Jul
25
¿Que pinta el Azar en todo esto?
por Emilio Silvera ~ Clasificado en Catástrofes Naturales ~ Comments (0)
Sí, la Naturaleza nos muestra constantemente su poder. Fenómenos que no podemos evitar y que nos hablan de unos mecanismos que no siempre comprendemos. Nuestro planeta por ejemplo, se comporta como si de un ser vivo se tratara, la llaman Gaia y realiza procesos de reciclaje y renovación por medio de terremotos y erupciones volcánicas, Tsunamis y tornados devastadores que cambian el paisaje y nosotros, lo único podemos hacer es acatar el destino que ignoramos de lo que está por venir.
El mundo nos parece un lugar complicado. Sin embargo, existen algunas verdades sencillas que nos parecen eternas, no varían con el paso del tiempo (los objetos caen hacia el suelo y no hacia el cielo, el Sol se levanta por el Este, nunca por el Oeste, nuestras vidas, a pesar de las modernas tecnologías, están todavía con demasiada frecuencia a merced de complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico es más un arte que una ciencia, los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatoria, los cambios en las Sociedades cambian a merced de sucesos que sus componentes no pueden soportar y exigen el cambio.
La inmensa complejidad que está presente en el cerebro humano y de cómo se genera lo que llalamos “la mente”, a partir de una maraña de conexiones entre más de cien mil millones de neuronas, más que estrellas existen en nuestra Galaxia, la Vía Láctea. Es algo grande que, en realidad, no hemos alcanzado a comprender.
La mente humana es de tal complejidad que no hemos podido llegar a comprender su funcionamiento. ¿Por qué unas personas tienen una gran facilidad para tocar el piano, otros para comprender las matemáticas complejas y algunos para ver lo que nadie ha sido capaz de detectar en el ámbito de la Naturaleza, pongamos por ejemplo un paisaje, o, llegar a comprender fenómenos físicos que configuran el mundo, el Universo y la vida?
Sumeria y la Grecia Clásica
La Sociedad Romana y la de la Edad Media
Es precisamente a escala humana, donde se dan las características (posiblemente) más complejas del Universo, las que se resisten más a rendirse ante métodos y reglamentos fijos que las pretenda mantener estáticas e inamovibles por el interés de unos pocos. Las Sociedades son dinámicas en el tiempo y en el espacio y, su natural destino es el de evolucionar siempre, el de buscar las respuestas a cuestiones para ellas desconocidas y que al estar inmersas en el corazón de la Naturaleza, se sirven de la Ciencia para poder llegar al lugar más secreto y arrancar esas respuestas que tanto, parecen necesitar para continuar hacia el futuro.
Claro que, ese futuro, no depende de esas Sociedades Humanas que de alguna manera, están a merced de sucesos como aquel de Yucatán, cuando al parecer, hace ahora 65 millones de años, perecieron los Dinosaurios que reinaron en el Planeta durante 150 millones de años hasta que llegó aquél fatídico (para ellos) pedrusco que, en realidad, posibilitó nuestra llegada.
Aquellos terribles animales que poblaban la Tierra hubiera hecho imposible nuestra presencia en el planeta. Formas de vida incompatibles con nuestra especie que desaparecieron -según parece- por causas naturales venidas del espacio exterior para que más tarde, pudiéramos nosotros hacer acto de presencia en el planeta que nos acoge.
Aquello se considera una extinción masiva ocurrida en la Tierra, algo tan claramente reflejado en el registro fósil que se utiliza para marcar el final de un período de tiempo geológico, el Cretáseo, y el comienzo de otro, el Terciario. Puesto que la “C” ya se ha utilizado como inicial en un contexto similar en relación con el período Cámbrico, este marcador se suele denominar frontera K-T, con una “K” de Kreide, que es el nombre del Cretáceo en alemán. No fueron solos los dinosaurios los que resultaron afectados, aunque son los que aparecen con mayor protagonismo en los relatos populares cuando se habla de este desastre.
Esqueletos de dinosaurios expuestos en el Museo Real de Ontario, Canadá.
Alrededor del 70 por ciento de todas las especies que vivían en la Tierra al finales del cretáceo habian desaparecidos a principios del Terciario, lo cual indica que se trató realmente de una “extinción en masa” y explica por qué los geólogos y los paleontólogos utilizan la frontera K-T como un marcador importante en el registro fósil. Dadas las dificultades que plantean unas pruebas de tiempos tan remotos, y la lentitud con la que se acumulan los estratos geológicos, todo lo que podemos decir realmente sobre la velocidad a la que se produjo aquella extinción es que sucedió en menos de unas pocas decenas de miles de años, pero en ningún caso durante muchos millones de años; sin embargo, esto se considera un cambio brusco en relación con la escala de tiempo utilizada en geología.
Gráfica de las extinciones los últimos 250 Millones de años
Las preguntas obvias que esto plantea son las mismas que surgen tras un gran terremoto -por qué sucedió, y si podría suceder de nuevo y, en su caso, cuándo- En el caso del suceso K-T hay un candidato muy adecuado para ser el desencadenante que hizo que la extinción se produjera, por ejemplo, hace 60 0 55 millones de años. Los restos del enorme cráter que data justo de entonces ha sido descubierto bajo lo que es ahora la península de Yucatán, en Méjico, y por todo el mundo se han hallado estratos de hace 65 millones de años que contienen restos de iridio, un metal pesado que es raro en la corteza terrestre, pero del que sabemos que es un componente de algunos tipos de meteoritos. La capa de iridio es tan delgada que tuvo que depositarse en menos de 10.000 años (quizá mucho menos), lo cual es coherente con la teoría de que el suceso K-T fue desencadenado en su totalidad, de manera más o menos instantánea, por un gran golpe que llegó del espacio interestelar.
El volcán Kilauea amenaza a las poblaciones de Hawaii es terrible. La catástrofe está servida
No sería difícil explicar por que pudo suceder todo esto. La energía cinética contenida en un impacto de este calibre sería equivalente a la explosión de unos mil millones de megatoneladas de TNT y arrojaría al espacio unos detritos en forma de grandes bloques que se desplazarían siguiendo trayectorias balísticas (como las de los misiles balísticos intercontinentales) y volverían a entrar en la atmósfera por todo el globo terráqueo, difundiendo calor y aumentando la temperatura en todas las regiones. Se produciría un efecto de calentamiento de 10 kw por cada metro cuadrado de la superficie terrestre durante varias horas, un fenómeno que ha sido descrito gráficamente por Jay Melosh. A continuación, unas diminutas partículas de polvo lanzadas al interior de la parte superior de la atmósfera se extendería alrededor del todo el planeta y, combinada con el humo de todos los incendios desencadenados por el “asado a la parrilla”, bloquearían el paso de la luz del Sol, causando la muerte de todas las plantas que dependían de la fotosíntesis y congelando temporalmente el planeta.
Si el planeta se congela, ¿Dónde nos meteremos? ¿Cuántas criaturas tendrán la oportunidad de sobrevivir? Y, si por el contrario los grandes glaciares se descongelan y suben los niveles de mares y océanos… ¿Cuántas inundaciones y ciudades quedaran bajo las aguas?
Hay pruebas de que, en épocas pasadas, la Tierra sufrió visitas inesperadas desde el espacio que trajo muerte y desolación. Hace unos 35 millones de años, la Tierra soportó unos impactos parecidos sin que se produjera una extinción del calibre del suceso K-T. Aunque los factores desencadenantes tengan la misma magnitud. Por otra parte, existen pruebas de que los Dinosaurios y otras especies estaban ya en decadencia en los dos últimos millones de años del Cretáceo. Parece que los grandes lagartos habían experimentado altibajos durante los 150 millones de años que se pasaron vagando por la Tierra. Hay opiniones para todos y algunos dicen que su desarición se debió, en realidad, al aumento del Oxígeno en nuestra atmósfera.
Extinciones masivas
El suceso K-T es en realidad sólo una entre cinco catástrofes similares (en la medida en que afectó en aquella época a la vida en la Tierra) a las que los geólogos denominan en conjunto las “cinco grandes” -y no es en absoluto la mayor-. Cada una de ellas se utiliza como marcador entre períodos geológicos y todas han sucedido durante los últimos 600 millones de años.
La razón por la que nos centramos en este pasado geológico relativamente reciente es que fue en esa época cuando los seres vivos desarrollaron por primera vez algunas características, tales como las conchas, que podían fosilizarse fácilmente, dejando rastros que pueden reconocerse en los estratos que se estudian en la actualidad.
Nuevas especies de fósiles de invertebrados marinos, que vivieron hace 465 millones de años, se han hallado en diversos yacimientos de la provincia de Ciudad Real en España, y, por todas partes del mundo, si se profundiza en la Tierra, se encuentran fósiles y conchas de tiempos pasados. En la imagen recreada arriba se recoge el descubrimiento especies nuevas, de animales marinos con concha que han posibilitado su hallazgo después de tantos millones de años.
Pero centrémonos en las “cinco grandes extinciones” que, tomándolas cronológicamente se produjeron hace unos 440 millones de años (que marcaron la frontera entre los períodos Ordovícico y Silúrico), hace 360 millones de años (entre el Devónico y el Carbonífero), 250 millones de años (entre el Pérmico y el Triásico), 215 millones de años (en la frontera entre el Triásico y el Jurásico) y 65 millones de años (en la frontera K-T).
Millones de años
Intensidad de la extinción marina a través del tiempo. El gráfico azul muestra el porcentaje aparente (no el número absoluto) de los géneros de animales marinos extintos durante un determinado intervalo de tiempo. Se muestran las ultimas cinco grandes extinciones masivas.
Hay otras muchas extinciones en el registro fósil pero, las más importantes son las mencionadas. La más espectacular de todas ellas es el suceso que tuvo lugar hace unos 250 millones de años, al final del Pérmico. Se extinguieron al menos el 80 por ciento, y posiblemente hasta el 95 por ciento, de todas las especies que vivían en nuestro planeta en aquellos tiempos, tanto en la tierra como en los océanos, y lo hizo durante un intervalo de menos de 100.000 años. Sin embargo, dado que también se calcula que el 99 por ciento de todas las especies que han vivido en la Tierra se han extinguido, esto significa que son el doble las que han desaparecido en sucesos de -aparente- menor importancia.
La cuestión que nos intriga es si las extinciones en masa son realmente acontecimientos especiales, de carácter diferente al de las extinciones de menor importancia, o si son el mismo tipo de suceso, pero a gran escala -¿son las extinciones de vida en la Tierra unos hechos cuya naturaleza es independiente de su magnitud, como los terremotos y todos los demás fenómenos que la Naturaleza nos envía periódicamente que dan lugar a catástrofes y pérdidas de muchas vidas? La respuesta sincera es “no lo sabemos”, pero hay bastantes evidencias como para intuir que ésta es una posibilidad muy real.
El logotipo del Movimiento por la Extinción Humana Voluntaria es un globo terráqueo sobre el que aparece la letra V y sobre ella otra pequeña tierra y el acrónimo VHEMT de Voluntary Human Extinction Movement.
Gracias a un meticuloso trabajo de investigación de Jack Sepkoski, de la Universidad de Chicago que, pudo trazar un gráfico en el que mostraba como ha fluctuado durante los últimos 600 millones de años el nivel de extinciones que se produjo en cada intervalo de cuatro millones de años.
Extinciones segun Sepkoski
El gráfico nos muestra que la muerte de los dinosaurios fue también la muerte de los invertebrados marinos. La pregunta que se puede plantear es que clase de aleatoriedad es ésta, si realmente son sucesos aleatorios. Resulta que es una ley potencial -nuestro viejo amigo, el ruido 1/f-. El origen de esta señal aleatoria, de enorme interés por su ubicuidad y propiedades matemáticas, sigue siendo un misterio, a pesar de la atención que se le ha dedicado.
Ahora bien, no parece probable que todas las extinciones de vida que han sucedido en la Tierra hayan tenido como causa impactos procedentes del espacio. Lo que parece estar diciéndonos el registro fósil es que las extinciones se producen en todas las escalas, todos los tiempos, y que (como en el caso de los terremotos) puede producirse una extinción de cualquier magnitud en cualquier época. Algunas extinciones podrían ser desencadenadas por impactos de meteoritos; otras, por períodos glaciares. Una cosa sí que nos queda clara: es necesario un gran desencadenante para que ocurra un gran suceso, y, no podemos olvidar que estamos inmersos en un Sistema Complejo -la vida en la Tierra- que es autoorganizador, se alimenta a partir de un flujo de energía, y existe al borde del Caos. Si comprendemos eso, estaremos preparados para entender lo que todo esto significa para la vida en sí misma, siempre expuesta a las fuerzas del Universo.
Por otra parte, a lo largo de nuestra Historia hemos conocido situaciones de muertes masivas como por ejemplo: La Peste de la Guerra del Peloponeso (430 a.C.), La Plaga Antonina (165 y 180), La Plaga de Justiniano (541 y 542), La Peste Negra (1348 y 1350), o, La Gripe Española (1918) y, todas ellas son en realidad de origen desconocido. Esto me lleva a pensar que la Tierra, nuestro planeta, viaja por el espacio como una gran nave espacial y recorre regiones interestelares en las que no sabemos qué puede haber, y, ¿Quién puede negar que al atravesar esas regiones, no estén presenten en ellas esporas fuertemente acorazadas contra la radiación que, atravesando la atmósfera terrestre se instalen tan ricamente en nuestro mundo para florecer y sembrar la muerte entre nosotros? Lo cierto es que son muchas las cosas que no sabemos.
De todas las maneras, no podemos negar que grandes cambios nos acechan y, como la medida del “tiempo” es distinta para la escala humana que para la del Universo, en cualquier momento podrá tener lugar un acontecimiento de índole diversa (la caída de un meteorito, una pandemia debastadora, cataclismos tectónicos de gran magnitud, explosiones supernovas de inmensa intensidad que barra nuestra atmósfera y siembre de radiación el planeta…) que vendrá a transformar todo lo que nosotros consideramos importante y que, para la Naturaleza, no es nada.
Yersinia pestis, la bacteria que causa la peste- WIKIPEDIA
De todas las maneras, en una cosa sí tenemos que estar de acuerdo: ¡La vida! Esa cosa tan frágil pero tan fuerte, se ha resistido a desaparecer a lo largo de los millones de años que lleva en el planeta y, eso nos lleva a sospechar que, lo mismo habrá sucedido en otros lugares y la Vida, debe estar por todas partes… ¡A pesar de todo!
emilio silvera
La fuente de la mayor parte del contenido de este trabajo, hay que buscarla en los pensamientos del maestro J. Gribbin, un Astrofísico de nuestro tiempo.
Mar
23
NÉMESIS
por Emilio Silvera ~ Clasificado en Catástrofes Naturales ~ Comments (25)
Némesis: monstruo estelar
Consideremos este cuento: Hay otro sol en el cielo, un sol oscuro, demoníaco, que no podemos ver. Hace mucho tiempo, mucho antes de que nacieran nuestros abuelos, ese sol demoníaco atacó a nuestro Sol. Los cometas cayeron sobre la Tierra y un invierno terrible se apoderó del mundo. La mayoría de los seres vivos murió. El sol demoníaco nos ha atacado otras veces antes y volverá a atacarnos.
Si un antropólogo de otra generación hubiese escuchado esta historia de un grupo en estudio, la hubiese considerado “primitiva” o “pre-científica”, aunque no queda duda de la fuerza de la idea, que fácilmente —de no haber sido presentada en esta época y por científicos reconocidos— podría estar entre las leyendas más temibles de la humanidad.
Los registros fósiles de la vida terrestre han mostrado que se repiten extinciones masivas a un promedio de entre 26 y 30 millones de años. Según una teoría, esto podría ocurrir a causa del acercamiento cíclico en su órbita de una estrella compañera del Sol.
La teoría fue ideada por Richard A. Muller, físico de la Universidad de California en Berkeley, luego de una conversación circunstancial con un profesor sobre un artículo científico. El artículo de Muller que presentó la teoría de Némesis fue publicado por primera vez en la revista científica Nature (vol 308, pp 715-717, 1984).
Hipótesis de Némesis
Los autores del artículo fueron el propio Muller y otros dos científicos que lo ayudaron en el modelo, Marc Davis, de Princeton, y Piet Hut, del Institute for Advanced Study de Princeton. Existe, además, un libro llamado “Nemesis”, escrito por Richard Muller (Weidenfeld & Nicolson, 1988).
Hubo otro grupo que publicó algo similar en 1985, formado por Daniel P. Whitmire y John J. Matese, de la Universidad de Southern Lousiana. Este grupo incluye la idea de que la estrella compañera podría ser un agujero negro.
La teoría y la estrella fueron bautizadas con el nombre de Némesis, que es la diosa griega de la venganza, aunque más que nada representa a una justicia que devuelve los golpes, algo así como la diosa del “ojo por ojo, diente por diente”. Sin la información científica que la respalda, consideraríamos que es una historia de fantasía. Asimov escribió una novela llamada Némesis (Némesis, Plaza & Janés, 1989), pero no trata exactamente sobre esta estrella. La película que se está produciendo sobre Star Trek, la número 10, se llama Star Trek: Némesis, pero no trata sobre esta estrella, sino sobre un personaje que se enfrenta a Picard.
Mar
13
¿Qué decisión tomaremos sobre todo ésto?
por Emilio Silvera ~ Clasificado en Catástrofes Naturales ~ Comments (42)
El el Blog titulado “Temas del siglo XXI”, he podido localizar este trabajo que, dadas las circunstancias actuales y, para mejor conocimiento del público en general de cómo funciona todo esto, me ha parecido bien exponerlo aquí para divulgar la mecánica que se sigue en estas plantas de fisión nuclear que tanto peligro conllevan y, precisamente de ahí, parten todos los resortes de seguridad que se emplean en su construcción y funcionamiento. Veamos:
Cosas como esta no deberían pasar. Sin embargo, nuestra importancia para la Naturaleza es la misma que pueda tener la de una mariposa.
“Las cuestiones sobre la seguridad y los peligros constituyen el centro de la controversia nuclear. Antes de emprender este tema sumamente complejo resultará útil considerar algunos de los principios básicos de la seguridad industrial, y después describir su aplicación a las plantas nucleares. Para familiarizarse con los conceptos generales del diseño seguro, utilizaremos el ejemplo del automóvil. Primero reconocemos que el propósito de un carro consiste en desplazar a la gente de un lugar a otro, lo cual encierra un peligro intrínseco, ya que pueden cruzarse en su camino otros objetos y herir a los pasajeros. Por consiguiente la primera condición consiste en que una operación sin riesgos debe formar parte del diseño original. Por ejemplo, los frenos deben funcionar de modo uniforme y confiable; el conductor debe ver el camino claramente en todas direcciones, por la noche o durante lluvias o nevadas; y el automóvil debe amortiguar los golpes provenientes de los baches. Pero todos sabemos que los artefactos mecánicos no son perfectos. Las cosas pueden salir mal, y, después de cierto tiempo, sabemos que así será. Existen dos respuestas posibles a dichos peligros. Una consiste en proporcionar un “soporte” o sistemas de duplicación que funcionen en caso de que fallen los originales. Algunas veces a este procedimiento se llama redundancia. En el automóvil, un ejemplo de esto es el sistema de frenos independiente que funciona si el primario falla. La otra respuesta consiste en proporcionar una prevención, de modo que el conductor pueda maniobrar y evitar un accidente inminente. Así, una luz o un zumbador pueden indicar el sobrecalentamiento o la pérdida de aceite. El desgaste de los materiales y los componentes obliga a ofrecer un programa de inspección y mantenimiento. Por último, si fracasan todos estos sistemas y ocurre un accidente, el diseño debe contener medidas que eviten o reduzcan al mínimo las lesiones. Entre ellas figuran los cinturones de seguridad, bolsas de aire, cascos, trajes de asbesto, amortiguadores autorregenerativos y barras de rodamiento. Las plantas nucleares, al igual que los automóviles, tienen una función inherentemente peligrosa: procesan materiales que son nocivos en grado sumo para los organismos vivos. Por tanto, se deben seguir los cinco principios de medidas de seguridad. Sus aplicaciones a las plantas nucleares se sintetizan a continuación:
Feb
24
La Denudación y otros fenómenos naturales
por Emilio Silvera ~ Clasificado en Catástrofes Naturales ~ Comments (0)
Las poderosas fuerzas geomorfológicas pueden actuar suavemente. La acción de la gravedad puede mover, en cuestión de segundos, enormes volúmenes de tierra y piedras en devastadores deslizamientos y desprendimientos. Con lluvias intensas, la erosión en barrancos y cauces puede transformar los campos y las riberas, e inundar las llanuras durante horas o incluso días. Los vientos huracanados pueden, igualmente, modificar la fisonomía de las costas, y algunas superficies pueden ser remodeladas casi instantáneamente por erupciones volcánicas y terremotos. Pero la denudación de los continentes – el proceso debido a la acción de las inclemencias del tiempo, erosión meteórica y el posterior arrastre de los materiales erosionados – es un cambio gradual con tasas habitualmente bajas, que las alteraciones no se perciben durante el transcurso de una vida.
“La unidad Bubnoff (abreviado B ) es una unidad de velocidad igual a 1 m/10⁶ años . La unidad Bubnoff se utiliza en geología para medir las tasas de rebaje de superficies terrestres debido a la erosión y lleva el nombre del geólogo ruso (alemán-báltico) Serge von Bubnoff (1888-1957). Esta unidad se definió en 1969.
En otras palabras, 1 B es igual a 1 metro erosionado en 1.000.000 de años , 1 milímetro en 1.000 años, o un micrómetro por año. Una velocidad de erosión de 1 B también significa que se elimina 1 m³ de tierra de una zona de 1 km² en un año.”
En la Naturaleza como en todo el Universo, todo está en movimiento aunque no lo parezca
El Bubnoff (B) – la denudación de 1 mm en mil años (o 1 μm/año) – es una unidad conveniente para medir este cambio. Las precipitaciones, por disolución, reducen las duras rocas ígneas o metamórficas con una tasa comprendida entre 0’5 y 5 B, y las calizas hasta 100 B. La denudación en terrenos generalmente secos se produce a ritmos no mayores de 10 – 15 B, y en los trópicos húmedos llega a los 20 – 30 B. Los cambios en terrenos montañosos pueden ser mucho más importantes, llegando hasta 800 B en zonas de glaciares rápidos (sudeste de Alaska) y hasta los casi 10 KB en las zonas más recientes en continua elevación (la región de Nanga Parbat en el Himalaya). Pero incluso estas altas tasas de denudación son resultado de fuerzas modestas.
Un ejemplo de importancia medioambiental y económica ilustra este lento proceso geomorfológico de baja potencia. Si no hubiera erosión, la profundidad del suelo en los campos de cultivo sería mayor, pero su capa superior se empobrecería en nutrientes, ya que la erosión meteórica, si no es demasiado intensa, es la que repone los minerales en esta capa en la que crecen las raíces, ayudando a mantener la fertilidad del terreno.
La máxima pérdida de suelo compatible con el cultivo sostenido de cosechas es aproximadamente de 11 toneladas por hectárea en la mayor parte del terreno agrícola norteamericano. Cerca de dos quintas partes de los campos de ese país se están erosionando a tasas superiores, y la tasa media nacional de erosión, solamente por agua, es de casi diez toneladas por hectárea, equivalente a 550 B (suponiendo que la densidad del suelo es de 1’8 tn/m3).
El papel dominante de las lluvias en el proceso de la denudación se hace evidente cuando se compara la energía cinética de las gotas de lluvia con la energía de la escorrentía superficial. Las mayores gotas de lluvia, con diámetro comprendido entre 5 y 6 mm, alcanzan velocidades finales de 9 m/s, lo que implica que su energía cinética durante el impacto equivale aproximadamente a 40 veces su masa. Aunque la mitad de la precipitación corriera por la superficie a un velocidad media de un metro por segundo, la energía cinética sería una cuarta parte de la masa en movimiento. Consecuentemente, la erosión resultante de la caída de la lluvia sería dos órdenes de magnitud más potente que la corriente superficial.
La energía total de la denudación global del planeta se puede calcular suponiendo que afecta al menos a 50 B de material, con una densidad media de 2’5 g/cm3 (125 tn/m3) y que la altura media continental es de 850 m. Así, la energía de los campos de la Tierra se reduciría anualmente en 135 PJ. Este flujo, 4’3 GW, es muy pequeño comparado con otros flujos energéticos del planeta, representando el 0’05 por ciento de la energía potencial perdida por las corrientes superficiales de agua, el 0’01 por ciento del calor terrestre e igual a menos de 2×10-7 veces la radiación solar absorbida por las superficies continentales. Claramente, en la denudación de los continentes se invierte una parte insignificante de la radiación solar tanto directamente, a través de la luz solar, como indirectamente, con las corrientes de agua y el viento.
Además, hay fuerzas opuestas que anulan este lento cambio. Si no fuera por el continuo levantamiento tectónico, la cordillera alpina, con sus 4.000 metros de altura, sometida a una denudación de 1 – 5 B se nivelaría en menos de cinco millones de años, y sin embargo, la edad de la cordillera es actualmente un orden de magnitud superior.
Tasas de levantamiento comprendidas entre 5 – 10 B son bastantes frecuentes, y muchas regiones están elevándose con tasas superiores a 20 KB, es decir, una tasa hasta 10 veces superior a la tasa de denudación. No obstante, parece ser que en las zonas montañosas cuyas cumbres sobrepasan la cota de nieve, con grandes precipitaciones y gran actividad glacial, la altura está más limitada por una denudación rápida que por la elevación tectónica del terreno. El noroeste del Himalaya, incluyendo la zona del famoso Nanga Parbat, es un claro ejemplo, donde muchos de sus picos sobrepasan los 7.000 m y solamente el 1 por ciento del terreno los 6.000 m.
Encuentros espaciales
Siendo temibles localmente, son sucesos de relativa poca importancia globalmente habland0
La más destructiva intensificación temporal de los normalmente suaves flujos de energía geotectónica – erupciones volcánicas o terremotos extraordinariamente potentes – o de energía atmosférica – vientos o lluvias anormalmente intensas -, parecen irrelevantes cuando se comparan con las repetidas colisiones del planeta con cuerpos extraterrestres relativamente grandes.
La caída sobre la Tierra de un Gran asteroide sí que es temible
La Tierra está siendo bombardeada continuamente por invisibles partículas microscópicas de polvo muy abundantes en todo el Sistema Solar, y cada treinta segundos se produce un choque con partículas de 1 mm de diámetro, que dejan un rastro luminoso al autodestruirse en la atmósfera. También son relativamente frecuentes los choques con meteoritos de 1 metro de diámetro, que se producen con una frecuencia de, al menos, uno al año.
Pero los impactos, incluso con meteoritos mayores, producen solamente efectos locales. Esto es debido a que los meteoritos que deambulan por la región de asteroides localizada entre Marte y Júpiter están girando alrededor del Sol en el mismo sentido que la Tierra, de manera que la velocidad de impacto es inferior a 15 Km/s.
El cráter de Arizona, casi perfectamente simétrico, se formó hace 25.000 años por el impacto de un meteorito que iba a una velocidad de 11 Km/s, lo que representa una potencia cercana a 700 PW. Estas gigantescas liberaciones de energías palidecen cuando se comparan con un choque frontal con un cometa típico. Su masa (al menos de 500 millones de toneladas) y su velocidad relativa (hasta 70 Km/s) elevan su energía cinética hasta 1022 J. Aunque se perdiera un diez por ciento de esta energía en la atmósfera, el impacto sería equivalente a una explosión de unas 2.500 bombas de hidrógeno de 100 megatones. Está claro que un fenómeno de estas características produciría impresionantes alteraciones climatológicas. Sin embargo, no es seguro y sí discutible que un impacto parecido fuese la causa de la extinción masiva del cretácico, siendo lo más probable, si tenemos en cuenta el periodo relativamente largo en que se produjo, que se podría explicar por la intensa actividad volcánica de aquel tiempo.
La frecuencia de impactos sobre la Tierra disminuye exponencialmente con el tamaño del objeto.
Aproximadamente, cada cincuenta o sesenta millones de años se produce una colisión con un cometa, lo que significaría que la biosfera, que ha evolucionado durante cuatro mil millones de años, ha debido superar unos cuarenta impactos de este tipo. Está claro que ha salido airosa de estas colisiones, ya que aunque haya sido modificada, no ha sido aniquilada.
Igualmente, la evolución de la biosfera ha sobrevivido a las explosiones altamente energéticas de las supernovas más “cercanas”. Dado que en nuestra galaxia se produce por término medio la explosión de una supernova cada 50 años, el Sistema Solar se encuentra a una distancia de 100 parsecs de la explosión cada dos millones de años y a una distancia menor de 10 parsecs cada dos mil millones de años. En este último caso, la parte alta de la atmósfera se vería inundada por un flujo de rayos X y UV de muy corta longitud de onda, diez mil veces mayor que el flujo habitual de radiación solar, lo que implica que la Tierra recibiría, en unas pocas horas, una dosis de radiación ionizante igual a la que recibe anualmente. Exposiciones de 500 roentgens son setales para la mayoría de los vertebrados y, sin embargo, los diez episodios de esta magnitud que se han podido producir en los últimos 500 millones de años no han dejado ninguna consecuencia observable en la evolución de la biosfera.
La radiación cósmica incompatible con la vida
Si suponemos que una civilización avanzada podría preparar refugios para la población durante el año que transcurre ente la llegada de la luz y la llegada de la radiación cósmica, se encontraría con la inevitable dosis de 500 roentgens cada mil millones de años, tiempo suficiente para permitir el desarrollo de una sociedad cuyo conocimiento le sirviera para defenderse de un flujo tan extraordinario y de consecuencias letales.
emilio silvera
Dic
23
¿Qué dice la NASA? ¡Hay cosas peores que el Coronavirus!
por Emilio Silvera ~ Clasificado en Catástrofes Naturales ~ Comments (0)
El administrador jefe de la NASA (entonces), Charles Bolden, señaló, en su comparecencia en la Comisión de Ciencias en el Congreso de Estados Unidos, que solo cabe rezar si un asteroide se dirigiera a Nueva York.
El de Rusia dejó una buena huella
Un asteroide de unos 17 metros de diámetro explotó el pasado 15 de febrerosobre Chelyabinsk, Rusia, generando ondas de choque que rompieron ventanas y dañaron edificios. Más de 1.500 personas resultaron heridas.
Este nos pasó cerca
Más tarde, ese mismo día, un asteroide más grande descubierto el año pasado pasó a solo 27.681 kilómetros de la Tierra, más cerca que los satélites de telecomunicaciones que rodean el planeta. Para Bolden, estos eventos “sirven como prueba de que vivimos en un sistema solar activo, con objetos potencialmente peligrosos que pasan por nuestro vecindario con una frecuencia sorprendente”.
“Tuvimos la suerte de que los acontecimientos del mes pasado fueran simplemente una coincidencia interesante en lugar de una catástrofe”, dijo cuando ocurrió el suceso el presidente del Comité, Lamar Smith, republicano de Texas, quien convocó la audiencia para saber qué se está haciendo y cuánto dinero se necesita para proteger mejor el planeta.
La NASA ha encontrado y sigue de cerca un 95 por ciento de los objetos más grandes que vuelan cerca de la Tierra, los que tienen 1 kilómetro o más de diámetro. “Un asteroide de ese tamaño, de un kilómetro o más grande, probablemente podría acabar con la civilización”, dijo John Holdren, asesor científico de la Casa Blanca, a los legisladores en la misma audiencia.
Potenciales asesinos de ciudades
Sin embargo, sólo se conoce aproximadamente el 10 por ciento de una estimación de 10.000 potenciales asteroides “asesinos de ciudades”, aquellos con un diámetro de 50 metros. En promedio, se estima que los objetos de ese tamaño llegan a la Tierra alrededor de una vez cada 1.000 años. “A partir de la información que tenemos, no sabemos de ningún asteroide que amenace la población de los Estados Unidos”, dijo Bolden. “Pero si viene en tres semanas, recen”.
Además de la intensificación de sus esfuerzos de vigilancia y la creación de alianzas internacionales, la NASA está considerando el desarrollo de tecnologías para desviar un objeto que puede estar en un curso de colisión con la Tierra.
El asteroide que explotó sobre Rusia el mes pasado fue el objeto más grande que chocó con la atmósfera de la Tierra desde el evento de Tunguska en 1908, cuando un asteroide o un cometa explotó sobre Siberia, arrasando 80 millones de árboles en más de 2.150 kilómetros cuadrados como arriba podéis ver. La onda expansiva dio la vuelta al mundo y fue recogida por todos los sismógrafos.
De la película “El día de mañana”
Claro que, el suceso, podría caer en cualquier parte del mundo y, los americanos ¡tan suyos ellos! se empeñan en que todo pase en Nueva York… Aunque sea una catástrofe. Con tal de hacer una película son capaces de cualquier cosa.
emilio silvera