Abr
4
El Carbono y… ¡La Vida!
por Emilio Silvera ~ Clasificado en Bioquímica ~ Comments (0)
Los seres vivos están formados por átomos y moléculas. Pero mientras que en el mundo mineral abundan decenas de elementos distintos, que forman sustancias muy diversas, en los seres vivos las sustancias presentes son siempre las mismas que realizan las mismas funciones y están formadas por muy pocos tipos de átomos.
Esta variedad de sustancias presentes en el organismo vivo, está comprobado que todas ellas se formaron a partir de sencillas y similares reacciones. Las transmutaciones químicas sufridas por las sustancias orgánicas en la célula viva tienen como base fundamental tres clases de reacciones:
– La primera se trata de la condensación o alargamiento de la cadena de átomos de Carbono.
– La segunda es la combinanción de dos moléculas orgánicas a través de un puente de oxígeno o nitrógeno, y tambiénel proceso inverso (hidrólisis).
– La tercera, la oxidación y, ligada a ella, la reducción (reacciones de óxido-reducción).
Además en la célula viva, las reacciones son muy frecuentes, y mediante éstas, el ácido fosfórico, el nitrógeno amínico, el metilo y otros grupos químicos van de una molécula a otra. Todos los procesos químicos producidos en un organismo vivo, cualquier mutación de las sustancias que llevan a la creación de muy variados cuerpos, pueden, en último caso, reducirse a estas reacciones sencillas o a todas ellas en conjunto.
El estudio del quimismo de la respiración, de la fermentación, de la asimilación, de la síntesis y de la desintegración de las distintas sustancias indica que dichos fenómenos se producen a partir de largas cadenas de transmutaciones químicas, cuyos eslabones son distintos y están representados por las reacciones que acabamos de enumerar. Todo ello sólo dependen del orden en el que se sucedan las distintas clases de reacciones. Por ejemplo, si la primera reacción es la de condensación, inmediatamente después tiene lugar un proceso de oxidación y, de nuevo después, otra condensación, tendremos como resultado un cuerpo químico, es decir, un producto de la transmutación; y de forma opuesta, si a la reacción de condensación se une una polimerización y a ésta una oxidación o una reducción, se obtendrá, con toda seguridad, una nueva sustancia.
El átomo de Carbono es asombroso por su capacidad para formar cadenas carbonadas abiertas, cíclicas o aromáticas que producen diversidad de compuestos presentes en los seres vivos y también, con diferentes aplicaciones a nivel industrial. El carbono es singularmente adecuado para que ocupe un papel central, por el hecho de que es el átomo más liviano capaz de formar múltiples enlaces covalentes. A ráiz de esta capacidad, el carbono puede combinarse con otros átomos de carbono y con átomos distintos para formar una una gran variedad de cadenas fuertes y estables y de compuestos en forma de anillo. Las moléculas orgánicas derivan sus configuraciones tridimensionales primordialmente de sus esqueletos de carbono. Sin embargo, muchas de sus propiedades específicas dependen de grupos funcionales. Una caracterísitica general de todos los compuestos orgánicos es que liberan energía cuando se oxidan.
En los organismos se encuentran cuatro tipos diferentes de moléculas orgánicas en gran cantidad: caebohidratos , lipidos, proteinas y nucleotidos. Todas estas moléculas contienen carbono, hidrogeno y oxigeno. Además, las proteínas contienen nitrogeno y azufre, y los nucleótidos, así algunos lípidos, contienen nitrógeno y fosforo.
Los carbohidratos son la fuente primaria de energía química los sistemas vivos. Los más simples son los monosacáridos (“azúcares simples”). Los monosacáridos pueden combinarse para formar disacáridos (“dos azúcares”) y polisacáridos (cadenas de muchos monosacáridos).
Los lípidos son moléculas hidrofóbicas que, los carbohidratos, almacenan energía y son importantes componentes estructurales. Incluyen las grasas y los aceites, los fosfolípidos, los glucolípidos, los esfingolípidos, las ceras, y los esteroides como el colesterol.
Las proteínas son moléculas muy grandes compuestas de cadenas largas de aminoácidos, conocidas como cadenas polipeptídicas. A partir de sólo veinte aminoácidos diferentes se sintetizar una inmensa variedad de diferentes tipos de moléculas proteínicas, cada una de las cuales cumple una función altamente específica en los sistemas vivos.
Los nucleótidos son moléculas complejas formadas por un grupo fosfato, un azúcar de cinco carbonos y una base nitrogenada. Son los bloques estructurales de los ácidos desoxirribonucleico (ADN) y ribonucleico (ARN), que transmiten y traducen la información genética. Los nucleótidos desempeñan papeles centrales en los intercambios de energía que acompañan a las reacciones químicas dentro de los sistemas vivos. El principal portador de energía en la mayoría de las reacciones químicas que ocurren dentro de las células es un nucleótido que lleva tres fosfatos, el ATP.
La ribosa es el azúcar en los nucleótidos que forman ácido ribonucleico (RNA) y la desoxirribosa es el azúcar en los nucleótidos que forman ácido desoxirribonucleico (DNA). Hay cinco bases nitrogenadas diferentes en los nucleótidos, que son los sillares de construcción de los ácidos nucleicos.
Dos de ellas, la adenina y la guanina, se conocen purinas. Las otras tres, citosina, timina y uracilo se conocen como pirimidinas.
Todos los seres vivos estamos compuestos de los mismos elementos, que al unirse forman compuestos químicos y éstos, a su vez, forman móleculas. Pero es importante que no olvidemos que algo muy importante hace posible la vida tal la conocemos:
Una de las móleculas escenciales para la vida
FUNCIONES BIOLÓGICAS DEL AGUA
El agua es esenciall todos los tipos de vida. Pueden resumirse en cinco las principales funciones biológicas del agua:
- Es un excelente disolvente, especialmente de las sustancias iónicas y de los compuestos polares. Incluso muchas moléculas orgánicas no solubles –como los lípidos o un buen Participante por sí misma, como agente químico reactivo, en las reacciones de hidratación, hidrólisis y oxidación/reducción, facilitando otras muchas.
- Permite el movimiento en su seno de las partículas disueltas (difusión) y constituye el principal agente de transporte de muchas sustancias nutritivas, reguladoras o de excreción.
- Gracias a sus notables características térmicas (elevados calor específico y calor de evaporación) constituye un excelente termorregulador, una propiedad que permite el mantenimiento de la vida de los organismos en una amplia gama de ambientes térmicos.
- Interviene, en especial en las plantas, en el mantenimiento de la estructura y la forma de las células y de los organismos.
Lo cierto es que, hemos podido observar que la complejidad y la diversidad de las sustancias creadas en los organismos vivos dependen únicamente de la complejidad y diversidad de las distintas combinaciones de las reacciones simples expuestas más arriba. Pero si prestamos atención a éstas reacciones, veremos que una gran mayoría poseen algo que las hace particularmente comunes, no es otra cosa que la participación inmediata de los elementos del agua.
Dichos elementos combinan con los átomos de Carbono de la molécula de la sustancia orgánica, o bien se desprenden, quedando separados de ella. La reacción entre los cuerpos orgánicos y los elementos del agua es la base fundamental de todo el proceso vital. Gracias a ella se dan gran cantidad de transmutaciones de sustancias orgánicas que actualmente ocurren de forma natural, en el interior de los organismos.
Todos estos conocimientos son fascinantes y nos puede maravillar como de dichas combinaciones se forman moñéculas más grandes y complejas. En 1861, ya demostró A. Butlerov que si se diluye formalina (cuya molécula está formada por un átomo de carbono, un átomo de oxígeno y dos átomos de hidrógeno) en agua calcárea y dicha solución es guardada en un lugar a temperatura templada, con el paso del tiempo, la solución adquiere un sabor dulce.
Cada día nos asombramos menos de las cosas que vamos pudiendo saber.
Oct
17
No creo que seamos únicos en el Universo
por Emilio Silvera ~ Clasificado en Bioquímica ~ Comments (1)
Aquí aparezco con motivo del Año Internacional de la Astronomía como colaborador del evento
Yo no me siento como un extraño en este Universo. Cuanto más lo examino, cuanto más lo estudio, cuanto más aprendo de su arquitectura, más evidencias voy encontrando de que el Universo, en cierto sentido, debe haber sabido que nosotros, íbamos a venir. Si llegamos a comprender los grandes números de la Cosmología, todo esto se puede ver con más claridad. Las estrellas han tardado diez mil millones de años en fabricar los elemetos esenciales para la química de la vida. Después de eso…
Surgimos aquí hace ahopra unos cuatro mil millones de años
El argumento de Dicke (uno de los trabajos expuestos aquí está a él dedicado) demostraba que había una buena razón para esperar que la vida entrase en escena tras varios miles de millones de años de expansión am partir del big bang. Esto demostraba que una de las coincidencia de los Gramdes Números era una premisa inevitable para la presencia de observadores. era una aplicación de lo que Brandon Cartes llamó Principio antrópico Débil,
que lo que esperamos observar debe estar restringido por la condición necesaria para nuestra presencia como observadores.
Más tarde Carter lamentó haber utilizado el término “principio antrópico”. El abjetivo Antrópico ha sido fuente de mucha confusión porque implica que algo en este argumento se centra en el Homo Sapiens. Evidentemente no es así. Se aplica a todos los observadores con independencia de su forma química. Pero si éstos no estuvieran bioquímicqamente construidos a partir de los elementos que se fabrican en las estrellas, entonces la característica específica del Universo inevitablemente para ellos podría diferir de la que es inevitable para nosotros.
Las esponjas marinas retienen el 88 % del silicio del océano, un nutriente fundamental para la proliferación de microalgas (diatomeas) y de la vida marina, según ha concluido un estudio del Centro Superior de Investigaciones Científicas (CSIC). EFE/Archivo. Sin embargo, no sabemos que pueda pensar.
Los científicos han especulado sobre la posibilidad de que otro átomo en lugar del carbono formara estructuras moleculares en otro tipo de bioquímica, pero nadie ha propuesto aún una teoría global coherente que utilice tales átomos para formar todos los compuestos moleculares necesarios para la vida.
Quizá el tipo de bioquímica “menos exótico” sería uno con una quiralidad alterna a la de las biomoléculas terrestres. En la bioquímica conocida, los aminoácidos son casi universalmente de tipo L “izquierdo” y los azúcares son de tipo D “derecho”. Las moléculas de quiralidad opuesta tendrían las mismas propiedades químicas que sus formas reflejadas. Así, una bioquímica que incorporara aminoácidos D y/o azúcares L, podría ser posible. El elemento químico básico que ha sido propuesto para un sistema bioquímico alternativo es el átomo de silicio, puesto que el silicio tiene muchas propiedades químicas similares al carbono, tiene los mismos cuatro enlaces, y está en el mismo grupo del cuadro periódico, el grupo 14. Algunos bioquímicos van incluso más allá al definir la propia vida como una más de las complejas propiedades de los compuestos de Carbono.
Imagen artística de vida basada en silicio (bp0.blogger.com) |
El Silicio es el elemento más próximo al Carbono en cuanto a su capacidad de combinarse consigo mismo y con otros elementos para formar muchos compuestos diferentes, pero sus cadenas son relativamente cortas e inestables en comparación con las de los hidrocarburos (compuestos de carbono que contienen hidrógeno). El Boro es otro elemento que se cita a veces como posible base para una vida sin Carbono, pero sus propiedades hacen que sea todavía peor candidato que el Silicio.
Oct
14
¡Los materiales para la vida!
por Emilio Silvera ~ Clasificado en Bioquímica ~ Comments (1)
¡La Física! Cuando se asocia a otras disciplinas ha dado siempre un resultado espectacular y, en el caso de la Astronomía, cuando se juntó con la Física, surgió esa otra disciplina que llamamos Astrofísica. La Astrofísica es esa nueva rama de la Astronomía que estudia los procesos físicos y químicos en los que intervienen los fenómenos astronómicos. La Astrofísica se ocupa de la estructura y evolución estelar (incluyendo la generación y transporte de energía en las estrellas), las propiedades del medio interestelar y sus interacciones en sus sistemas estelares y la estructura y dinámica de los sistemas de estrellas (como cúmulos y galaxias) y sistemas de galaxias. Se sigue con la Cosmología que estudia la naturaleza, el origen y la evolución del universo. Existen varias teorías sobre el origen y evolución del universo (big bang, teoría del estado estacionario, etc.
Las estrellas, como todo en el Universo, no son inmutables y, con el paso del Tiempo, cambian para convertirse en objetos diferenters de los que, en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar hasta la vida.
Una de las cosas que siempre me han llamado poderosamente la atención, han sido las estrellas y las transformaciones que, dentro de ellas y los procesos que en su interior se procesan, dan lugar a las transiciones de materiales sencillos hacia materiales más complejos y, finalmente, cuando al final de sus vidas expulsan las capas exteriores al espacio interestelar dejando una extensa región del espacio interestelar sembrada de diversas sustancias que, siguiendo los procesos naturales e interacciones con todo lo que en el lugar está presente, da lugar a procesos químicos que transforman esas sustancias primeras en otras más complejas, sustancias orgánicas simples como, hidrocarburos y derivados que, finalmente, llegan a ser los materiales necesarios para que, mediante la química-biológica del espacio, den lugar a moléculas y sustancias que son las propicias para hacer posible el surgir de la vida.
La Química de los Carbohidratos es una parte de la Química Orgánica que ha tenido cierta entidad propia desde los comienzos del siglo XX, probablemente debido a la importancia química, biológica (inicialmente como sustancias de reserva energética) e industrial (industrias alimentaria y del papel) de estas sustancias. Ya muy avanzada la segunda mitad del siglo XX han ocurrido dos hechos que han potenciado a la Química de Carbohidratos como una de las áreas con más desarrollo dentro de la Química Orgánica actual.
Todos los animales, plantas y microbios están compuestos fundamentalmente, por las denominadas sustancias orgánicas. Sin ellas, la vida no tiene explicación (al menos que sepamos). De esta manera, en el primer período del origen de la vida tuvieron que formarse dichas sustancias, o sea, surgimiento de la materia prima que más tarde serviría para la formación de los seres vivos.
La característica principal que diferencia a las sustancias orgánicas de las inorgánicas, es que en el contenido de las primeras se encuentra como elemento fundamental el Carbono.
En las sustancias orgánicas, el carbono se combina con otros elementos: hidrógeno y oxígeno (ambos elementos juntos forman agua), nitrógeno (este se encuentra en grandes cantidades en el aire, azufre, fósforo, etc. Las distintas sustancias orgánicas no son más que las diferentes combinaciones de los elementos mencionados, pero en todas ellas, como elemento básico, siempre está el Carbono.
En el primer nivel (abajo) están los productores, o sea las plantas como maíz, frijol, papaya, cupesí, mora, yuca, árboles, hierbas, lianas, etc., que producen hojas, frutas, raíces, semillas, que comen varios animales y la gente.
En el segundo nivel están los primeros consumidores, que comen hierbas, hojas (herbívoros) y frutas (frugívoros). Estos primeros consumidores incluyen a insectos como hormigas, aves como loros y mamíferos como ratones, urina, chanchos, chivas, vacas.
En el tercer nivel están los segundos consumidores (carnívoros), es decir los que se comen a los animales del segundo nivel: por ejemplo el oso bandera come hormigas, el jausi come insectos y la culebra come ratones.
Nosotros, los humanos, somos omnívoros, es decir comemos de todo: plantas y animales. Algunos de los carnívoros comen, a veces, plantas también, como los perros. Otros, como el chancho, comen muchas plantas y a veces también carne.
Las sustancias orgánicas más sencillas y elementales son los llamados hidrocarburos o composiciones donde se combinan el Oxígeno y el Hidrógeno. El petróleo natural y otros derivados suyos, como la gasolina, el keroseno, etc., son mezcolanzas de varios hidrocarburos. Con todas estas sustancias como base, los químicos obtienen sin problemas, por síntesis, gran cantidad de combinados orgánicos, en ocasiones muy complejos y otras veces iguales a los que tomamos directamente los seres vivos, como azúcares, grasas, aceites esenciales y otros. Debemos preguntarnos como llegaron a formarse en nuestro planeta las sustancias orgánicas. Está claro que, para los iniciados en estos temas, la cosa puede parecer de una complejidad inalcanzable, nada menos que llegar a comprender ¡el origen primario de las sustancias orgánicas!
Es nuestro planeta y el único habitado (que se sepa hasta el momento). Está en la ecosfera, un espacio que rodea al Sol y que tiene las condiciones necesarias para que exista vida. Claro que, ¡son tantos los mundos! Cómo vamos a ser nosotros nos únicos que poblemos el Universo? ¡Que despercidicio de espacio!
La observación directa de la Naturaleza que nos rodea nos puede facilitar las respuestas que necesitamos. En realidad, si ahora comprobamos todas las sustancias orgánicas propias de nuestro mundo en relación a los seres vivos podemos ver que, todas, son producidas hoy día en la Tierra por efecto de la función activa y vital de los organismos.
Las plantas verdes absorben el carbono inorgánico del aire, en calidad de anhídrido carbónico, y con la energía de la luz crean, a partir de éste, sustancias orgánicas necesarias para ellas. Los animales, los hongos, también las bacterias y el resto de organismos, menos los de color verde, se alimentan de animales o vegetales vivos o descomponiendo estos mismos, una vez muertos, pueden proveerse de las sustancias orgánicas que necesitan. Con esto, podemos ver como todo el mundo actual de los seres vivos depende de los dos hechos análogos de fotosíntesis y quimiosíntesis, aplicados en las líneas anteriores.
Incluso las sustancias orgánicas que se encuentran bajo tierra como la turba, la hulla o el petróleo, han surgido, básicamente, por efecto de la acción de diferentes organismos que en un tiempo remoto se encontraban en el planeta Tierra y que con el transcurrir de los siglos quedaron ocultos bajo la maciza corteza terrestre.
Todo esto fue causa de que muchos científicos de finales del siglo XIX y principios del XX, afirmaran que era imposible que las sustancias orgánicas produjeran en la Tierra, de forma natural, solamente mediante un proceso biogenético, o sea, con la única intervención de los organismos. Esta opinión predominante entre los científicos de hace algunas décadas, constituyó un obstáculo considerable para hallar una respuesta a la cuestión del origen de la vida.
Para tratar esta cuestión era indispensable saber cómo llegaron a constituirse las sustancias orgánicas; pero ocurría que éstas sólo podían ser sintetizadas por organismos vivos. Sin embargo, únicamente podemos llegar a esta síntesis si nuestras observaciones no van más allá de los límites del planeta Tierra. Si traspasamos esa frontera nos encontraremos con que en diferentes cuerpos celestes de nuestra Galaxia se están creando sustancias orgánicas de manera abiogenética, es decir, en un ambiente que excluye cualquier posibilidad de que existan seres orgánicos en aquel lugar.
Estrella de carbono (estrella gigante roja)
Con un espectroscopio podemos estudiar la fórmula química de las atmósferas estelares, y en ocasiones casi con la misma exactitud que si tuviéramos alguna muestra de éstas en el Laboratorio. El Carbono, por ejemplo, se manifiesta ya en las atmósferas de las estrellas tipo O, que son las que están a mayor temperatura, y su increíble brillo es lo que las diferencia de los demás astros (Ya os hablé aquí de R. Lepori, la estrella carmesí, o, también conocida como la Gota de Sangre, una estrella de Carbono de increíble belleza).
En la superficie de las estrellas de Carbono existe una temperatura que oscila los 20.000 y los 28.000 grados. Es comprensible, entonces, que en esa situación no pueda prevalecer aún alguna combinación química. La materia está aquí en forma relativamente simple, como átomos libres disgregados, sueltos como partículas minúsculas que conforman la atmósfera incandescente de estos cuerpos estelares.
La atmósfera de las estrellas tipo B, característica por su luz brillante blanco-azulada y cuya corteza tiene una temperatura que va de 15.000 a 20.000 grados, también tienen vapores incandescentes de carbono. Pero aquí este elemento tampoco puede formar cuerpos químicos compuestos, únicamente existe en forma atómica, o sea, en forma de pequeñísimas partículas sueltas de materia que se mueven a una velocidad de vértigo.
Sólo la visión espectral de las estrellas Blancas tipo A, en cuya superficie hay una temperatura de unos 12.000º, muestras unas franjas tenues, que indican, por primera vez, la presencia de hidrocarburos –las más primitiva combinaciones químicas de la atmósfera de estas estrellas. Aquí, sin que existan antecedentes, los átomos de dos elementos (el carbono y el hidrógeno) se combinan resultando un cuerpo más perfecto y complejo, una molécula química.
Observando las estrellas más frías, las franjas características de los hidrocarburos son más limpias cuando más baja es la temperatura y adquieren su máxima claridad en las estrellas rojas, en cuya superficie la temperatura nunca es superior a los 4.000º.
Es curioso el resultado obtenido de la medición de Carbono en algunos cuerpos estelares por su temperatura:
- Proción: 8.000º
- Betelgeuse: 2.600º
- Sirio: 11.000º
- Rigel: 20.000º
Como es lógico pensar, las distintas estrellas se encuentran en diferentes períodos de desarrollo. El Carbono se encuentra presente en todas ellas, pero en distintos estados del mismo. Las estrellas más jóvenes, de un color blanco-azulado son a la vez las más calientes. Éstas poseen una temperatura muy elevada, pues sólo en la superficie se alcanzan los 20.000 grados. Así todos los elementos que las componen, incluido el Carbono, están en forma de átomos, de diminutas partículas sueltas.
Existen estrellas de color amarillo y la temperatura en su superficie oscila entre los 6.000 y los 8.000º. En estas también encontramos Carbono en diferentes combinaciones.
El Sol, pertenece al grupo de las estrellas amarillas y en la superficie la temperatura es de 6.000º. El Carbono en la atmósfera incandescente del Sol, lo encontramos en forma de átomo, y además desarrollando diferentes combinaciones: Átomos de Carbono, Hidrógeno y Nitrógeno, Metino, Cianógeno, Dicaerbono, es decir:
- Átomos sueltos de Carbono, Hidrógeno y Nitrógeno.
- Miscibilidad combinada de carbono e hidrógeno (metano)
- Miscibilidad combinada de carbono y nitrógeno (cianógeno); y
- Dos átomos de Carbono en combinación (dicarbono).
En las atmósferas de las estrellas más calientes, el carbono únicamente se manifiesta mediante átomos libres y sueltos. Sin embargo, en el Sol, como sabemos, en parte, se presenta ya, formando combinaciones químicas en forma de moléculas de hidrocarburo de cianógeno y de dicarbono.
La tormenta interminable de Júpiter y su enrarecida atmósfera
Para hallar las respuestas que estamos buscando en el conocimiento de las sustancias y materiales presentes en los astros y planetas, ya se está realizando un estudio en profundidad de la atmósfera de los grandes planetas del Sistema solar. Y, de momento, dichos estudios han descubierto, por ejemplo, que la atmósfera de Júpiter está formada mayoritariamente por amoníaco y metano. Lo cual hace pensar en la existencia de otros hidrocarburos. Sin embargo, la masa que forma la base de esos hidrocarburos, en Júpiter permanece en estado líquido o sólido a causa de la abaja temperatura que hay en la superficie del planeta (135 grados bajo cero). En la atmósfera del resto de grandes planetas se manifiestan estas mismas combinaciones.
Ha sido especialmente importante el estudio de los meteoritos, esas “piedras celestes” que caen sobre la Tierra de vez en cuando, y que provienen del espacio interplanetario. Estos han representado para los estudiosos los únicos cuerpos extraterrestres que han podido someter a profundos análisis químico y mineralúrgico, de forma directa. Sin olvidar, en algunos casos, los posibles fósiles.
Estos meteoritos están compuestos del mismo material que encontramos en la parte más profunda de la corteza del planeta Tierra y en su núcleo central, tanto por el carácter de los elementos que los componen como por la base de su estructura. Es fácil entender la importancia capital que tiene el estudio de los materiales de estas piedras celestes para resolver la cuestión del origen de las primitivas composiciones durante el período de formación de nuestro planeta que, al fin y al cabo, es la misma que estará presente en la conformación de otros planetas rocosos similares al nuestro, ya que, no lo olvidemos, en todo el universo rigen las mismas leyes y, la mecánica de los mundos y de las estrellas se repiten una y otra vez aquí y allí, a miles de millones de años-luz de nosotros.
Así que, se forman hidrocarburos al contactar los carburos con el agua. Las moléculas de agua contienen oxígeno que, combinado con el metal, forman los hidróxidos metálicos, mientras que el hidrógeno del agua mezclado con el carbono forman los hidrocarburos.
Los hidrocarburos originados en la atmósfera terrestre se mezclaron con las partículas de agua y amoníaco que en ella existían, creando sustancias más complejas. Así, llegaron a hacerse presentes la formación de cuerpos químicos. Moléculas compuestas por partículas de oxígeno, hidrógeno y carbono.
Todo esto desembocó en el saber sobre los Elementos que hoy podemos conocer y, a partir de Mendeléiev (un eminente químico ruso) y otros muchos…se hizo posible que el estudio llegara muy lejos y, al día de hoy, podríamos decir que se conocen todos los elementos naturales y algunos artificiales que, nos llevan a tener unos valiosos datos de la materia que en el universo está presente y, en parte, de cómo funciona cuando, esas sustancias o átomos, llegan a ligarse los unos con los otros para formar, materiales más complejos que, aparte de los naturales, están los artificiales o transuránicos.
Aquí en la Tierra, las reacciones de hidrocarburos y sus derivados oxigenados más simples con el amoníaco generaron otros cuerpos con distintas combinaciones de átomos de carbono, hidrógeno, oxígeno y nitrógeno (CHON) en su moléculas llamadas paras la vida una vez que, más tarde, por distintos fenómenos de diversos tipos, llegaron las primeras sustancias proteínicas y grasas que, dieron lugar a los aminoácidos, las Proteínas y el ADN y RDN que, finalmente desembocó en eso que llamamos vida y que, evolucionado, ha resultado ser tan complejo y, a veces, en ciertas circunstancias, peligroso: ¡Nosotros!
emilio silvera
Ago
14
¡La Vida! ese enigma maravilloso
por Emilio Silvera ~ Clasificado en Bioquímica ~ Comments (0)
Cancion de Navidad, la afamada historia de redencion escrita por Charles Dickens, se inicia con una amonestación a los lectores para que presten atención a un hecho particular: “El viejo Marley estaba bien muerto… Este hecho debe comprenderse cabalmente, pues de otro modo nada maravilloso puede derivarse de la historia que voy a relatar”.
La Historia de la vida primigenia tiene su propio “Jacob Marley; hecho que, como la muerte del avaro de la historia de Dickens, es necesario comprender cabalmente para que la narración cobre sentido. El primero de ellos es la diversidad metabolica de los microorganismos procariotas, un aspecto clave para explorar la historia de la vida primigenia. Conviene que nos familiaricemos con las numerosas formas de metabolismo que utilizan los procariotas para vivir y que averiguemos donde encajan esos minusculos organismos en el arbol de la vida antes de que podamos calzarnos de nuevo las botas para volver al campo como paleontologos.
Al igual que los eucariotas, muchas bacterias respiran oxigeno. Pero otras bacterias utilizan para la respiración nitrato disuelto (NO3–) en lugar de Oxigeno, y aun otras usan iones sulfato (SO42-) u oxifos metalicos de hierro o manganeso. Unos pocos procariotas pueden incluso utilizar CO2, que parece reaccionar con acido acetico en un proceso que genera gas natural, que es el gas metano(CH4). Los organismos procariotas han desarrollado ademas toda suerte de reacciones de fermentacion.
Las bacterias tambien exhiben variaciones sobre el tema de la fotosintesis. Las cianobacterias, un grupo de bacterias fotosinteticas teñidas de color verde azulado por la clorofila y otros pigmentos, captan la luz del Sol y fijan CO2 de forma muy parecida a como lo hacen las algas terrestres eucariotas. Sin embargo, cuando en el medio hay sulfuro de hidrogeno (H2S, bien conocido por su caracteristico olor a “huevos podridos”), muchas cianobacterias utilizan este gas en lugar del agua para obtener los electrones que requiere la fotosintesis. Como productos secundarios se forman entonces azufre y sulfato, no oxigeno.
Las cianobacterias constituyen solo uno de los cinco grupos distintos de bacterias fotosinteticas. En los otros grupos, el aporte de electrones por H2S, gas hidrogeno (H2) o moleculas organicas es obligado, y nunca se produce oxigeno. Estas bacterias fotosinteticas captan la luz con bacterioclorofila en lugar de la clorofila, mas familiar. Algunas utilizan los mismos procesos bioquimicos que las cianobacterias y las plantas verdes para fijar dioxido de carbono, pero otras usan vias metabolicas muy distintas, y un tercer grupo se sirve de una fuente de carbono organico en lugar de CO2.
Las variaciones bacterianas sobre temas metabolicos de la respiracion, la fermentacion y la fotosintesis son, pues, impresionantes, pero los organismos procarioticos han desarrollado todavia otro modo de crecer que es completamente desconocido en los eucariotas: la quimiosintesis. Como los organismos fotosinteticos, los microbios quimiosinteticos toman el Carbono del CO2, pero obtienen la energia de reacciones quimicas y no de la radiacion solar, lo que consiguen combinando oxigeno o nitrato (o, de forma menos frecuente, el sulfato, el hierro oxidizado o el manganeso) se combina con gas hidrogeno, metano o formas reducidas de hierro, sulfuro o nitrogeno de tal forma que la celula capta la energia desprendida por la reaccion. Los procariotas metanogenicos resultan de particular interes para la ecologia y la evolucion; estas dominutas celulas extraen energia de una reaccion entre hidrogeno y dioxido de carbono en la que se libera metano.
Las vias metabolicas de los procariotas sustentan los ciclos bioquimicos que mantienen la Tierra en su condicon de planeta habitable. Fijemonos por ejemplo en el dioxido de carbono. Los volcanes aportan CO2 a los oceanos y la atmosfera, pero la fotosintesis lo sustrae a un ritmo mas rapido. Tan rapido, de hecho, que los organismos fotosinteticos podrian desproveer de CO2 a la atmosfera actual en poco menos de una decada. Naturalmente no ocurre asi, y ello se debe sobre todo a que esencialmente la respiracion realiza la reaccion fotosintetica en sentido inverso. Mientras que los organismos fotosinteticos hacen reaccionar CO2 con agua para producir azucares y oxigeno, los seres vivos que respiran (entre los que podemos incluirnos nosotros) hacen reaccionar azucar con oxigeno y en el proceso liberan agua y dioxido de carbono. Conjuntamente, la fotosintesis y la respiracion reciclan el carbono en la biosfera y sostienen asi la vida y su ambiente a lo largo del tiempo.
No es dificil imaginar un ciclo del carbono simple en el cual las cianobacterias fijen CO2 en forma de materia organica y suministren oxigeno al medio mientras que las bacterias no fotosinteticas hacen lo contrario, al respirar oxigeno y regenerar el CO2. Las plantas y las algas pueden realizar la misma funcion que las cianobacterias, y los protozoos, los hongos y los animales pueden sustituir a las bacterias respiradoras (en ese sentido los procariotas y los eucariotas son funcionalmente equivalentes). Pero dejemos que algunas celulas caigan hasta el fondo del oceano y queden enterradas en sedimentos desprovistos de oxigeno. Aqui las limitaciones del metabolismo eucariota resultan evidentes, pues se necesitan reacciones que no consuman oxigeno (reacciones anaerobicas) para completar el ciclo del carbono. En los actuales sedimentos del fondo oceanico, la reduccion de sulfato y la respiracion con hierro y manganeso son tan importantes como la respiracion aerobica en el reciclado de la materia organica. En terminos mas generales, alli donde el carbono transita por medios falto de oxigeno, las bacterias son esenciales para completar el ciclo del carbono. Los eucariotas son opcionales.
El valor fundamental de los eucariotas se extiende tambien a otros elementos de importancia biologica. De hecho, en los ciclos biogeoquimicos del azufre y del nitrogeno, todas las vias metabolicas importantes para el reciclado de estos elementos son procariotas. Piensese en particular en el nitrogeno, un elemento esencial necesario para la sintesis de proteinas, acidos nucleicos y otros compuestos biologicos. Vivimos inmersos en gas nitrogeno. (El aire esta compuesto en un ochenta por 100 de su volumen por gas nitrogeno.) Pero este gigantesco almacen de nitrogeno no se encuentra biologicamente disponible para nosotros, que, como el resto de los animales, obtenemos el nitrogeno que necesitamos consumiendo otros organismos. Y el gas nitrogeno no se encuentra mas disponible para las vacas o el maiz que para los humanos. Las plantas pueden absorber amonio (NH4 +) o nitrato del suelo, pero ¿como llegan estos compuestos hasta alli? El amonio se libera durante la descomposicion de celulas muertas; el nitrogeno, a su vez, es producido por bacterias que oxidan amonio. En medios ricos en oxigeno el nitrato resultante queda disponible para las plantas (o, en ecosistemas acuaticos, para las algas y las cianobacterias), pero en los suelos anegados y otros ambientes pobres en O2 otras bacterias usan nitrato para respirar y devuelven gas nitrogeno a la reserva atmosferica de N2. (Buena parte del nitrato que se aporta a los campos con los abonos tiene ese destino.)
De modo que todavia no hemos resuelto nuestro problema. El amonio y el nitrato del suelo y del agua del mar provienen de celulas muertas, y las bacterias que respiran nitrato inexorablemtne sustraen nitrogeno biologicamente util de la biosfera. Entonces, ¿Que es lo que alimenta el ciclo del nitrogeno e impide que se frene? La respuesta es que algunos organismos son capaces de convertir nitrogeno atmosferico en amonio utilizando para ello las reservas de energia de la celula. Ningun organismo eucariota puede fijar nitrogeno por este proceso, pero si muchos procariotas. Los rayos fijan una pequeña cantidad de nitrogeno al cortar la atmosfera, pero la sed de nitrogeno de la biosfera es saciada principalmente por las bacterias.
Los ciclos del carbono, el nitrogeno, el azufre y otros elementos se encuentran ligados entre si formando un complejo sistema que controla el pulso biologico del planeta. Como los organismos necesitan nitrogeno para fabricar proteinas y otras moleculas, no podria haber ciclo de nitrogeno sin fijacion de nitrogeno. El propio metabolismo del nitrogeno depende de la presencia de enzimas que contienen hierro; por tanto, si no hubiera hierro biologicamente disponible no podria haber ciclo de nitrogeno… ni ciclo de carbono. La biologia de otros planetas puede incluir o no organismos grandes e inteligentes, pero lo que si habra siempre alli donde persista la vida son metabolismos complementarios que permiten el reciclado de los elementos biologicamente importantes de la biosfera.
A estas alturas debe haber quedado claro por que insistí en otros tabajos en que las plantas y los animales evolucionaron para hacerse un hueco en un mundo procariota y no al reves. Nuestro mundo es procariota, y no en el sentido trivial de que haya muchas celulas procariotas. Los metabolismos procariotas conforman los circuitos ecologicos fundamentales de la vida. Son las bacterias, y no los mamiferos, los que sustentan el funcionamiento eficiente y persistente de la biosfera.
emilio silvera
Ago
1
¡Qué cosas! ¿Sabremos alguna vez?
por Emilio Silvera ~ Clasificado en Bioquímica ~ Comments (0)
¿A partir de la materia inerte?… ¡surgió la vida! Si retrocedemos en el tiempo y leemos lo que pensaban aquellos grandes pensadores del pasado…
La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.
El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor.
Persiguiendo evidencias que muestren que la vida surgió en la Tierra más de una vez, los científicos buscan microbios radicalmente distintos a todos los organismos conocidos. Si como muchos científicos creen, la vida surge fácilmente bajo las condiciones medioambientales adecuadas, es posible que esta apareciese sobre la Tierra más de una vez. Ahora los investigadores persiguen evidencias de un segundo génesis en busca de microbios exóticos que sean bioquímicamente distintos al resto de organismos conocidos. En la imagen de la derecha (clic para agrandar), el artista Adam Questell ha imaginado una célula alienígena que transporta su material genético en núcleos gemelos.
Refiriéndonos al silicio, señalaremos que las “moléculas” que dicho átomo forma con el oxígeno y otros átomos, generalmente metálicos poseyendo gran nivel de información, difieren en varios aspectos de las moléculas orgánicas, es decir, de las que poseen un esqueleto de átomos de carbono.
Claro que nunca podemos decir que no… sería posible
No podemos descartar que, a partir de las moléculas de silicio se pudieran conformar otras formas de vida que, como la nuestra basada en el Carbono, pudiera llegar a adquirir la conciencia. El mundo de los silicatos es de una gran diversidad, existiendo centenares de especies minerológicas. Esas diferencias se refieren fundamentalmente a que el enlace químico en el caso de las moléculas orgánicas es covalente, y cuando se forma la sustancia correspondiente (cuatrillones de moléculas) o es un líquido, como es el caso de los aceites, o bien un sólido que funde fácilmente. Entre las moléculas que lo forman se ejercen unas fuerzas, llamadas de Van der Waals, que pueden considerarse como residuales de las fuerzas electromagnéticas, algo más débiles que éstas. En cambio, en los silicatos sólidos (como en el caso del topacio) el enlace covalente o iónico no se limita a una molécula, sino que se extiende en el espacio ocupado por el sólido, resultando un entramado particularmente fuerte.
Al igual que para los cristales de hielo, en la mayoría de los silicatos la información que soportan es pequeña, aunque conviene matizar este punto. Para un cristal ideal así sería en efecto, pero ocurre que en la realidad el cristal ideal es una abstracción, ya que en el cristal real existen aquí y allá los llamados defectos puntuales que trastocan la periodicidad espacial propia de las redes ideales. Precisamente esos defectos puntuales podían proporcionar una mayor información.
El cristal está en la Naturaleza con sus imperfecciones y es, cuando la mano del hombre interviene, cuando lo hace perfecto
Si prescindimos de las orgánicas, el resto de las moléculas que resultan de la combinación entre los diferentes átomos no llega a 100.000, frente a los varios millones de las primeras. Resulta ranozable suponer que toda la enorme variedad de moléculas existentes, principalmente en los planetas rocosos, se haya formado por evolución de los átomos, como corresponde a un proceso evolutivo. La molécula poseería mayor orden que los átomos de donde procede, esto es, menor entropía. En su formación, el ambiente se habría desordenado al ganar entropía en una cierta cantidad tal, que arrojarse un balance total positivo.
No puedo dejar pasar la oportunidad, aunque sea de pasada, de mencionar las sustancias.
Las así llamadas, son cuerpos formados por moléculas idénticas, entre las cuales pueden o no existir enlaces químicos. Veremos varios ejemplos. Las sustancias como el oxígeno, cloro, metano, amoníaco, etc, se presentan en estado gaseoso en condiciones ordinarias de presión y temperatura. Para su confinamiento se embotellan, aunque existen casos en que se encuentran mezcladasy el mejor ejemplo lo tenemos en las Nebulosas y, también, en las fábricas de la Tierra.
En cualquier caso, un gas como los citados consiste en un enjambre de las moléculas correspondientes. Entre ellas no se ejercen fuerzas, salvo cuando colisionan, lo que hacen con una frecuencia que depende de la concentración, es decir, del número de ellas que están concentradas en la unidad de volumen; número que podemos calcular conociendo la presión y temperatura de la masa de gas confinada en un volumen conocido.
Decía que no existen fuerzas entre las moléculas de un gas. En realidad es más exacto que el valor de esas fuerzas es insignificante porque las fuerzas residuales de las electromagnéticas, a las que antes me referí, disminuyen más rápidamente con la distancia que las fuerzas de Coulomb; y esta distancia es ordinariamente de varios diámetros moleculares.
Podemos conseguir que la intensidad de esas fuerzas aumente tratando de disminuir la distancia media entre las moléculas. Esto se puede lograr haciendo descender la temperatura, aumentando la presión o ambas cosas. Alcanzada una determinada temperatura, las moléculas comienzan a sentir las fuerzas de Van der Waals y aparece el estado líquido; si se sigue enfriando aparece el sólido. El orden crece desde el gas al líquido, siendo el sólido el más ordenado. Se trata de una red tridimensional en la que los nudos o vértices del entramado están ocupados por moléculas.
Universidad de California, liderada por Ronald Fearing, han desarrollado un material adhesivo tan pegajoso que una persona vestida con un traje hecho de ese material podría ser realmente capaz de escalar paredes, como el héroe favorito de millones de personas (y la fantasía de otro millón de chicas).
El material fue inspirado por el geco, que aprovecha las fuerzas de van der Waals (la acumulación de millones de fuerzas de atracción a nivel molecular) para mantener sus patas, recubiertas de vellosidades, pegadas a superficies verticales.
Todas las sustancias conocidas pueden presentarse en cualquiera de los tres estados de la materia (estados ordinarios y cotidianos en nuestras vidas del día a día).
Si las temperaturas reinantes, como decíamos en páginas anteriores, es de miles de millones de grados, el estado de la materia es el plasma, el material más común del universo, el de las estrellas (aparte de la materia oscura, que no sabemos ni lo que es, ni donde está, ni que “estado” es el suyo).
En condiciones ordinarias de presión, la temperatura por debajo de la cual existe el líquido y/o sólido depende del tipo de sustancia. Se denomina temperatura de ebullición o fusión la que corresponde a los sucesivos equilibrios (a presión dada) de fases: vapor ↔ líquido ↔ sólido. Estas temperaturas son muy variadas, por ejemplo, para los gases nobles son muy bajas; también para el oxígeno (O2) e hidrógeno (H2). En cambio, la mayoría de las sustancias son sólidos en condiciones ordinarias (grasas, ceras, etc).
Las sustancias pueden ser simples y compuestas, según que la molécula correspondiente tenga átomos iguales o diferentes. El número de las primeras es enormemente inferior al de las segundas.
El Carbono es un elemento esencial para la vida y… ¡también para nuestro futuro!
La mina de un lápiz se compone de grafito y arcilla. El grafito es una sustancia simple formada por átomos de carbono. Existe otra sustancia simple formada también por átomos de carbono llamada diamante.
El concepto de molécula, como individuo físico y químico, pierde su significado en ciertas sustancias que no hemos considerado aún. Entre ellas figuran las llamadas sales, el paradigma de las cuales es la sal de cocina. Se trata de cloruro de sodio, por lo que cualquier estudiante de E.G.B. escribiría sin titubear su fórmula: Cl Na. Sin embargo, le podríamos poner en un aprieto si le preguntásemos dónde se puede encontrar aisladamente individuos moleculares que respondan a esa composición. Le podemos orientar diciéndole que en el gas Cl H o en el vapor de agua existen moléculas como individualidades. En realidad y salvo casos especiales, por ejemplo, a temperaturas elevadas, no existen moléculas aisladas de sal, sino una especie de molécula gigante que se extiende por todo el cristal. Este edificio de cristal de sal consiste en una red o entramado, como un tablero de ajedrez de tres dimensiones, en cuyos nudos o vértices se encuentran, alternativamente, las constituyentes, que no son los átomos de Cl y Na sino los iones Cl– y Na+. El primero es un átomo de Cl que ha ganado un electrón, completándose todos los orbitales de valencia; el segundo, un átomo de Na que ha perdido el electrón del orbital s.
Se ha descubierto Oxígeno y Dióxido de Carbono en algunos cuerpos celestes, y, desde luego, tengo claro que estos materiales son como la química necesaria, es decir: “Esta química podría ser un prerrequisito para la vida”. No niego que puedan existir algunas formas de vida basadas en el silicio o en otros elementos. Sin embargo, tengo razones para agarrarme a la vida tal como la conocemos y, creo firmente que, si alguna vez podemos contactar con otros seres vivos inteligentes, éstos estarán conformados con base en el Carbono.
Cuando los átomos de Cl y Na interaccionan por aproximarse suficientemente sus nubes electrónicas, existe un reajuste de cargas, porque el núcleo de Cl atrae con más fuerza los electrones que el de Na, así uno pierde un electrón que gana el otro. El resultado es que la colectividad de átomos se transforma en colectividad de iones, positivos los de Na y negativos los de Cl. Las fuerzas electromagnéticas entre esos iones determinan su ordenación en un cristal, el Cl Na. Por consiguiente, en los nudos de la red existen, de manera alternativa, iones de Na e iones de Cl, resultando una red mucho más fuerte que en el caso de que las fuerzas actuantes fueran de Van der Waals. Por ello, las sales poseen puntos de fusión elevados en relación con los de las redes moleculares.
Todo este universo es ¡tan complejo!
emilio silvera