estelar), ordena los espectros por color, desde las estrellas O blanco-azuladas, pasando por las estrellas G amarillas como el Sol, hasta las estrellas rojas M. Era un rasgo de simplicidad debajo de la asombrosa variedad de las estrellas.

Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacto danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, Las Híades y las Pléyades. Los cúmulos como estos son genuinos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperimentado salta entusiasmado cuando recorre con el telescopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta el amarillo apagado.

                             Pléyades (astronomía) - Wikipedia, la enciclopedia libre

                                                     Las Pléyades

                          Las Híades | mtanous

                                                                Las Híades

Puesto que puede supònerse que todas las estrellas de un cúmulo están a la misma distancia de la Tierra, toda diferencia observada en sus magnitudes aparentes pueden atribuirse, no a una diferencia en las distancias, sino en las magnitudes absolutas. Hertzsprung aprovechó este hecho para utilizar los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado diagrama Hertzsprung-Russell. Claro, como cabía esperar, la aplicabilidad del método pronto se amplió también a estrellas no pertenecientes a cúmulos.

Henry Norris Russell

Henry Norris Russell

(1877/10/25 – 1957/02/18)

Henry Norris Russell

Astrofísico estadounidense

Nació en el 25 de octubre de 1877 en Oyster Bay, Nueva York.

 Henry Norris Russell, un astrofísico de Princeton con un enciclopédico dominio de su campo, pronto se puso a trabajar justamente en eso. Sin conocer siquiera el trabajo de Hertzsprung, Russell diagramó las magnitudes absolutas en función de los colores, y halló que la mayoría están a lo largo de una estrecha zona inclinada: el trondo del árbol de estrellas. El árbol ha estado creciendo desde entonces y hoy, está firmemente grabado en la conciencia de todos los astrónomos estelares del mundo. Su tronco es la “serie principal”, una suave curva en forma de S a lo largo de la cual se sitúan entre el 80 y el 90 por 100 de todas las estrellas visibles. El Sol, una típica estrella amarilla, está en la serie principal a poco menos de la mitad del tronco hacia arriba. Una rama más fina sale del tronco y se esxtiende hacia arriba y a la derecha, donde florece en un ramillete de estrellas más brillantes y más rojas: las gigantes rojas. Debajo y a la izquierda hay una cantidad de mantillo de pálidas estrellas entre azules y blancas: las enanas.

                               

                                                      El Diagrama de  Hertzsprung-Russell resumido

Este diagrama proporcionó a los astrónomos un registro congelado de la evolución, el equivalente astrofísico del registro fósil que los geólogos estudian en los estratos rocosos. Presumiblemente, las estrellas evolucionan de algún modo, pasan la mayor parte de su tiempo en la serie principal (la mayoría de las estrellas en la actualidad, en el brevísimo tiempo que tenemos para observar, se encuentran allí), pero empiezan y terminan su vida en alguna otra parte, entre las ramas o en el mantillo. Por supuesto, no podemos esperar para ver que esto sucede, pues el tiempo de vida, aun de estrellas de vida corta, se mide en millones de años. Hallar las respuestas exigirá conocer toda la física del funcionamiento estelar.

El progreso de la Física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como la barrera de Coulomb, y por un tiempo frustó los esfuerzos de los físicos teóricos para comprender cómo la fusión nuclear podía producir energía en las estrellas…Pero eso, amigos, es otra historia que os contaré en otro momento.

emilio silvera