martes, 01 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Alquimia estelar? ¿Proplasma vivo? ¿De dónde venimos?

Autor por Emilio Silvera    ~    Archivo Clasificado en Bioquímica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Aida. ¡El Universo y la Mente! Una prueba de la evolución de la ...

                         Una pregunta que nunca pudimos contestar es nuestra presencia aquí

 

Se generan en nuestras Mentes y, sentimos la necesidad de comunicarle al mundo estas ideas

 

 

 

Resultado de imagen de LOs inventos sumerios

                                                    Algunos de sus inventos

 

 

                          Las primeras ciudades: UR, URUK, ERIDU

Hablar de lo que consiguió esta Civilización requeriría mucho más espacio del que tenemos aquí.

 

Pero vayamos al trabajo que hoy se presenta:

                                   

 

Estructuración del protoplasma-vivo como el plasma de la Vida con unas notables facultades para hacer cosas nuevas a partir de otras viejas. ¡Cuánto se habría excitado y cuán complacido habría estado Pasteur si hubiera conocido el famoso experimento de Miller! Pese a ser él mismo un teísta, Pateur estaba convencido de que Dios creó la vida sobre la Tierra combinando precisamente fuerzas químicas y azar. Reconocía también, como sabemos, que los compuestos orgánicos de los seres vivos son ópticamente activos, es decir, poseen una asimetría interna capaz de desviar planos de luz polarizada. Estaba impresionado, con el hecho de que, fuera de los tejidos vivos, los compuestos asimétricos se encuentran siempre en forma racémica: una mezcla de moléculas orientadas a la derecha, y otras, orientadas a la izquierda. Solamente en estos tejidos vivos, los compuestos orgánicos tienen una lateralidad bien definida.

 

                                                         


En la primera imagen de arriba podemos ver la estructura de molécula de ciclosporina A en forma de corona, izquierda de la imagen (representación de bolas y varillas) y unida a su diana por la que ejerce su función farmacológica (representada como modelo de esferas). Se une a la ciclofilina (en blanco) y esta a su vez a la Calcineurina. Esta última es la encargada de permitir la respuesta inmune de los linfocitos por lo que ésta queda bloqueada. Siempre hemos querido saber sobre el origen de la vida y los secretos que la rodean y cómo apareció en nuestro mundo.

 

Alquimia estelar? ¿Protoplasma vivo? ¿De dónde venimos? : Blog de Emilio Silvera V.

Alquimia estelar? ¿Protoplasma vivo? ¿De dónde venimos? : Blog de Emilio Silvera V.

El protoplasma-vivo para mantener su forma debe renovar sus moléculas de materia. El recambio de sustancias es lo que se conoce globalmente como metabolismo. Corresponde a reacciones sencillas de oxidación, reducción, hidrólisis, condensación, etc. Estas reacciones se van modificando y perfeccionando, en los casos más optimistas, hasta llegar a diferenciarse procesos idénticos en alguna o algunas reacciones, A. Baj y Palladin estudiaron la respiración, con todas sus reacciones y catalizadas por su fermento específico. S. Kostichev, A. Liebedev estudiaron la química de la fermentación.

Michurin estudió la relación del organismo y el medio. Los fermentos de las estructuras protoplasmáticas determinaban sus reacciones por la velocidad y la dirección, estableciendo una relación con el medio. Se establecía un círculo de fenómenos relacionados y ordenados regularmente. Se producían asimilaciones y desasimilaciones de sustancias orgánicas con el fin de autoconservación y autorenovación del protoplasma.

En la base de la organización de todo individuo está la célula, y en la célula el protoplasma vivo, en cuya compleja estructura morfológica y química reside el principio de todas las funciones vitales. Inicialmente la organización morfológica de la célula sólo se conocía a través de los medios ópticos. Dentro de los límites de su poder resolutivo; con la introducción del microscopio electrónico amplió notablemente los conocimientos sobre la estructura celular, al conseguirse aumentos hasta 200 veces superior a los obtenidos por los medios ópticos.

Muchas son las veces que aquí, en este lugar dedicado a distintas disciplinas de la Ciencia, hemos hablado de la Vida. Sin embargo, nunca nos hemos parado a explicar la cuestión del proceso del origen de la vida, conociendo antes, aunque sea de manera sencilla y sin profundidad, aquellos principios básicos de la estructura del protoplasma vivo, ese sustrato material que será la base de todos los seres vivos, sin excepción.

A finales del siglo XIX y principios del XX, había científicos que creían que los organismos sólo eran “máquinas vivientes” especiales, de estructuras muy complejas y, aseguraban que la estructura del protoplasma vivo era algo así como una máquina, construido conforme a un determinado plan y que estaba formado por “vigas” y “tirantes” como si de un puente se tratara y que, de manera similar a éste, los lazos de unión tenían unida toda la estructura que, de esta manera, se mantenía firme, y, esa estructura de tan estricto orden en la colocación recíproca de las distintas partes del protoplasma vivo, era precisamente, según ellos, la causa específica de la vida. Y, a todo ello, sin olvidarse del Carbono, la base de todo signo de vida que conocemos.

 

 

Pero el estudio concreto del protoplasma vivo desmintió esta teoría mecanicista. Fue probado que no existía ninguna estructura parecida a una máquina ni siquiera a las de máxima precisión, en el interior del protoplasma vivo.

Es bien conocido que la masa básica del protoplasma vivo es líquida; nos hallamos ante un coacervado complejo, constituido por una gran cantidad de sustancias orgánicas de un peso molecular considerable, entre estas destacan las proteínas y los lipoides. Por esta razón, se encuentran flotando a su libre albedrío en esa sustancia coacervática fundamental, partículas filamentosas coloides, quizás enormes moléculas proteínicas sueltas, y muy probablemente, auténticos enjambres de esas moléculas. El tamaño de las partículas es tan diminuto que no se distinguen ni a través de los microscopios actuales más sofisticados. Pero encontramos otros elementos visibles en el interior del protoplasma vivo. Cuando las moléculas proteínicas y de otras sustancias se unen formando conglomerados, destacan en la masa protoplasmática en forma de pequeñas gotas, captadas a través del microscopio, o en forma de coágulos, con una determina estructura denominados elementos morfológicos. El núcleo, las plastídulas, las mitocondrias, etcétera.

 

Mitocondrias Nucleo | PPT

 

Estos elementos protoplasmáticos, observables a través del microscopio, son, esencialmente, una manifestación aparente y externa de determinadas relaciones de solubilidad, enormemente complejas, de las distintas sustancias que conforman el protoplasma vivo y que se ha podido comprobar que tiene, un papel determinante, en el curso del proceso de la vida, que no se puede comparar de ningún modo con el papel que desempeña una máquina en su trabajo específico. Esto queda totalmente justificado por la sencilla razón de que una máquina y el protoplasma vivo son dos sistemas distintos y contrarios.

Sin duda, lo que caracteriza la función de una máquina es el desplazamiento mecánico de sus diferentes partes en el espacio. Por esa razón hay que insistir que el elemento más importante de la estructura de una máquina es, precisamente, la colocación de sus piezas; mientras que el proceso vital tiene un carácter totalmente distinto. Se manifiesta esencialmente con el recambio de sustancias, o sea, con la interacción química de las diferentes partes que conforman el protoplasma vivo. Por esto deducimos que el elemento primordial en toda la estructuración del protoplasma vivo es el orden concreto que siguen los procesos químicos en el tiempo, la forma tan armónica en que se combinan, siempre con tendencia a conservar en su conjunto el sistema vital.

 

 

Es de vital importancia para la formación del protoplasma vivo que exista una estructura interna determinada. Pero otro factor no menos decisivo es la organización en el tiempo, o sea, que los procesos que se dan en el protoplasma vivo lo hagan en armonía. Cualquier organismo, tanto animal, planta o microbio, vive únicamente mientras pasen por él, de forma continuada y constante, nuevas partículas de sustancias, cargadas de energía. Distintos cuerpos químicos pasan del medio ambiente al organismo; y cuando están dentro, sufren unos determinados y esenciales trastornos, mediante los cuales acaban convirtiéndose en sustancias del propio organismo invadido y serán iguales que aquellos cuerpos químicos que antes formaban parte del ser vivo. Este proceso se conoce con el nombre de asimilación. Sin embargo, de forma paralela a este proceso se da la desasimilación, que se trata precisamente del proceso contrario, es decir, las distintas sustancias que forman la parte del organismo vivo son sensibles a los cambios del propio organismo, se desintegran a menor o mayor velocidad, y son sustituidas por los cuerpos asimilados. De esta forma, los productos de la desintegración se echan al medio envolvente.

Por otra parte, en todo esto debemos tener en cuenta un gente que, siendo ineludible para la vida, está siempre presente en todo lo que a ella concierne. El Agua.

 

                           

 

El agua pura es un líquido inodoro e insípido. Tiene un matiz azul, que sólo puede detectarse en capas de gran profundidad. A la presión atmosférica (760 mm de mercurio), el punto de congelación del agua es de 0 °C y su punto de ebullición de 100 °C. El agua alcanza su densidad máxima a una temperatura de 4 °C y se expande al congelarse. Como muchos otros líquidos, el agua puede existir en estado sobreenfriado, es decir, que puede permanecer en estado líquido aunque su temperatura esté por debajo de su punto de congelación.

Es muy cierto que la sustancia del organismo vivo siempre se encuentra en movimiento, desintegrándose y volviendo a formarse de manera continua en virtud de la gran cantidad de reacciones de desintegración y síntesis, que se dan guardando una fuerte relación entre ellas. Ya Heráclito, aquel gran dialéctico de la antigua Grecia, nos decía: “nuestros cuerpos fluyen como un arroyo, y de la misma manera que el agua de éste, la materia se renueva en ellos.” Está claro que una corriente o un chorro de agua pueden mantener su forma, su aspecto externo, durante un tiempo, pero su aspecto sólo es la manifestación exterior de ese proceso continuo y constante del movimiento de las partículas del agua. Incluso la misma existencia de este sistema depende, naturalmente, de que las renovadas moléculas de materia pasen constantemente, y a una velocidad determinada por el chorro de agua. Pero si interrumpimos este proceso, el chorro dejará de existir como tal. Lo mismo sucede en todos los sistemas conocidos como dinámicos, los cuales tienen un proceso concreto.

 

Los seres vivos on Make a GIF

 

Es un hecho concreto e innegable que los seres vivos también son sistemas dinámicos. Igual que el chorro de agua al que antes hacíamos referencia, su forma y su estructura sólo forman parte de la expresión externa y aparente de un equilibrio, muy competente, formado por procesos que se dan en el ser vivo en sucesión permanente a lo largo de toda su vida. Sin embargo, el carácter de estos procesos es totalmente diferente a los que ocurre en los sistemas dinámicos de la naturaleza orgánica.

Las moléculas de agua llegan al chorro, ya como moléculas de agua, y lo atraviesan sin que se produzca ningún cambio. Pues el organismo toma del medio ambiente sustancias ajenas y desconocidas para él, pero a continuación, mediante procesos químicos muy complejos, son convertidos en sustancias del propio organismo, muy parecidas a los materiales que forman su cuerpo.

Precisamente esto es lo que hace posible las condiciones que mantienen constantemente la composición y estructura del organismo, ignorando este proceso continuo e ininterrumpido de desasimilación que se da en todos los organismos vivos.

Así pues, desde una perspectiva puramente química, el recambio de sustancias, también llamado metabolismo, es un conjunto enorme de reacciones más o menos sencillas, de oxidación, reducción, hidrólisis, condensación, etcétera. Lo que lo hace diferente del protoplasma vivo,  es que en el metabolismo, estas reacciones se encuentran organizadas en el tiempo de de cierto modo, las cuales se combinan para poder crear un sistema integral. Dichas reacciones no surgen por casualidad, y de forma caótica, sino que se dan en estricta sucesión, y en un orden armónico concreto.

El ácido pirúvico (ver otros nombres en la tabla) es un ácido alfa-ceto que tiene un papel importante en los procesos bioquímicos. El anión carboxilato del ácido pirúvico se conoce como piruvato. El ácido pirúvico es un compuesto orgánico clave en el metabolismo. Es el producto final de la glucolisis, una ruta metabólica universal en la que la glucosa se escinde en dos moléculas de piruvato y se origina energía (2 moléculas de ATP).

Ese orden será la base de todos los fenómenos vitales conocidos. En la fermentación alcohólica, por ejemplo, el azúcar proveniente del líquido, que es fermentable, penetra en la célula de la levadura, sufriendo determinados trastornos químicos. O sea, primero se le incorpora el ácido fosfórico y luego se divide en dos partes.

Una de las cuales experimentará un proceso de reducción, mientras que la otra se oxidará, quedando convertida, finalmente, en ácido pirúvico, que más tarde se descompondrá en anhídrido carbónico y acetaldehído. Este último se reducirá, quedando transformado después en alcohol etílico. Como resultado, podemos observar que el azúcar queda convertido en alcohol y anhídrido carbónico.

Cã©lula de levadura Imágenes vectoriales de stock - Alamy

 

Esto nos demuestra que en la célula de la levadura, lo que determina la producción de estas sustancias es el extraordinario rigor con que se dan todas estas reacciones, las cuales se suceden de forma muy ordenada. Sólo con que sustituyésemos en esta cadena de transmutaciones un único eslabón o si alterásemos en lo más mínimo el orden de dichas transmutaciones ya no tendríamos como resultado alcohol etílico, sino cualquier otra sustancia. En efecto, en las bacterias de la fermentación de la leche, el azúcar, al principio sufría los mismos cambios en la levadura, pero cuando se llega a la fermentación del ácido pirúvico, éste ya no se descompone, todo lo contrario, se reduce al instante. Esto explica que en las bacterias de la fermentación láctica el azúcar no se transforme en alcohol etílico, sino en ácido láctico.

Las encimas

 

Estructura de la triosa-fosfato isomerasa.  Conformación en forma de diagrama de cintas  rodeado por el modelo de relleno de espacio de la proteína. Esta proteína es una eficiente enzima involucrada en el proceso de transformación de azúcares en energía  en las células.

La enzimología, al igual que las disciplinas experimentales que han surgido como ramas del tronco común que es la biología, tiene una historia propia construida a través de observaciones, experiencias, pruebas y teorías.

Se inició con el estudio de los procesos de fermentación y de putrefacción y Antoine-Laurente Lavoisier fue el primero en plantear sobre bases cuantitativas el proceso de la fermentación alcohólica, al observar una relación entre cantidad de azúcar presente y productos formados durante el proceso.

Un estudio de la síntesis de distintas sustancias en el protoplasma vivo demuestra que éstas no se crean de repente, y no provienen de un acto químico especial, sino que son el resultado de una cadena larguísima de trastornos químicos.

No puede constituirse un cuerpo químico complejo, propio de un ser vivo en concreto, sin que se produzcan centenares o miles de reacciones en un orden regular, constante, y ya previsto con rigurosidad, lo cual constituirá la base de la existencia del protoplasma vivo.

 

                 

                                                    La Biología Físico-Química

La bioquímica, es la rama de la Química y de la Biología que tiene por objetivo principal el conocimiento de la estructura y comportamiento de las moléculas biológicas, que son compuestos de Carbono que forman las diversas partes de la célula y llevan a cabo las reacciones químicas las que le permiten crecer, alimentarse, reproducirse y usar y almacenar energía.

Porque cuanto más compleja es la sustancia, más reacciones intervienen en su formación dentro del protoplasma vivo y estas reacciones deben coordinarse entre sí con mayor rigor y exactitud. En efecto, investigaciones bastante recientes han demostrado que en la síntesis de las proteínas a partir de los aminoácidos toman parte gran cantidad de reacciones que se producen en una sucesión muy ordenada. Únicamente como consecuencia de esta rigurosa armonía, de esta sucesión ordenada de las reacciones, se da en el protoplasma vivo ese ritmo estructural, esa regularidad en la sucesión de los distintos aminoácidos que también podemos apreciar en las proteínas actuales.

Por consiguiente, las moléculas proteínicas, así originadas y con una estructura determinada se agrupan entre sí, y ciertas leyes las hacen tender a la formación de auténticos conglomerados moleculares que se acaban separando de la masa protoplasmática y se distinguen como elementos morfológicos, visibles a través del microscopio, como formas protoplasmáticas características por su gran movilidad. De esta manera, la composición química propia del protoplasma vivo, como su estructura, son la manifestación del orden en que se producen estos procesos químicos que se dan de forma continua y permanente en la materia viva.

Hidrógeno

 

El hidrógeno: un valor en alza - La Nueva España

                                          Todos sabemos de su importancia para la vida

En el siglo XVI se observó que cuando el ácido sulfúrico actuaba sobre el hierro se desprendía un gas combustible. En 1766 Henry Cavendish demostró que dicho gas era una sustancia distinta a otros gases también combustibles, confundiendo el gas obtenido, al que llamo <<aire inflamable>>. Provenía del hierro y no del ácido sulfúrico, también demostró que el gas en el aire y en el oxígeno se formaba Agua.

 

                                                                   La Atmósfera

Es la capa de gas que rodea a un cuerpo celeste que tenga la suficiente masa como para atraer ese gas. Los gases son atraídos por la gravedad del cuerpo, y se mantienen en ella si la gravedad es suficiente y la temperatura de la atmósfera es baja. Algunos planetas están formados principalmente por gases, con lo que tienen atmósferas muy profundas. Si no se dan ciertos parámetros, el protoplasma vivo de la vida, nunca habría hecho acto de presencia.

– Nitrógeno (78%) y
– Oxígeno (21%)

 

– El 1% restante lo forma

n el argón (0,9%), el dióxido de Carbono (0,03%), y distintas proporciones de vapor de agua, y trazas de hidrógeno, ozono, metano, monóxido de Carbono, helio, neón, kriptón y xenón.

 

                                           Ozonosfera y sodiosfera

 

Desde 15 hasta 60 kilómetros de altitud, el ozono, que en las zonas próximas al suelo se encuentra sólo en pequeñas cantidades, aparece en porcentajes más sensibles y forma la ozonosfera. Este ozono absorbe la radiación ultravioleta procedente del Sol, haciendo posible de es modo la existencia de vida en la Tierra.

Pues bien, debemos preguntarnos de qué depende ese orden, propio de la organización del protoplasma vivo,  y cuáles son sus causas inmediatas. Un estudio minucioso sobre esta cuestión dejará demostrado que el orden indicado no es simplemente algo externo, que queda al margen de la materia viva, teoría defendida por los idealistas; en cambio, hoy día, sabemos perfectamente que la velocidad, la dirección y el encadenamiento de las diferentes reacciones, todo lo que forma el orden que estamos viendo, depende totalmente de las relaciones físicas y químicas que se establecen en el protoplasma vivo.

 

http://2.bp.blogspot.com/-az-rChkzpD4/Tm9SUJr4G_I/AAAAAAAAHMM/iynnMNxF0Cg/s1600/m42_vargas.jpg

 

Las propiedades químicas de las sustancias integradoras del protoplasma vivo,  en primer lugar, y también las de las sustancias orgánicas que intervienen son las que constituyen la base de todo ello. Dichas sustancias orgánicas poseen enormes posibilidades químicas y pueden generar gran variedad de reacciones. Pero, aprovechan estas posibilidades con mucha “pereza”, lentamente, a veces a una velocidad ínfima. En muchas ocasiones, se necesitan meses e incluso años, para que llegue a producirse alguna de las reacciones efectuadas entre las mismas sustancias orgánicas. Por esto, los químicos, para acelerar el proceso de las reacciones entre las sustancias orgánicas, usan a menudo en su trabajo diferentes sustancias de acción enérgica-ácidos y álcalis fuertes, etcétera.

Para conseguir tal aceleramiento cada vez con más frecuencia, los químicos recurren a la utilización de los catalizadores. Hace ya mucho tiempo que habían notado que sólo con añadir una pequeña dosis de algún catalizador a la mezcla donde se estaba realizando una reacción, se producía un gran aceleramiento de ésta. Además, otra propiedad propia e los catalizadores es que no se destruyen durante el proceso de la reacción, y cuando esta finaliza, comprobamos que queda exactamente la misma cantidad de catalizador que añadimos a la mezcla al principio. Así que, cantidades insignificantes de catalizador son suficientes, muchas veces, pata provocar la rápida transmutación de masas considerables de diferentes sustancias. Esta cualidad, hoy día, es de gran utilidad para la industria química, que usa como catalizadores distintos metales, sus óxidos, sus sales y otros cuerpos orgánicos o inorgánicos. Las reacciones químicas dadas en animales y vegetales entre las distintas sustancias orgánicas se suceden a gran velocidad. De lo contrario, la Vida no pasaría tan rápida como en realidad pasa. Se sabe que la gran velocidad de las reacciones químicas producidas en el protoplasma vivo es debida a la presencia constante de catalizadores biológicos especiales llamados fermentos.

 

 

Hace tiempo que estos fermentos fueron descubiertos, y ya con anterioridad, los científicos se habían fijado en ellos. Pues resultó que los fenómenos se podían extraer del protoplasma vivo y así separarse en forma de solución acuosa o como polvo seco de fácil solubilidad. Esto me hace pensar en lo que ocurre en las Nebulosas. No hace mucho se consiguieron fermentos en forma cristalina y se resolvió su composición química. Estos resultaron ser proteínas, y muchas veces, en combinación con otras sustancias de distinta naturaleza. Estos fermentos, por el carácter de su acción, se asemejan a los catalizadores inorgánicos. Sin embargo, se diferencian de ellos por la increíble intensidad de sus efectos.

En este sentido, los fermentos superan a los catalizadores inorgánicos de acción en centenares de miles, y en ocasiones hasta en millones de veces. Así que en los fermentos de naturaleza proteínica se da un mecanismo increíblemente perfecto y racional que hace posible acelerar las reacciones químicas entre las distintas sustancias orgánicas. Los fermentos también se caracterizan por la excepcional especifidad de su acción.

La Teoría Celular

 

Definición de Teoría Celular

Llegados a este punto debemos profundizar un poco más en la constitución de los seres vivos. Para ello debemos saber la teoría celular, enunciada por Matthias Schleiden (1804-1881) y Theodor Schwann (1810-1882).

La teoría celular de Schleiden y Schwann señala un rasgo común para todos los seres vivos: todos están compuestos por células y por productos elaborados por ellas. Aunque la idea de que la célula es el “átomo” de la vida nos parezca evidente, su importancia y la dificultad de su descubrimiento son parejas a la dificultad del descubrimiento de la existencia de átomos en química, y marca un cambio de paradigma en la manera de concebir la vida.

La teoría celular se basó en los adelantos realizados mediante los aparatos de observación debidos inicialmente a Robert Hooke (1635-1703) y a Anton Van Leeuwenhoek (1632-1723). Hooke construyó cientos de microscopios. Los más avanzados estaban formados por dos lupas combinadas como ocular y objetivo (microscopio compuesto).

 

imagen de un piojo

 imagen de células vegetales

Aunque con ellos llegó a alcanzar 250 aumentos, eran preferibles los de una sola lente, como los que construyó van Leeuwenhoek, ya que presentaban menos aberración cromática. Con esos instrumentos consiguieron descubrir infusorios (aquellas células o microorganismos que tienen cilios u otras estructuras de motilidad para su locomoción en un medio líquido), bacterias, la existencia de capilares en la membrana interdigital de las ranas.

Ahora sabemos que tanto los paramecios como los organismos superiores están formados por una o más células, almacenan y transportan la energía, duplican su material genético y utilizan la información que ese material contiene para sintetizar proteínas siempre de la misma forma. Todos estos procesos, que están presentes en todas las células, son los que forman la maquinaria de la vida.

Todo lo que siempre quisiste saber sobre los nutrientes orgánicos

                                                            Sustancias orgánicas que nos dan las vitaminas

Por supuesto, esto es a causa de las particularidades del efecto catalítico de las proteínas; pues la sustancia orgánica (el sustrato) que sufre alteraciones en el transcurso del proceso metabólico, forma ya al principio, una unión bastante compleja aunque de corta duración, con la correspondiente proteína-fermento. Esta fusión tan completa, no es estable, pues sufre distintos trastornos con mucha rapidez: el sustrato sufre las transformaciones correspondientes y el fermento se regenera, para poder unirse de nuevo a otras porciones del sustrato.

Entonces, para que las sustancias integradoras del protoplasma vivo puedan participar realmente con el metabolismo, debe combinarse con una proteína y constituir con ella un enlace complejo. De no ser así, sus posibilidades químicas se producirán muy lentamente y entonces perderán toda su importancia en el impetuoso proceso vital. Por esta razón el cómo se modifique una sustancia orgánica en el transcurso del metabolismo, depende, además de la estructura molecular de esta sustancia, y de las posibilidades químicas de la misma, también de la acción de fermentación de las proteínas protoplasmáticas, las cuales se encargan de llevar esa sustancia al proceso metabólico general.

 

 

Alquimia estelar? ¿Proplasma vivo? ¿De dónde venimos? : Blog de Emilio Silvera V.La Vida! Un misterio que tratamos de resolver : Blog de Emilio Silvera V.La Vida! Un misterio que tratamos de resolver : Blog de Emilio Silvera V.

 

Los fermentos, además de ser un poderoso acelerador de los procesos químicos sufridos por la materia viva; son también un mecanismo químico interno, el cual se encarga de que esos procesos sean conducidos por un cauce muy concreto. La gran especificidad de las proteínas-fermentos consigue que cada una de ellas forme enlaces complejos sólo con determinadas sustancias y catalice solamente algunas reacciones. Por esto, cuando se produce éste o el otro proceso vital, y con más motivo, cuando se verificas todo el proceso metabólico, actúan miles de proteínas-fermento de distintas clases. Cada una de estas proteínas puede catalizar de forma específica una sola reacción, y sólo el conjunto de acciones de todas ellas, en muy precisa combinación, hará posible ese orden regular de los fenómenos que entendemos como base del metabolismo.

 

Con el uso de los distintos fermentos específicos que se obtienen a partir del organismo vivo, en el laboratorio, pueden reproducirse de forma aislada cada una de las reacciones químicas, y todos los eslabones que forman el proceso metabólico. Así desenredamos el ovillo tan sumamente complicado de las transmutaciones químicas producidas durante el metabolismo, donde miles de reacciones individuales se mezclan. Por este mismo procedimiento se puede descomponer el proceso metabólico en sus diferentes etapas químicas, se puede analizar las sustancias integradora de la materia viva, y además los distintos procesos realizados en ella.

 

El funcionamiento del sistema respiratorio | Human anatomy and physiology, Human body systems, Medical anatomy

 

De esa manera se demostró que la respiración funciona a partir de una serie de reacciones como la oxidación o la reducción, dichas reacciones se dan con muchísimo rigor en un orden estricto y cada una de éstas es catalizada por un fermento específico (S.Kóstichev, A. Liédev y otros autores).

En 1878 el biólogo alemán Walter Fleming descubrió que se podían teñir unas estructuras existentes en el interior del núcleo y llamo cromatina a la materia que las formaban.

Como las células de la preparación morían al teñirse, y en una preparación existían células en muy diferentes etapas de crecimiento y división, Fleming pudo estudiar estas etapas y comprender cómo evolucionaba la vida de la célula.

Al comenzar el proceso de división celular la cromatina forma una especie de hilos que se denominan, con mucha lógica, cromosomas (cuerpos coloreados) y Fleming llamó al proceso de división celular mitosis, una palabra griega que significa hilo.

En 1887 el biólogo belga Edouart van Beneden contó el número de cromosomas de células de diferentes especies y llegó a la conclusión de que el número de cromosomas es una característica de la especie. Todas las células humanas tienen 46 cromosomas.

 

espermatozoides on Make a GIFEspermatozoides animados Motivacion on Make a GIF

                                                                 El más/ o los más fuertes llegarán

También descubrió que los espermatozoides y los óvulos tenían la mitad de los cromosomas de las células normales, y dedujo que al unirse conservaban todos sus cromosomas, con lo que recuperaban el número característico de la especie.

Tanto Fleming como van Beneden comprendieron que eran los cromosomas del huevo los que determinaban las características del animal que se iba a formar, pero no podían saber el mecanismo por el que lo hacían.

Por entonces se empezó a llamar citoplasma vivo al conjunto de protoplasma vivo y orgánulos que están comprendidos entre el núcleo y la pared o membrana celular, y se empezaron a estudiar estos orgánulos.

Así, en 1898 el biólogo alemán Carl Benda descubrió las mitocondrias, que en griego significa hilos de cartílago. Ahora sabemos que son los órganos que se encargan de la obtención de energía a partir de azúcar y oxígeno. Ese mismo año Golgi descubrió el complejo que lleva su nombre.

 

               

              Aminoácidos y azúcares de la vida están ahí presentes

Hoy día, ya hemos dado el salto del análisis de los procesos vitales a su reproducción, a su síntesis. De esta forma, combinando de manera precisa en una solución acuosa de azúcar, una veintena de fermentos distintos, obtenidos a partir de seres vivos, pueden reproducirse los fenómenos propios de la fermentación alcohólica. En este líquido, donde gran cantidad de proteínas distintas se hallan disueltas, los trastornos que sufre el azúcar son verificados en el mismo orden regular que siguen en la levadura viva, aunque aquí no existe ninguna estructura celular.

Todos estos procesos son, en realidad, terriblemente complejos y están expuestos a que, cualquier alteración del medio incida de manera directa en su devenir. Pero, por otra parte y en las circunstancias adecuadas, no existe ningún factor físico o químico, ni sustancia orgánica o sal inorgánica que, de alguna manera, puedan alterar el curso de las reacciones fermentativas. Cualquier aumento o disminución de la temperatura, alguna modificación de la acidez del medio, del potencial oxidativo y de la composición salina o de la presión osmótica, alterará la correlación entre las velocidades de las distintas reacciones de fermentación, y de esta forma cambia su sucesión temporal. Es aquí donde se asientan todas las premisas de esa unidad entre el organismo y el medio, tan característica de la vida.

Esta organización tan especial de la sustancia viva influye en gran manera, en las células de los organismos actuales, en el orden y la dirección de las reacciones fermentativas, las cuales son la base del proceso metabólico. Cuando se agrupan las proteínas entre sí pueden quedar aisladas de la solución general y conseguir diferentes estructuras protoplasmáticas de muy ágil movimiento. Con total seguridad, sobre la superficie de estas estructuras se encuentran concentrados gran cantidad de fermentos.

Está claro que el orden característico de la organización del protoplasma está basado en las distintas propiedades químicas de las sustancias integradoras de la materia viva.

 

1.-Todos los seres vivos están formados por células y sus productos. Por tanto la célula es la unidad anatómica del organismo.

2.-Todas las células proceden de otras células preexistentes y éstas, a su vez, de otras células. Esto lo certificaron los viejos científicos con el axioma omnis céllula e céllula, latinajo que significa lo que todos ustedes suponen, que toda célula procede de otra célula.

3.-La célula es la unidad funcional del organismo.

4.-La célula es también la unidad genética del organismo.

Básicamente la célula está formada por tres elementos:

Núcleo
Membrana y
Citoplasma

 

Membrana celular (membrana citoplasmática) | NHGRI

La membrana envuelve la célula confiriéndole su individualidad. Dicho de otra manera, la célula es una unidad separada de otras células por su membrana.

El citoplasma está formado por un líquido llamado citosol (solución celular) y gran cantidad de gránulos que reciben el nombre genérico de organelos y que más adelante describiremos. Adelantemos que en estos organelos hay una gran actividad ya que se encargan de funciones digestivas y respiratorias.

El núcleo está separado del resto del citoplasma por otra membrana, la membrana nuclearEn su interior se encuentra el material genético que crea los patrones para producir nuevas células con las características de nuestra especie. Una célula humana siempre producirá otra célula humana.

Hablar de nosotros mismos es demasiado complejo para que, científicamente podamos abarcar todo lo que somos ym sólo poco a poco podemos ir comprendiendo la grandeza que en nosaotros está representada como esa parte del universo que piensa, tiene ideas y sentimientos y, en definitiva, es la materia del Universo evolucionada hasta su más alto grado hasta el momento conocido.

emilio silvera

¡La Vida! Ese misterio

Autor por Emilio Silvera    ~    Archivo Clasificado en Bioquímica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 
            Incluso sería posible que la vida la sembrara un meteorito venido del espacio exterior
Los cinco mayores peligros para los océanos del mundo | Ecología | DW |  07.06.2017Lo que hemos aprendido tras perforar el fondo del mar desde hace medio siglo
alquimiayciencias: El Universo y la Vida: Una forma evolucionada de la  materia que no deja de asombrarnosLa teoría de las fuentes hidrotermales sobre el origen de la vida -  Antroporama | Antroporama
                         Chimeneas hidrotermales en la que pequeños “seres” viven a más de 90º C

Aunque no podamos ubicar con exactitud dónde empezó la vida de una manera categórica, parece cada vez más probable que, una vez acabado el bombardeo al que fue sometida la Tierra en su juventud, la vida surgió confinada en lugares situándose o bien por debajo del lecho marino, o bien cerca de las chimeneas volcánicas, o dentro de los sistemas hidrotermales en las márgenes de las dorsales oceánicas. Una vez establecida al resguardo de lugares semejantes, el camino quedó abierto la proliferación y diversificación.

WONDERFUL FANTASY GIFS - Community - Google+ | Gif de estrellas, Fotos  animadas, Paisajes hermosos naturales

De manera que no sabemos explicar, la vida evolucionó desde la materia “inerte” hasta los pensamientos

Está claro que, a partir de todas estas suposiciones, hemos seguido especulando acerca de lo que pudo ser y, a partir de todo lo anterior, admitamos que aquellos microbios primitivos eran termófilos y que podían soportar temperaturas de entre 100 y 150 grados Celcius.

Las bacterias de Yellowstone están que arden! | Microbiología General UVGmicrobioma | Ciencias mixtasProcariotasReino Moneras Características y Definición | Educándose En Línea

           Y como decía Darwin: “La vida pudo surgir en cualquier charca caliente”

Moraban al menos a un kilómetro bajo la superficie, posiblemente en el lecho marino, pero más probablemente en las rocas porosas que hay debajo. Inmersos en agua super-caliente repleta de minerales, ingerían rápidamente y procesaban hierro, azufre, hidrógeno y otras sustancias disponibles, liberando energía a partir de ciclos químicos primitivos y más bien ineficientes. Estas células primitivas eran comedoras de roca en bruto. Ni la luz ni el oxígeno desempeñaban ningún papel en . Ni tampoco requerían material orgánico, hacían lo que necesitaban directamente, a partir de las rocas y el dióxido de carbono disuelto en el agua.

La primera colonia microbiana tenía todo el mundo a su disposición, y un completo suministro de materiales y energía. Se habría extendido con sorprendente velocidad. La capacidad de los microbios multiplicarse a velocidad explosiva garantizaba que ellos invadirían  rápidamente cualquier nicho accesible. Sin ninguna competencia de los residentes, podrían heredar rápidamente la Tierra. Sin embargo, dada la explosión de población, la colonia habría alcanzado pronto los limites de sus habitats. Impedidos para ir a mayor profundidad por las temperaturas crecientes, e incapaces de reproducirse en los estratos superficiales más fríos, los microbios sólo podían expandirse horizontalmente a lo largo de las cordilleras volcánicas, y lateralmente a través del basalto del suelo oceánico.

Expansión del fondo oceánico - Wikipedia, la enciclopedia libre

O que são as bactérias, germes e vírus?Bactérias termofílicas: benefício e dano aos seres humanos - Ciencia 2020

La capa rígida y más externa de la Tierra, que comprende la corteza y el manto superior, es llamada litosfera.  La corteza oceánica contiene un 0,147% de la masa de la corteza terrestre.  La mayor de la corteza terrestre fue creada a través de actividad volcánica.  El sistema de cordilleras oceánicas, una red de 40.000 kilómetros de volcanes (25.000 millas), genera nueva corteza oceánica a un ritmo de 17 km3 por año, cubriendo el suelo oceánico con basalto. Hawaii e Islandia son dos ejemplos de la acumulación de material basáltico.

Mauna Loa - Wikipedia, la enciclopedia libreLa erupción del Kilauea ha resultado ser una joya: algunos habitantes de  Hawaii aseguGeología en Islandia - La Formación de La Isla | Islandia24El revolucionario experimento de Islandia que "digiere" emisiones de  carbono para convertirlas en rocas... para siempre - BBC News Mundo

En alguna etapa, quizá hace 3.800 millones de años se alcanzó la primera gran división evolutiva, cuando un grupo de microbios se encontraron repentinamente aislados de sus habitats calientes y acogedor debido a alguna catástrofe geológica, un terremoto o una gran erupción volcánica.

Volcán Sakurajima: el porqué de su relámpago azulVOE03_SEPTIEMBRE2013 | Fenomenos naturales, Volcanes, RelampagosNoche de fuego y relámpagos en el volcán Sakurajima | EuronewsMayo 13, 2018. El Volcán Sakurajima con Relámpagos. – ASTRO

El volcán Sakurajima, en el sur de Japón

“Por qué una erupción volcánica crea a veces relámpagos? Fotografiado arriba, el volcán Sakurajima, en el sur de Japón, fue captado haciendo erupción en enero de 2013. Burbujas de magma, tan calientes que brillan, son lanzadas como estallidos de roca líquida a través de la superficie de la Tierra desde debajo. Sin embargo, la imagen mostrada acá es particularmente notable por los rayos captados cerca de la cima del volcán. El por qué ocurren relámpagos incluso en las tormentas de rayos permanece como un tópico de investigación, y la causa de los relámpagos volcánicos es aún menos clara. Seguramente, los rayos ayudan a aplacar áreas con cargas eléctricas opuestas pero separadas. Los episodios de relámpagos volcánicos pueden ser facilitados por colisiones inductoras de carga en el polvo volcánico. Típicamente, los relámpagos usualmente ocurren en algún lugar de la Tierra más de 40 veces cada segundo.”

Los microorganismos que habitan en la región más calurosa de la Tierra

Aquel grupo, islados de la colonia principal, y encerrados en una región más fría, hizo que los microbios se quedaran en estado latente o simplemente murieron, pues sus membranas eran demasiado rígidas a estas temperaturas inferiores para que su metabolismo pudiera funcionar. Sin embargo, un mutante feliz, que accidentalmente tenía una membrana más flexible, sobrevivió y se multiplicó. Al hacer la transición a más frías, el microbio mutante allanó el camino para acceder a la superficie inhabitada del planeta. Mientras tanto, para los miembros de la colonia original, confinada confortablemente en el reino subterráneo, la vida ha continuado prácticamente igual hasta nuestros días.

05-Capítulo 5Pin en Salud cáncerNutricion autotrofa y heterotrofa by gissel ivonne cazares arenas

Un primer desarrollo clave fue un cambio que hicieron algunos organismos de las sustancias químicas a la luz como fuente de energía, y por entonces la vida debió de extenderse hasta la superficie. Probablemente, el primero de tales “fotótrofos” no utilizaba la moderna fotosíntesis de clorofila, sino algún proceso más elemental. Algunas arqueobacterias del Mar Muerto siguen utilizando una más bien primitiva de fotosíntesis basada en una sustancia roja relacionada con la vitamina A. La captura de la luz solar comenzó en serio con las bacterias, que descubrieron una forma de arrancar electrones de minerales, potenciarlos con fotones solares y utilizar la energía almacenada fabricar material orgánico.

BIOLOGÍA - Cueva de Nerja

Respiras oxígeno gracias a las cianobacterias – Espirulina artesanalMundo Pré-Histórico: Origem da vida

En las profundidades abisales del océano, las bacterias usan hidrógeno y producen materia orgánica.

Un refinamiento posterior los liberó de la dependencia de minerales, permitiendo a las bacterias arrancar electrones del agua y liberar oxígeno en consecuencia. El componente crucial en este ingenioso proceso era la clorofila, la sustancia que da el color verde a las plantas. Puesto que sólo se necesitaba agua, dióxido de carbono y luz, estaba abierto el camino el verdor del planeta.

Heterótrofo - Wikipedia, la enciclopedia libre3. Periodo I Procesos Biológicos | cienciasnaturalesisaza

                              La evolución de las especies está más que demostrada

Todavía queda por responder cómo y cuando aparecieron  los tres grandes dominios: arqueobacterias, bacterias y eucarias. Parece probable que la gran división en el árbol de la vida arqueobacterias y bacterias tuvo lugar antes de la invención de la fotosíntesis, quizá tan temprano como hace 3.900  o  4.000  millones de años, bien entrada la era del bombardeo intenso.

La evidencia apunta a que las arqueobacterias sean los organismos más viejos y más primitivos, y que las bacterias aparecieron algo más tarde. Tan profunda era la división las arqueobacterias y las bacterias que ellas no han sido nunca rivales; siguen ocupando nichos diferentes después de varios miles de millones de años de evolución.

Finalmente, la profunda escisión que produjo el dominio de las eucarias ocurrió probablemente cuando las eran algo más frías. Por alguna razón, quizá por estar expuestas a los desafíos de un entorno menos estable, las eucarias de temperatura más baja se desarrollaron a un ritmo mucho más rápido.

Célula Eucariota: origen, partes, funciones y característicasDefinición de eucariota - Qué es, Significado y Concepto

Célula Eucariota: generalidadesDominio Eucaria by aylin hernandez

El posterios florecimiento de la vida, su diversificación en muchas especies, y el enorme aumento de la complejidad biológica derivan  directamente de la ramificación de las eucarias en el árbol de la vida. Sin este paso trascendental, es poco probable que nosotros -o cualesquiera otros seres sintientes- existiéramos hoy en la Tierra para poder reflexionar sobre el significado de la vida en la Tierra sus comienzos hasta el momento presente.

Mas tarde, en 1969, Robert Whuttaker propone una clasificación de los seres vivos en cinco reinos, en la que incorpora la distinción procariota-eucariota (ésta se considera actualmente mucho más importante que la de vegetal-aminal del sistema tradicional). Así quedan patente las diferencias las algas verde-azuladas(cuanolíceas) y las bacterias (ambas sin núcleo patente (procariotas) y todos los demás organismos que tienen un núcleo rodeado por membrana (eucqariotas). Los procariotas fueron incluídos en el reino Monera y los eucariotas en los cuatro restantes.

Margulis - Ale prubea cienciasLYNN MARGULIS

Esquema actual, basado en los principios de Margulis y Schwartz (1988),...  | Download Scientific DiagramLa vida en 5 reinos...por ahora..

A partir de clasificación ha surgido la de Margulis- Schwartz (1985), también en cinco reinos (es la que aún aparece en loa libros de texto). Se basa en estudios citogenéticos y tiene la ventaja de hacer grupos más homogéneos. Cambia el reino protistas por el de Protoctistas, en el que incluye a Protozoos, todas las algas (excepto cianofíceas) y los hongos inferiores.

Difícilmente podríamos aquí, en un simple repaso a lo que fue el comienzo y la evolución de la vida primigenia en nuestro planeta, hacer una relación pormenorizada de todo lo que ello implica y, nos limitamos, como podeís ir comprobando, a dejar trabajos sueltos con retazos de lo que “pudo haber sucedido” para que, de alguna manera, podamos llegar a una más amplia comprensión de tan complejo problema. Nada más y nada menos que…¡La Vida!

emilio silvera

¿Qué haríamos sin microbios?

Autor por Emilio Silvera    ~    Archivo Clasificado en Bioquímica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Sabías que estamos ligados genéticamente a nuestros amigos?
Veamos el artículo publicado en  El Español

 

Ciencia

Todo lo que les debemos a nuestros amigos los microbios

 

La Tierra alberga una inmensa variedad de “vida invisible” que la ciencia apenas está empezando a conocer y que en el futuro ofrecerá inmensas aplicaciones tecnológicas.

 

Qué haríamos sin microbios? : Blog de Emilio Silvera V.Qué haríamos sin microbios? : Blog de Emilio Silvera V.

                    Imagen aumentada de E-Coli Agricultural Research Service, EEUU
Javier Yanes @yanes68
 

Microbios. Aunque no podamos verlos, somos muy conscientes de su existencia. Pero hasta hace apenas siglo y medio eran prácticamente desconocidos para la ciencia, hasta que Louis Pasteur y otros pioneros de la microbiología comenzaron a desvelar un mundo de vida invisible que está siempre presente a nuestro alrededor, sobre nosotros, incluso dentro de nosotros, y que suma más de la mitad de la biomasa del planeta.

The New Tree of Eukaryotes: Trends in Ecology & EvolutionEukaryote - Wikipedia

Hoy se diría que los conocemos bien; hemos catalogado los beneficiosos, los indiferentes y los peligrosos. Contra estos últimos hemos obtenido, precisamente gracias a otros microbios, todo un arsenal de antibióticos que han conseguido reducir las enfermedades bacterianas a una preocupación de segundo orden en los países desarrollados. Empleamos jabones antibacterianos, e incluso calcetines antibacterianos. Comemos alimentos esterilizados y dominamos las reglas caseras para protegernos de sus estragos; hasta un niño sabe que una chuche caída al suelo debe desecharse porque se ha contaminado con bacterias.

Fichier:Tree microbialgenomes nocobwebs.jpg — Wikipédia

Y sin embargo, en este siglo XXI estamos descubriendo que nos falta mucho por saber de los microbios. Hace unos días nos sorprendía la noticia de que estábamos completamente equivocados respecto a la cantidad de habitantes bacterianos que albergamos en nuestro cuerpo. Durante décadas hemos manejado el dato de que las células microbianas en nuestro organismo superaban a las nuestras en una proporción de 10 a 1, una estimación elaborada por el microbiólogo Thomas Luckey en 1972 y que nadie se había preocupado de revisar.

Science Source - Evolutionary Tree: Bacteria8.5: Phylogenetic Trees - Biology LibreTexts

Ahora lo ha hecho un equipo de investigadores de Israel y Canadá basándose en el conocimiento actual, y el resultado es que el cálculo de Luckey estaba pasado de rosca: el cuerpo de un hombre de 70 kilos, dice el nuevo estudio, está compuesto por unos 30 billones de células, y contiene unos 39 billones de bacterias. Es decir, que la proporción es solo de 1,3 bacterias por cada célula humana. Las cifras son tan similares, escriben los científicos, que “cada episodio de defecación, que excreta en torno a un tercio del contenido bacteriano del colon, puede desplazar la proporción a favor de las células humanas”. Así que ya lo sabe: usted es más usted después de ese rato íntimo en el baño.

Zombis bajo control bacteriano

 

Los zombis existen, pero en el mundo de las bacterias - Libertad DigitalMillones de bacterias "zombis" habitan el suelo bajo nuestros pies,  descubren científicos | CNN

 

Científicos descubrieron una vasta comunidad subterránea de bacterias, arquea y eucaria, conocida de forma colectiva como “biosfera profunda”. Son millones de bacterias zombis que habitan en el subsuelo

 

Estas bacterias mejoran tu digestión, ¿qué más pueden hacer por ti? - SaludLas bacterias de nuestro sistema digestivo son clave para una dieta eficaz  - Unidos x Israella digestión en las bacterias cuando una bacteria heterotrofa encuentra un  alimento su membrana - Brainly.latEquipo ilustración del sistema digestivo humano y las bacterias que se  encuentran en ella. Algunas bacterias,

 

 

Cierto que este descubrimiento es más bien recreativo. En cambio, no lo son los hallazgos más recientes sobre lo que todas estas bacterias hacen por nosotros. Es bien conocido su papel en la digestión, así como las obvias repercusiones de esta función en el bienestar de nuestras tripas. Hasta tal punto nuestra salud depende de la flora microbiana que en los últimos años se ha popularizado una técnica terapéutica tan innovadora como escatológica (y que solo debe ser practicada por especialistas, pese a que algunos vídeos en YouTube pretendan instruir sobre el “hágalo usted mismo”): el trasplante fecal, consistente en repoblar el colon de un paciente con bacterias de una persona sana. Este método ha demostrado gran eficacia en el tratamiento de infecciones resistentes y actualmente se estudia también para la enfermedad inflamatoria intestinal.

Las bacterias del intestino escogen lo que comemos?

                                               Las bacterias del intestino escogen lo que comemos

Pero lo que hasta hace unos años nadie podía sospechar es que las bacterias del tubo digestivo no solo mandan sobre nuestra salud intestinal. El descubrimiento de que ciertos microbios de la flora producen sustancias con efecto neurotransmisor, cuyo lugar natural de acción son las neuronas, fue en principio considerado como una extravagancia biológica. Hoy ya no lo es; por el contrario, es la base de lo que se ha llamado un nuevo paradigma de la neurociencia: el eje intestino-cerebro.

LinQ - Negocios y SaludLa relación intestino-cerebro: exploración de enfermedades cerebrales. -  Madrid Acupuntura

Las investigaciones recientes muestran que nuestro microbioma intestinal afecta a nuestro órgano sapiente, probablemente a través de mecanismos neuroendocrinos, y que esta insospechada conexión modula “el desarrollo cerebral y los fenotipos de comportamiento”, según una revisión sobre la materia. En concreto, dicen los científicos, “las alteraciones en el microbioma intestinal pueden desempeñar un papel fisiopatológico en enfermedades cerebrales humanas, incluyendo desórdenes del espectro autista, ansiedad, depresión y dolor crónico”.

El poder de nuestra flora intestinal no acaba ahí. Un estudio reciente ha descubierto que las bacterias digestivas controlan incluso nuestro apetito: cuando han obtenido suficientes nutrientes de nuestro almuerzo, producen proteínas que nos envían al cerebro una señal de saciedad; por increíble que parezca, en cierto aspecto somos como zombis bajo su control.

La momia de Ötzi, el hombre del hielo, también tiene valiosos microbios.
           La momia de Ötzi, el hombre del hielo, también tiene valiosos microbios. Marion Lafogler EURAC

Otras investigaciones han revelado que nuestro microbioma varía con ciertas medicaciones o con enfermedades como la obesidad, la diabetes o la anorexia, y que incluso viene determinado por el hecho de si nacemos por cesárea o parto. Se comprende así que el estudio de nuestros microbios es hoy un área pujante de investigación que ha inspirado ambiciosas iniciativas como el Proyecto Microbioma Humano, lanzado en 2008 por los Institutos Nacionales de la Salud de EEUU.

La investigación de nuestra vida interior no deja de sorprendernos. Los estudios han determinado que cada uno transportamos nuestra nube personal de microbios, como una huella dactilar microbiana, y que cada persona que visita nuestra casa nos deja como regalo 38 millones de bacterias por hora. Un beso apasionado de diez segundos transfiere de boca a boca unos 80 millones de bacterias; y lejos de resultar asqueroso, algunos microbiólogos sostienen que precisamente este podría ser el motivo por el que los humanos inventamos el beso. Los microbios ahora también pueden servir para determinar la hora y el lugar de un crimen, o para rastrear las antiguas migraciones humanas. Esto último se ha logrado analizando el microbioma de Ötzi, una momia de 5.000 años hallada en el hielo de los Alpes y que llevaba la bacteria Helicobacter pylori, causante de la úlcera gástrica.

Planeta bacteria

 

 

CURIOSIDADES CIENTÍFICAS : La tierra. Un planeta de bacterias.El planeta de las bacterias | microbichitos

“Las bacterias son organismos procariotas unicelulares, que se encuentran en casi todas las partes de la Tierra. Son vitales para los ecosistemas del planeta. El cuerpo humano está lleno de bacterias, de hecho se estima que contiene más bacterias que células humanas. …”

Pero naturalmente, fijarnos en nuestra propia flora es solo una minúscula parte de la historia. Los microbios están presentes desde el subsuelo de las fosas oceánicas hasta decenas de kilómetros de altura sobre nuestras cabezas. Los científicos calculan que cada mililitro de agua marina hospeda unos 100.000 microbios, y que un litro puede contener más de 20.000 especies bacterianas distintas.

“Yo calcularía que en la Tierra existen 1.000 millones de especies de bacterias y arqueas, y solo se han nombrado unas 15.000”, expone a EL ESPAÑOL Jonathan Eisen, microbiólogo de la Universidad de California en Davis. “Apenas hemos empezado a tener una ligera idea; hay millones de especies animales, cada una con su propia comunidad de microbios, pero no sabemos casi nada del 99,999% de esos microbiomas”. Una parte del problema a la hora de analizar todo este mundo invisible es que muchas de estas bacterias se resisten al cultivo: menos del 1% de las especies presentes en cualquier muestra crecen en el laboratorio por los métodos tradicionales.

Microbioma humano: un universo en nuestro interior | Revista de la Sociedad  Española de Bioquímia y Biología Molecular | SEEBMOso de Agua | Resiste 30 años sin comer ni beber. ¡Impresionante!

microbios y bacterias nos acompañan desde que nacemos. También a otras especies que, también tienen propiedades singulares como, el oso de agua, un extremófilo que puede volver a la vida tras 30 años congelado.

Hay millones de especies animales, cada una con su propia comunidad de microbios, pero no sabemos casi nada del 99,999% de esos microbiomas.  Por suerte para los microbiólogos, nuevas tecnologías han venido en su auxilio: la metagenómica secuencia el ADN

Metagenómica aplicada a la vigilancia de patógenos y las resistencias  antimicrobianas – Blog Sanidad AnimalMetagenómica clínica: una herramienta para resolución de casos clínicos  complejos | Blog Rafer

extremófilos como el oso de agua, un animal capaz de resucitar tras 30 años congelado

 

Análisis secuencial de mutaciones y translocaciones a través de subtipos de  cáncer de mama - naturaleza

 

Consiste en secuenciar en masa el ADN presente en una muestra heterogénea, para después separar las secuencias de cada especie gracias a herramientas bioinformáticas avanzadas. Estas técnicas han permitido avanzar pasos de gigante: “Estamos inmersos en una revolución, pero solo estamos al comienzo de esa revolución”, apunta Eisen. Microbiólogos como Rob Knight, de la Universidad de California en San Diego, hablan de una “edad de oro” de la ciencia microbiana. “La caracterización química nos permite saber también qué están haciendo esos microbios”, señala Knight a EL ESPAÑOL.

Curiosidades de la Microbiología: Proyecto Microbioma del PlanetaThe Earth Microbiome Project cataloga todos los microorganismos

Knight y Eisen son dos de los responsables del Proyecto Microbioma Terrestre (EMP, en inglés), una colosal iniciativa lanzada en 2010 que reúne a 600 científicos de varios países con el fin de secuenciar unas 200.000 muestras tomadas de los rincones más dispares del planeta, para así obtener en torno a medio millón de genomas microbianos. “Queremos comprender las variaciones de las comunidades microbianas a lo largo de las escalas espaciales y temporales, y entender qué motiva estas variaciones”, dice Knight.

El director del EMP, Jack Gilbert, del Laboratorio Nacional Argonne en Illinois (EEUU), explica a este diario que el conocimiento del microbioma terrestre equivale a comprender cómo funciona nuestro planeta: “Su papel global relevante es reciclar los nutrientes y los compuestos químicos; básicamente recirculan toda la materia y la energía de los ciclos globales”. En resumen, el objetivo del EMP no es ni más ni menos que secuenciar la Tierra.

Un grupo de investigadores se ha propuesto estudiar los microorganismos de  la TierraMicrobiota humana: Una buena compañera de viaje -

La simbiosis entre las bacterias u el cuerpo humano es tal que, el uno sin el otro… ¡No podría existir!

El EMP publicará sus primeros resultados globales a lo largo de este año. Sus responsables, que subrayan la necesidad de aunar esfuerzos para desarrollar nuevas tecnologías microbiológicas aún más punteras, estiman que en diez años podrán llegar las aplicaciones: microbios rediseñados por ingeniería genética que facilitarán avances revolucionarios en la medicina, la industria, la sostenibilidad ambiental o las fuentes renovables de energía, entre otros campos. Las posibles utilidades casi rayan en la ciencia ficción.

Actualmente se habla de bacterias oceánicas capaces de comerse el dióxido de carbono de la atmósfera para combatir el cambio climático; ya se estudia el uso de microbios para producir perfumes y fragancias, o incluso para generar electricidad a partir de la orina con el fin de cargar, por ejemplo, nuestros teléfonos móviles. El mundo de los microbios aún nos reserva extrañas y apasionantes sorpresas. “Y aún hay mucho por descubrir”, concluye Knight.

El Carbono y… ¡La Vida!

Autor por Emilio Silvera    ~    Archivo Clasificado en Bioquímica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los seres vivos están formados por átomos y moléculas. Pero mientras que en el mundo mineral abundan decenas de elementos distintos, que forman sustancias muy diversas, en los seres vivos las sustancias presentes son siempre las mismas que realizan las mismas funciones y están formadas por muy pocos tipos de átomos.

Resultado de imagen de ¿De qué elementos están hechos  los seres vivos?

 

“Composición química de los seres vivos. La materia viva está formada por una serie de elementos químicos (átomos) que están en distintas proporciones. Los elementos que ocupan cerca del 98% de todo el organismo son el carbono (C), el hidrógeno (H), el oxígeno (O), el nitrógeno (N), el fósforo (P) y el azufre (S).”

Esta variedad de sustancias presentes en el organismo vivo, está comprobado que todas ellas se formaron a partir de sencillas y similares reacciones. Las transmutaciones químicas sufridas por las sustancias orgánicas en la célula viva tienen como base fundamental tres clases de reacciones:

                                       Rayos X de células vivas

– La primera se trata de la condensación o alargamiento de la cadena de átomos de Carbono.

– La segunda es la combinanción de dos moléculas orgánicas a través de un puente de oxígeno o nitrógeno, y tambiénel proceso inverso (hidrólisis).

– La tercera, la oxidación y, ligada a ella, la reducción (reacciones de óxido-reducción).

Además en la célula viva, las reacciones son muy frecuentes, y mediante éstas, el ácido fosfórico, el nitrógeno amínico, el metilo y otros grupos químicos van de una molécula a otra. Todos los procesos químicos producidos en un organismo vivo, cualquier mutación de las sustancias que llevan a la creación de muy variados cuerpos, pueden, en último caso, reducirse a estas reacciones sencillas o a todas ellas en conjunto.

El estudio del quimismo de la respiración, de la fermentación, de la asimilación, de la síntesis y de la desintegración de las distintas sustancias indica que dichos fenómenos se producen a partir de largas cadenas de transmutaciones químicas, cuyos eslabones son distintos y están representados por las reacciones que acabamos de enumerar. Todo ello sólo dependen del orden en el que se sucedan las distintas clases de reacciones. Por ejemplo, si la primera reacción es la de condensación, inmediatamente después tiene lugar un proceso de  oxidación y, de nuevo después, otra condensación, tendremos como resultado un cuerpo químico, es decir, un producto de la transmutación; y de forma opuesta, si a la reacción de condensación se une una polimerización y a ésta una oxidación o una reducción, se obtendrá, con toda seguridad, una nueva sustancia.

 

El átomo de Carbono es asombroso por su capacidad para formar cadenas carbonadas abiertas, cíclicas o aromáticas que producen diversidad de compuestos presentes en los seres vivos y también, con diferentes aplicaciones a nivel industrial.

 
 
 Resultado de imagen de Moéculas de CarbonoResultado de imagen de Moéculas de Carbono
 
                                                                       El Carbono es la base de la Vida
 
 

El carbono es singularmente adecuado para que ocupe un papel central, por el hecho de que es el átomo más liviano capaz de formar múltiples enlaces covalentes. A ráiz de esta capacidad, el carbono puede combinarse con otros átomos de carbono y con átomos distintos para formar una una gran variedad de cadenas fuertes y estables y de compuestos en forma de anillo. Las moléculas orgánicas derivan sus configuraciones tridimensionales primordialmente de sus esqueletos de carbono. Sin embargo, muchas de sus propiedades específicas dependen de grupos funcionales. Una característica general de todos los compuestos orgánicos es que liberan energía cuando se oxidan.

 
 
 
 

En los organismos se encuentran cuatro tipos diferentes de moléculas orgánicas en gran cantidad: caebohidratos , lipidos, proteinas y nucleotidos. Todas estas moléculas contienen carbono, hidrogeno y oxigeno. Además, las proteínas contienen nitrogeno y azufre, y los nucleótidos, así algunos lípidos, contienen nitrógeno y fosforo.

Los carbohidratos son la fuente primaria de energía química los sistemas vivos. Los más simples son los monosacáridos (“azúcares simples”). Los monosacáridos pueden combinarse para  formar disacáridos (“dos azúcares”) y polisacáridos  (cadenas de muchos monosacáridos).

Los lípidos son moléculas hidrofóbicas que, los carbohidratos, almacenan energía y son importantes componentes estructurales. Incluyen las grasas y los aceites,  los fosfolípidos, los glucolípidos, los esfingolípidos, las ceras, y los esteroides como el colesterol.

Las proteínas son moléculas muy grandes compuestas de cadenas largas de aminoácidos, conocidas como cadenas polipeptídicas. A partir de sólo veinte aminoácidos diferentes se sintetizar una inmensa variedad de diferentes tipos de moléculas proteínicas, cada una de las cuales cumple una función altamente específica en los sistemas vivos.

Los nucleótidos son moléculas complejas formadas por un grupo fosfato, un azúcar de cinco carbonos y una base nitrogenada. Son los bloques estructurales de los ácidos desoxirribonucleico (ADN) y ribonucleico (ARN), que transmiten y traducen la información genética. Los nucleótidos desempeñan papeles centrales en los intercambios de energía que acompañan a las reacciones químicas dentro de los sistemas vivos. El principal portador de energía en la mayoría de las reacciones químicas que ocurren dentro de las células es un nucleótido que lleva tres fosfatos, el ATP.

La ribosa es el azúcar en los nucleótidos que forman ácido ribonucleico (RNA) y la desoxirribosa es el azúcar en los nucleótidos que forman ácido desoxirribonucleico (DNA). Hay cinco bases nitrogenadas diferentes en los nucleótidos, que son los sillares de construcción de los ácidos nucleicos.

Dos de ellas, la adenina y la guanina, se conocen purinas. Las otras tres, citosina, timina y uracilo se conocen como pirimidinas.

Todos los seres vivos estamos compuestos de los mismos elementos, que al unirse forman compuestos químicos y éstos, a su vez, forman móleculas. Pero es importante que no olvidemos que algo muy importante hace posible la vida tal la conocemos:

          Una de las móleculas escenciales para la vida

FUNCIONES BIOLÓGICAS DEL AGUA

El agua es esencial apara todos los tipos de vida. Pueden resumirse en cinco las principales funciones biológicas del agua:

    1. Es un excelente disolvente, especialmente de las sustancias iónicas y de los compuestos polares. Incluso muchas moléculas orgánicas no solubles –como los lípidos o un buen Participante por sí misma, como agente químico reactivo, en las reacciones de hidratación, hidrólisis y oxidación/reducción, facilitando otras muchas.

 

  • Permite el movimiento en su seno de las partículas disueltas (difusión) y constituye el principal agente de transporte de muchas sustancias nutritivas, reguladoras o de excreción.
  • Gracias a sus notables características térmicas (elevados calor específico y calor de evaporación) constituye un excelente termorregulador, una propiedad que permite el mantenimiento de la vida de los organismos en una amplia gama de ambientes térmicos.
  • Interviene, en especial en las plantas, en el mantenimiento de la estructura y la forma de las células y de los organismos.
  • Muchas otras funciones que tratar de pormenorizar ahora aquí nos llevaría muchas págiinas y no es ese el sentido central del trabajo-

 

Resultado de imagen de Las sustancias de los organismos vivosResultado de imagen de Las sustancias de los organismos vivos

Lo cierto es que, hemos podido observar que la complejidad y la diversidad de las sustancias creadas en los organismos vivos dependen únicamente de la complejidad y diversidad de las distintas combinaciones de las reacciones simples expuestas más arriba. Pero si prestamos atención a éstas reacciones, veremos que una gran mayoría poseen algo que las hace particularmente comunes, no es otra cosa que la participación inmediata de los elementos del agua.

Dichos elementos combinan con los átomos de Carbono de la molécula de la sustancia orgánica, o bien se desprenden, quedando separados de ella. La reacción entre los cuerpos orgánicos y los elementos del agua es la base fundamental de todo el proceso vital. Gracias a ella se dan gran cantidad de transmutaciones de sustancias orgánicas que actualmente ocurren de forma natural, en el interior de los organismos.

Todos estos conocimientos son fascinantes y nos puede maravillar como de dichas combinaciones se forman moñéculas más grandes y complejas. En 1861, ya demostró A. Butlerov que si se diluye formalina (cuya molécula está formada por un átomo de carbono, un átomo de oxígeno y dos átomos de hidrógeno) en agua calcárea y dicha solución es guardada en un lugar a temperatura templada, con el paso del tiempo, la solución adquiere un sabor dulce.

 

          Cada día nos asombramos menos de las cosas que vamos pudiendo saber.

Con el radiotelescopio ALMA, ubicado en el desierto de Atacama (Chile), a 5.000 metros de altura, los científicos lograron captar moléculas de glicolaldehído en el gas que rodea la estrella binaria joven IRAS 16293-2422, con una masa similar a la del Sol y ubicada a 400 años luz de la Tierra.
El glicolaldehído ya se había divisado en el espacio interestelar anteriormente, pero esta es la primera vez que se localiza tan cerca de una estrella de este tipo, a distancias equivalentes a las que separan Urano del Sol en nuestro propio sistema solar.
Todo esto me lleva a pensar que la Vida, en el Universo… ¡Es inevitable!
Todos los animales, plantas y microbios, están compuestos, fundamentalmente, por las denominadas sustancias orgánicas. Sin ellas, la vida no tiene explicación. De esta manera, en el primer período del origen de la vida y a partir de simples hidrocarburos y sus derivados formados en Nebulosas de las galaxias a partir de los elementos como el Carbono, Hidrógeno, Oxígeno y Nitrógeno que fueron a caer, a planetas que, como la Tierra, estaban situados en la zona habitable de sus estrellas y, en aquel ambiente propicio, pudieron surgir, a partir de las reacciones químicas y transmutaciones aquellas primeras células vivas que dieron lugar a lo que hoy llamamos vida.
emilio silvera
Fuente: De Recursos pedagógicos y apuntes, además de notas del Origen de la Vida de Oparín.

La importancia del Carbono para la Vida y otros

Autor por Emilio Silvera    ~    Archivo Clasificado en Bioquímica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de GaiaResultado de imagen de Gaia

                  El concepto de Gaia, considera a la Tierra como un Ente Vivo que evoluciona y se recicla

Nuestro planeta, la Tierra, forma parte del Universo, y, es una prueba indiscutible de que sus componentes biológicos y físicos forman parte de una única red que funciona de un modo autorregulado, y, de esa forma, mantiene las condiciones que son ampliamente adecuadas para la existencia de vida, pero que sufren fluctuaciones a todas las escalas (incluidos los ritmos de alternancia de glaciaciones y periodos interglaciales, así como las extinciones masivas). En un sentido real, la Tierra es el lugar que alberga una red de vida como seguramente estará presente en muchos otros mundos en el que se den las circunstancias adecuadas, y la existencia de esta red (Gaia) sería visible para cualquier forma de vida inteligente que hubiera en Marte o en cualquier otro planeta y que fuera capaz de aplicar la prueba conocida de Lovelock y buscar señales de reducción de la entropía.

Cuando Lovelock publicó la hipótesis de Gaia, provoco una sacudida en muchos científicos, sobre todo en aquellos con una mente más lógica que odiaban un concepto que sonaba tan místico. Les producía perplejidad, y lo más desconcertante de todo era que Lovelock era uno de ellos. Tenía fama de ser algo inconformista, pero sus credenciales científicas eran muy sólidas. Entre otros logros a Lovelock se le conocía por ser el científico que había diseñado los instrumentos de algunos de los experimentos para buscar vida que la nave estadounidense Viking había llevado a cabo en la superficie de Marte.

Ni la NASA, tomó nunca la prueba de Lovelock lo suficientemente en serio como para aplicarla a la búsqueda de vida en el Sistema Solar; pero si se lo tomó en serio para buscar vida más allá del Sistema Solar. Pero recapacitaron y comenzaron a enviar al planeta Marte, una serie de ingenios en forma de pequeñas navez robotizadas como la Mars Phoenix que comenzó encontrando hielo de agua diluyendo porciones de la tierra marciana en agua y debidamente tratada, hallaron la presencia de magnesio, sodio, potasio y cloruros.  Uno de los científicos responsables llegó a decir:

 

“Hay más que evidencia de agua porque las sales están ahí. Además hemos encontrado los compuestos químicos necesarios para la vida como la conocemos. y, lo sorprendente de Marte es que no es un mundo extraño, sino que, en muchos aspectos es igual que la Tierra.”

 

 

Se están analizando los gases y los compuestos químicos del suelo y del hielo allí encontrados, y, todo ello, debidamente procesado nos dará una respuesta de lo que allí existe.

Resultado de imagen de El Carbono y la Vida en el Universo

Lo que para mí está muy claro es que, los mecanismos del Universo son los mismos en cualquier región del cielo, y, las estrellas y los planetas surgen en todas partes de la misma manera. Y, si eso es así, sería lógico pensar que la vida podría estar en cualquier parte, y, además, con muchas probabilidades de que sea más o menos tal como la conocemos, ya que, la nuestra, basada en el Carbono y el Nitrógeno (siempre en presencia de agua), es la más natural dadas las características de estos elementos para unirse.

La historia de la vida en el Universo es otro ejemplo de complejidad superficial construida sobre cimientos de una profunda sencillez. Actualmente la prueba de que el universo tal como lo conocemos surgió a partir de un estado denso y caliente (Big Bang) hace unos 14.000 millones de años, es poco discutida.

Resultado de imagen de El Universo joven y el Hidrógeno y el Helio como bloques primordiales

Con los elementos primordiales creados en las estrellas, miles de años más tarde, en los mundos situados en las zonas habitables de sus estrellas, se habrán podido conformar células replicantes que habrían dado comienzo a la aventura de la vida. En la Tierra, el único planeta con vida que conocemos (por el momento), las formas de vida y especies que han estado aquí y siguen estando ha sido de una rica variedad y de asombrosos metabolismos.

Imagen relacionada

Los bloques de construcción básicos que emergieron del big bang fueron el hidrógeno y el helio, casi exactamente en una proporción de 3:1. Todos los demás elementos químicos (excepto unos leves vestigios de unos pocos elementos muy ligeros, como el litio) han sido fabricados en el interior de las estrellas y dispersados por el espacio cuando estas se dilataron y expulsaron materiales, o, al final de sus vidas, agotado el combustible nuclear de fusión, explotaron como Supernovas regando grandes regiones con Nebulosas creadoras de nuevas estrellas y nuevos mundos.

Resultado de imagen de La fusión nuclear en el Sol

Una estrella como el Sol genera calor convirtiendo hidrógeno en helio dentro de su núcleo; en otras estrellas los procesos cruciales incluyen fusiones sucesivas de núcleos de helio. Dado que cada núcleo de helio es una unidad que contiene cuatro “nucleones” (dos protones y dos neutrones), y este elemento se denomina abreviadamente helio-4, esto significa que los elementos cuyos núcleos contienen un número de nucleones que es múltiplo de cuatro son relativamente comunes en el universo, excepto el berilio-8, que es inestable.

Resultado de imagen de Carbono 12 y Oxígeno 16

El carbono-12 es el más abundante de los dos isótopos estables del elemento Carbono, representando el 98,89% de todo el carbono terrestre. Está conformado por 6 protones, 6 neutrones y 6 electrones.

Adquiere particular importancia al usarse como patrón para el cálculo de la masa atómica de los distintos nucleidos existentes en la naturaleza; dado que la masa atómica del 12C es, por definición, 12 umas.

Concretamente, en las primeras etapas de este proceso se produce carbono-12 y oxígeno-16, y resulta que el nitrógeno-14, aunque no contiene un número entero de núcleos de helio-4, se obtiene como subproducto de una serie de interacciones en las que participan núcleos de oxígeno y de carbono que operan en estrellas de masa un poco mayor que la de nuestro Sol.

Resultado de imagen de El Helio

Como consecuencia, estos son, con gran diferencia, los elementos más comunes, aparte del hidrógeno y del helio. Dado que éste último es un gas inerte (noble) que no reacciona químicamente, se deduce que los cuatro elemenbtos reactivos más comunes en el universo son el Carbono, el Hidrógeno, el Oxígeno y el Nitrógeno, conocidos en el conjunto por el acrónimo CHON.

No es casualidad que los cuatro elementos químicos que participan con una aplastante mayoría en la composición de los seres vivos de la Tierra sean el carbono, el hidrógeno, el oxígeno y el nitrógeno.

carbono

En estado puro y dependiendo de cómo estén dispuestos sus átomos, este elemento puede formar tanto el mineral más duro que ocurre en la naturaleza, el diamante, como uno de los más blandos, el grafito. Organizados en hexágonos y formando láminas, los átomos de carbono dan lugar al grafeno, un material del que habréis oído hablar estos últimos años por sus “increíbles” propiedades

Resultado de imagen de El Carbono y la Vida

              Estructuras basadas en el Carbono

El Carbono desarrolla el papel clave en el desarrollo de la vida, porque un solo átomo de este elemento es capaz de combinarse químicamente nada menos que con otros cuatro átomos al mismo tiempo (incluídos otros átomos de carbono, que pueden estar unidos a su vez  a más átomos de carbono, formando anillos y cadenas), de tal modo que este elemento tiene una química excepcionalmente rica. Así decimos con frecuencia que la vida en la Tierra está basada en el Carbono, el elemento más ductil y crucial en nuestra formación.

Importancia del carbono• Existen varios millones de compuestos  orgánicos conocidos, más de diez veces  el número de compu...Claro que, tal comentario, no implica la negación de que pudieran existir otras clases de vida basadas en el Silicio o en cualquier otra combinación química, pero todas las pruebas que aporta la Astronomía sugieren que es mucho mayor la probabilidad de que la vida más allá de nuestras fronteras esté basada también en el CHON.

Trascendencia del carbono para la                 vida• Biología celular: Los organismos vivos (células)  están construido...

Es inadmisible lo poco que la gente común sabe del Universo al que pertenecen y también lo poco que se valora el trabajo de Astrónomos, Astrofísicos y Cosmólogos, ellos son los que realizan las pruebas y las comprobaciones que finalmente nos llevan al conocimiento que hoy tenemos del cielo y de los objetos que lo pueblan y de las fuerzas que allí actúan.

luna

La Nebulosa de la Quilla, una de las regiones de nacimiento de estrellas más grandes del universo: pilares de 3 años luz de altura que parecen abultados como las velas de un barco por la fuerza tirante de los astros que, literalmente, da a luz en su interior.

Gran parte de estas pruebas proceden del análisis espectroscópico del material que está presente en las Nebulosas, esas inmensas nubes de gas y polvo que se encuentran en el espacio como resultado de explosiones de supernovas o de otros fenómenos que en el Universo son de lo más frecuente. A partir de esas nubes se forman los sistemas planetarios como nuestro sistema solar, allí, nacen nuevas estrellas que contienen los mismos materiales expulsados por estrellas de generaciones anteriores.

En estas nubes hay muchos compuestos construidos en torno a átomos de carbono, y este elemento es tan importante para la vida que sus compuestos reciben en general el nombre de compuestos “orgánicos”. Entre los compuestos detectados en nubes interestelares hay sustancias muy sencillas, como metano y dióxido de carbono, pero también materiales orgánicos mucho más complejos, entre los que cabe citar el formaldehído, el alcohol etílico, e incluso al menos un aminoácido, la glicina. Lo que constituye un descubrimiento muy esclarecedor, porque es muy probable que toso los materiales existentes en las nubes interestelares hayan estado presentes en la nube a partir de la cual se formó nuestro Sistema Solar, hace unos cinco milo millones de años.

luna

En este cúmulo estelar llamado NGC 602, cerca de la Pequeña Nube de Magallanes, millones de estrellas jóvenes emiten radiación y energía en forma de ondas que erosionan el material que las rodea creando formaciones visualmente interesantes. El tamaño de lo que se ve en la foto abarca 200 años luz de lado a lado

A partir de estos datos, equipos científicos han llevado a cabo en la Tierra experimentos en los que unas materias primas, debidamente tratadas simulando las condiciones de densidad y energías de aquellas nubes interestelares (ahora en laboratorio), dieron como resultado el surgir expontáneo de tres aminoácidos (glicina, serina y alanina). Todos conocemos el experimento de Miller.

En otro experimento utilizando otra mezcla de ingredientes ligeramente distinta, se producian no menos de dieciseis aminoácidos y otros compuestos orgánicos diversos en unas condiciones que eran las existentes en el espacio interestelar.

Para hacernos una idea, las proteínas de todos los seres vivos de la Tierra están compuestas por diversas combinaciones de tan sólo veinte aminoácidos. Todas las evidencias sugieren que este tipo de materia habría caído sobre los jóvenes planetas durante las primeras etapas de formación del sistema planetario, deposita por cometas que habría sido barridos por la influencia gravitatoria de unos palnetas que estaban aumentando de tamaño.

Formación de una estrella en la nebulosa Tarántula.

En idénticas condiciones de temperatura y presión que el universo de hace 4.600 millones de años, Experimentos llevados a cabo en el laboratorio, han logrado originar ribosa, la molécula que luego acabó convirtiéndose en ADN.

Como hemos podido deducir, una sopa de aminoácidos posee la capacidad de organizarse por sí sóla, formando una red con todas las propiedades que ha de tener la vida. De esto se deduce que los aminoácidos que estuvieron formando durante largos períodos de tiempo en las profundidades del espacio (utilizando energias proporciona por la luz de las estrellas), serían transportados a la superficie de cualquier planeta joven, como la Tierra.

Algunos planetas pueden resultar demasiado calientes para que se desarrolle la vida, y otros demasiado fríos. Pero ciertos planetas como la propia Tierra (existentes a miles de millones), estarían justo a la temperatura adecuada. Allí, utilizando la expresión de Charles Darwin, en alguna “pequeña charca caliente” tendrían la oportunidad de organizarse en sistemas vivos.

Sopa primitiva: el origen de la vida

                      Sopa primigenia de la que surgió la primera célula replicante precursora de la Vida

Claro que, por mi parte, como dijo aquel famoso Astrofísico inglés del que ahora no recuerdo el nombre: ” milagro no es que aparezca vida fuera de la Tierra, el verdadero milafro sería que no apareciera”.

Y, en cuanto a las condiciones para que haga posible la existencia de vida, conviene ser reservados y no emitir un juicio precipitado, ya que, todos sabemos de la existencia de vida en condiciones que se podrían comparar o denominar de infernales. Así que, estaremos a la espera de que, el Universo nos de una respuesta.

Veamos algunos conceptos: Nova.

http://eltamiz.com/images/nova_luminosa_roja.jpg

Antiguamente, a una estrella que aparecía de golpe donde no había nada, se le llamaba nova o ” estrella nueva “. Pero este nombre no es correcto, …


En realidad es una estrella que durante el periodo de sólo unos pocos días, se vuelve 103-10veces más brillantes de lo que era.  Ocurren 10 ó 15 sucesos de ese tipo cada año en la Vía Láctea.  Las novas se cree que son binarias próximas en las que, uno de sus componentes es usualmente una enana blanca y la otra una gigante roja.

La materia se transfiere de la gigante roja a la enana blanca, en cuya superficie se acumula, dando lugar a una explosión termonuclear, y, a veces se convierte en una estrella de neutrones al ver incrementada su masa.

Nucleones.

Resultado de imagen de Nucleones

Protones y neutrones, los constituyentes de los núcleos atómicos que, a su vez, están conformados por tripletes de Quarks. Un protón está hecho por 2 Quarks up y 1 Quark Down, mientras que un Neutrón está conformado por 2 Quarks Down y 1 Quark up. Son retenidos en el núcleo por los Bosones llamados Gluones que son transmisores de la fuerza nuclear fuerte.

Núcleo.

Resultado de imagen de Núcleo del átomo

Corazón central de un átomo que contiene la mayor parte de su masa.  Está positivamente cargado y constituido por uno o más nucleones (protones y neutrones).

La carga positiva del núcleo está determinada por el número de protones que contiene (número atómico) y en el átomo neutro está compensada por un número igual de electrones, que se mueven alrededor del núcleo y cuya carga eléctrica negativa anula o compensa a la positiva de los (electro) protones.

El núcleo más simple es el núcleo de hidrógeno, consistente en un único protón.  Todos los demás núcleos contienen además uno o más neutrones.

Los neutrones contribuyen a la masa atómica, pero no a la carga nuclear.

El núcleo más masivo que se encuentra en la Naturaleza es el Uranio-238, que contiene 92 protones y 146 neutrones.

Nucleosíntesis,  nucleogénesis.

Imagen relacionada

Fusión de nucleones para crear los núcleos de nuevos átomos más complejos.  La nucleosíntesis tiene lugar en las estrellas y, a un ritmo más acelerado, en las supernovas.

La nucleosíntesis primordial tuvo lugar muy poco después del Big Bang, cuando el Universo era extremadamente caliente y, ese proceso fue el responsable de la abundancia de elementos  ligeros, por todo el cosmos, como el Helio y el Hidrógeno que, en realidad es la materia primordial de nuestro Universo, a partir de estos elementos se obtienen todos los demás en los procesos estelares de fusión.

Omega negro

Resultado de imagen de Resultado de imagen de Omega negro como densidad de materia del Universo

El Omega negro se refiere a la cantidad de materia que hay en el Universo

Índice de densidad de materia del Universo, definida como la razón entre la actual densidad y la “Densidad crítica” requerida para “cerrar” el Universo y, con el tiempo, detener su expansión.

Para la materia oscura se dirá: “Omega Negro”.

Si Omega es mayor que 1, el Universo se detendrá finalmente y las galaxias recorrerán, a la inversa, el camino recorrido para colapsar en una gran Bola de fuego, el Big Crunch, estaríamos en un Universo cerrado.

Se dice que, un Universo con exactamente 1, la Densidad crítica ideal, estará alrededor de 10-29 g/cm3 de materia, lo que esta descrito por el modelo e Universo descrito por Einstein-de Setter.

En cualquier caso, sea cual fuere Omega, no parece muy atractivo el futuro de nuestro Universo que según todos los datos que tenemos acabará en el hielo o en el fuego y, en cualquier de estos casos.

¿Dónde nos meteremos?

Onda, función.

Resultado de imagen de Función de Onda

Función, denotada por Y (w,y,z), que es solución de la ecuación de Schrödinger en la mecánica cuántica.  La función de ondas es una expresión matemática que depende de las coordenadas de una partícula en el espacio.

Resultado de imagen de Función de onda de Schrödinger

Si la función de ondas (ecuación de Schrödinger) puede ser resuelta para una partícula en un sistema dado (por ejemplo, un electrón en un átomo), entonces, dependiendo de las colisiones en la frontera, la solución es un conjunto de soluciones, mejor de funciones de onda permitidas de la partícula (autofunciones), cada una correspondiente a un nivel de energía permitido.

El significado físico de la función de ondas es que el cuadrado de su valor absoluto en un punto, [Y]2, es proporcional a la probabilidad de encontrar la partícula en un pequeño elemento  de volumen, dxdydz, en torno a ese punto.  Para un electrón de un átomo, esto da lugar a la idea de orbitales atómicos moleculares.

elimino ecuación para no confundir al lector no versado.

donde Y es la función de ondas, Ñ2 es el operador Laplace, h es la constante de Planck, m es la masa de la partícula, E la energía total= y È la energía potencial.

Colaboración de Emilio Silvera.

Ondas.

Imagen relacionada

La velocidad de una estrella puede generar enormes onda

Propagación de la energía mediante una vibración coherente.

Está referido a la perturbación periódica en un medio o en el espacio.  En una onda viajera (u onda progresiva) la energía es transferida de un lugar a otro por las vibraciones. En el Espacio puede estar causada por el movimiento de las estrellas.

Resultado de imagen de Ondas en el Océano

En una onda que atraviesa la superficie del agua, por ejemplo, el agua sube y baja al pasar la onda, pero las partículas del agua en promedio no se mueven.  Este tipo de onda se denomina onda transversal, porque las perturbaciones están en ángulo recto con respecto a la dirección de propagación.  La superficie del agua se mueve hacia arriba y abajo mientras que la onda viaja a lo largo de la superficie del agua.

Resultado de imagen de Ondas electromagnéticas

Las ondas electromagnéticas son de este tipo, con los campos eléctricos y, magnéticos variando de forma periódica en ángulo recto entre sí y a la dirección de propagación.

En las ondas de sonido, el aire es alternativamente comprimido y rarificado por desplazamiento en la dirección de propagación.  Dichas ondas se llaman longitudinales.

Las principales características de una onda es su velocidad de propagación, su frecuencia, su longitud de onda y su amplitud.  La velocidad de propagación y la distancia cubierta por la onda en la unidad de tiempo.  La frecuencia es el número de perturbaciones completas (ciclos) en la unidad de tiempo, usualmente expresada en hertzios.  La longitud de onda es la distancia en metros entre puntos sucesivos de igual fase de onda es la distancia en metros entre puntos sucesivos de igual fase de onda.  La amplitud es la diferencia  máxima de la cantidad perturbada medida con referencia a su valor medio.

Resultado de imagen de Detectadas las ondas gravitacionales

Recuerdo cuando allá por el año 2009 publiqué: “Pronto oiremos que Kip S. Thorne ha detectado y medido las ondas gravitacionales de los Agujeros Negros.” Y, en el presente es noticias pasada.

Las ondas gravitacionales son aquellas que se propagan a través de un campo gravitacional. Cuando eso suceda, tendremos nuevos conocimientos sobre el Universo, ya que, el que ahora conocemos sólo está dado por las lecturas de las ondas electromagnéticas, no de las gravitatorias.

La predicción de que una masa acelerada radia ondas gravitacionales (y pierde energía) proviene de la teoría general de la relatividad. Por ejemplo cuando dos agujeros negros chocan y se fusionan.

Deutschland Max-Planck-Institut Gravitationswellen

El Experimento LIGO se afanó en localizar y medir estas ondas y, a la cabeza del proyecto, como he dicho, está el experto en agujeros negros, el físico y cosmólogo norteamericano, amigo de Stephen Hawking, kip S.Thorne, que está buscando las pulsaciones de estos monstruos del espacio, cuya energía infinita (según él), algún día podrá ser aprovechada por la humanidad cuando la tecnología lo permita.

Aunque podríamos continuar hablando sobre onda continua, onda cósmica, onda cuadrada, onda de choque, onda de espín (magnón), onda de tierra, onda estacionaria, onda ionosférica, onda portadora, onda sinuosidad, onda viajera, onda sísmica, onda submilimétrica, onda de ecuación, etc., sería salirse del objeto perseguido aquí.

Oort, nube de ; Constante de.

Imagen relacionada

La nube de Oort está referida a un halo aproximadamente esférico de núcleos cometarios  que rodea al Sol hasta quizás unas 100.000 UA (más de un tercio de la distancia a la estrella más próxima).  Su existencia fue propuesta en 1950 por J.H.Oort (1900-1992) astrónomo holandés, para explicar el hecho de que estén continuamente acercándose al Sol nuevos cometas con órbitas altamente elípticas y con todas las inclinaciones.

La nube Oort sigue siendo una propuesta teórica, ya que no podemos en la actualidad detectar cometas inertes a tan grandes distancias.  Se estima que la nube contiene unos 1012 cometas restantes de la formación del Sistema Solar.  Los miembros más distantes se hallan bastante poco ligados por la gravedad solar.

Imagen relacionada

Puede exitir una mayor concentración de cometas relativamente cerca de la eclíptica, a  10.000-20.000 ÈA del Sol, extendiéndose hacia adentro para unirse al Cinturón de kuiper.  Los comentas de la Nube de Oort se ven afectados por la fuerza gravitatoria de los estrellas cercanas, siendo perturbadas ocasionalmente poniéndoles en órbitas que los llevan hacia el Sistema Solar interior.

La constante de Oort está referida a dos parámetros definidos por J.H.Oort para describir las características más importantes de la rotación diferencial de nuestra Galaxia en la vecindad del Sol.  Son usualmente expresadas en unidades de kilómetros por segundo por kiloparsec.  Los dos parámetros están dados por los símbolos A y B.  Restando B de A se obtiene la velocidad angular del estándar local de repaso alrededor del centro de la Galaxia, que corresponde al periodo de unos 200 millones de años.

Órbita.

Resultado de imagen de Orbita

En astronomía es el camino a través del espacio de un cuerpo celeste alrededor de otro.  Para un cuerpo pequeño que se mueve en el campo gravitacional de otro, la órbita es una cónica.  La mayoría de esas órbitas son elípticas y la mayoría de las órbitas planetarias en el sistema solar son casi circulares.  La forma y tamaño de una órbita elíptica se determina por su excentricidad, e, y la longitud de su semieje mayor, a.

En física, la órbita esta referida al camino de un electrón al viajar alrededor del núcleo del átomo (ver orbitales).

emilio silvera