Ago
3
La importancia de la Ciencia Ficción para la Ciencia
por Emilio Silvera ~ Clasificado en Ciencia futura ~ Comments (0)
Expertos en la relación entre el avance de la tecnología y su reflejo en la literatura y el cine reflexionan sobre el futuro al que hemos llegado y el que aún nos espera.
Tablets en la película 2001: Odisea en el espacio, de Stanley Kubrick. E.E.
Cuentan que cuando a Heinrich Hertz le preguntaron sobre las posibles aplicaciones de su descubrimiento, que hoy conocemos como ondas de radio, respondió: “No tiene utilidad de ninguna clase”. Los científicos descubren, pero no están necesariamente obligados a adivinar las consecuencias de sus hallazgos; para sacar partido a la ciencia ya están los ingenieros y tecnólogos. Sin embargo, en ocasiones las ideas de éstos se nutren de otro estante de la biblioteca diferente del de las revistas científicas: el de la imaginación humana volcada en forma de profecía tecnológica, o lo que solemos llamar ciencia ficción.
¿Realmente los innovadores se inspiran en la ciencia ficción? “Trabajé en startups de alta tecnología durante diez años antes de escribir mi primera novela; leía sobre todo ciencia ficción y me ayudó a nutrir mi imaginación”, cuenta a EL ESPAÑOL el estadounidense A. G. Riddle, tecnólogo antes de convertirse en uno de los autores de ciencia ficción más pujantes del momento. Su trilogía The Origin Mystery ha vendido más de un millón de copias y actualmente se está llevando al cine, lo mismo que su novela más reciente, Departure.
El caso de Riddle no es único; probablemente está en la mente de todos el de Julio Verne, a menudo considerado un profeta de la ciencia y la tecnología. Como se encargó de recordarnos la exposición celebrada este año en Madrid, el Nautilus de 20.000 leguas de viaje submarino sirvió de inspiración a Isaac Peral para crear su prototipo; hasta tal punto que el entonces presidente del Consejo de Ministros, Antonio Cánovas del Castillo, tachó al ingeniero de “Quijote” que había “perdido el seso leyendo la novela de Julio Verne”.
¿Qué ingeniero o tecnólogo no se ha sentido motivado por las historias de grandes clásicos como Verne, H. G. Wells, Ray Bradbury o Arthur C. Clarke, o por las grandes películas y series del género? “Conozco gente que trabaja en robótica que se inspiró leyendo ciencia ficción, y hay gente trabajando en la NASA que se ha inspirado leyendo a Clarke”, apunta a este diario Andy Sawyer, editor, crítico y administrador de la colección de la Fundación de Ciencia Ficción en la biblioteca de la Universidad de Liverpool, la mayor fuente de recursos del género en Reino Unido.
Inventos de papel
El joven atlético que era el héroe de aventuras fantásticas
Juan Miguel Aguilera, uno de los autores más importantes del panorama español de la ciencia ficción, señala a EL ESPAÑOL que la compañía Apple reconoció haberse inspirado en las tabletas de la película 2001: Una odisea del espacio para la creación de su iPad, y que incluso el diseño de los electrodomésticos y automóviles de los años 50 y 60 del siglo pasado debe su estilo a los cómics de Flash Gordon. Los viajes espaciales y los cohetes en las novelas de Wells, el GPS en los relatos de Clarke o la robótica y la inteligencia artificial en Asimov son ejemplos de avances que aparecieron imaginados en las páginas de la literatura antes de nacer en el mundo real, enumera Paul Levy, escritor e investigador de gestión de la innovación en la Universidad de Brighton (Reino Unido). “La mayoría de las grandes innovaciones fueron avanzadas antes por la ciencia ficción”, resume Levy a este diario.
Uno de los ejemplos más citados es el teléfono móvil, cuyos antecedentes se remontan al comunicador de Star Trek, incluso en el diseño de los terminales plegables que comenzó a popularizar Motorola. “Lo vieron en la serie y pensaron que era cool”, dice Sawyer; “aunque los teléfonos moviles en la ciencia ficción aparecieron antes, al menos en los años 50, en los personajes de las novelas para niños de Robert A. Heinlein”, precisa.
El capitán Kirk con un intercomunicador. E.E.
Y cómo no, ahí tenemos internet: Levy apunta que su precursor en la ficción fue La máquina se detiene (1909), el único relato de ciencia ficción que escribió el británico E. M. Forster, autor de Pasaje a la India y Una habitación con vistas. Aguilera añade otra anticipación de la red en el cuento Un lógico llamado Joe (1946), de Murray Leinster, mientras Sawyer señala que Neuromante (1984), de William Gibson, fue una guía para la creación del ciberespacio tal como hoy lo conocemos; “mucha gente que trabaja en tecnologías de internet y comunicaciones lo leyó en los 80 y pensó: ¡ESO es lo que queremos!”, dice.
La influencia de la ficción en la innovación no se restringe a la electrónica. La clonación de organismos, la ingeniería genética, la creación de tejidos y órganos o la nanotecnología también saltaron de las páginas y de la pantalla a la realidad. Uno de los ejemplos actuales más curiosos tiene su origen en la novela de Harry Harrison ¡Hagan sitio! ¡Hagan sitio! (1966), que presentaba una Tierra superpoblada cuyos habitantes se alimentaban con un producto compuesto por soja y lentejas llamado Soylent (SOY + LENTtils, o soja y lentejas).
Fotograma de la película Soylent. E.E.
Basándose en la idea, una compañía de Los Ángeles ha lanzado un Soylent real, un preparado líquido completo, saludable y barato que se presenta como alternativa sana a la llamada comida basura. Claro que en la versión cinematográfica de la novela, Soylent Green (Cuando el destino nos alcance), dirigida en 1973 por Richard Fleischer y protagonizada por Charlton Heston y Edward G. Robinson, el Soylent estaba en realidad fabricado con… restos humanos.
Inspiración mutua
Pero pese a todo lo anterior, los expertos advierten de que no siempre la realidad imita a la ciencia ficción, sino que la relación entre ambas es ambivalente. Para Sawyer, “a menudo algo se da a conocer a través de la ciencia ficción, pero sus raíces están en la ciencia y tecnología reales, sólo que el escritor conoce mejor lo que se está haciendo que el público en general”. Por ejemplo y regresando al caso de Verne y sus 20.000 leguas, el escritor, editor y profesor de la Universitat Politècnica de Catalunya Miquel Barceló recuerda que el autor francés se basó a su vez en un submarino creado por el estadounidense Robert Fulton, quien en 1805 presentó su invento a Napoleón Bonaparte. “Para más inri, ese submarino real llevaba el nombre de Nautilus”, cuenta Barceló a EL ESPAÑOL.
Gracias a esa relación mutua entre la ciencia y la ficción, hoy estamos en el camino hacia las cámaras tan finas como una tarjeta de crédito, los motores moleculares, tatuajes adhesivos que vigilan nuestra salud 24 horas al día, miembros biónicos que se controlan con la mente o sistemas que permiten a los ciegos ver mediante sonidos. La realidad virtual ya es realidad real. Imprimimos en 3D. Los coches que se conducen solos ya están rodando por las calles. Existen prototipos que acercan a la realidad el tricorder de Star Trek, un escáner portátil para detectar enfermedades a distancia. Pronto saldrán al mercado dosmodelos de jetpacks, esos motores que se fijan a la espalda para volar como Iron Man. “No nos damos cuenta, pero ya vivimos en el futuro que imaginamos, aunque no llevemos trajes plateados ni tengamos coches voladores”, dice Aguilera.
En la película El quinto elemento
Los coches voladores son precisamente una de las eternas promesas que nunca se cumplen. Aunque varias empresas trabajan en ello, el transporte aéreo personal se enfrenta a serios problemas de regulación, además de los puramente tecnológicos. Pero tal vez sean otras las innovaciones que transformarán nuestras vidas en los próximos años o décadas. Los expertos consultados por este diario destacan las energías renovables y baratas, los robots de ayuda personal, la conexión cerebro-máquina o incluso la clonación humana. Y no podía faltar la inteligencia artificial aplicada a lo cotidiano: “Aprenderá nuestros hábitos, se anticipará a nuestras necesidades, automatizará nuestros hogares y conducirá nuestros coches”, vaticina Riddle. “Guiará nuestra vida diaria”, resume el autor.
Precisamente esta especie de outsourcing de nuestra inteligencia abre uno de los caminos más intrigantes sobre lo nuevo que ha de venir. Más allá de los avances en el hardware, el manejo de los datos mediante algoritmos más avanzados es una de las áreas que revolucionarán la sociedad. El consultor de marketing Emil Kotomin dibuja un futuro en el que Floyd, nombre con el que bautiza a un hipotético robot personal inteligente, gobernará por entero nuestras vidas. Hasta tal punto que la publicidad ya no irá dirigida hacia nosotros, sino hacia Floyd, dado que él tomará las decisiones sobre qué consumimos, una vez que conozca nuestros gustos. Será, augura Kotomin, la nueva era del “marketing de máquina a máquina”.
Uno de los modelos de jet-pack comercializados. Jet Pack Aviation
“La creación de una máquina pensadora a la que podamos derivar las tareas más mundanas lleva progresando desde mediados del siglo XIX”, expone Kotomin a EL ESPAÑOL. “Y el big data es el combustible”, añade. El consultor predice que en años venideros el control recaerá en el software en la nube: “los frigoríficos inteligentes buscarán ofertas y concertarán las entregas, con poca o nula intervención humana en ambos lados”. El problema, agrega Kotomin, es que esto no necesariamente hará nuestras vidas más plenas. Lo condensa en un ejemplo anecdótico: “Si todo deja de funcionar, ni siquiera tendremos velas para alumbrarnos, ya que basándose en mi historial de compras, Floyd no las habrá comprado”, escribe.
Sueños y temores
Con todo, los expertos advierten de que la imagen popular de la ciencia ficción como pronóstico tecnológico es una deformación; “en realidad esto lo hace bastante mal”, opina Sawyer. Como ejemplo, cita precisamente nuestro aparato de cabecera: “La manera en la que hoy usamos los teléfonos móviles, que son mucho más que dispositivos de comunicación, es algo nuevo que no está en la ficción”. Y es que, como subraya Barceló, lo importante de la ciencia ficción no son los gadgets “sino cómo los humanos los usamos y reaccionamos ante ellos”. “Somos los seres humanos los que damos sentido a la tecnología”, sentencia.
En resumen, lo que los expertos destacan de la ciencia ficción no es su capacidad de imaginar nuevas tecnologías, sino de explorar el cambio social que propiciarán, tal como ya lo han hecho internet, las redes sociales y las comunicaciones móviles. El problema es que no siempre el resultado de ese análisis es muy halagüeño. Desde Nosotros a Un mundo feliz o 1984, los maestros del género nos han alertado de los riesgos que nos esperan en el camino. La ciencia ficción trata, según Sawyer, sobre cómo pensamos y soñamos el futuro, pero para Aguilera esto incluye también “extrapolar los problemas del presente”. Y en un mundo siempre convulso, esos problemas pueden ahogar todo atisbo de esperanza, como cualquier repaso a la ciencia ficción se encargará de recordarnos.
Tal vez en exceso: en 2011, el escritor Neal Stephenson creó el Proyecto Hieroglyph, una llamada a los autores de ciencia ficción para que abandonen el pesimismo de la distopía y traten de recuperar el espíritu que ha servido de inspiración al progreso, el que Verne cultivó con el entusiasmo de la fe en el porvenir y en el empuje del ser humano. “Tenemos que mirar más allá del mundo en el que vivimos para imaginar el mundo que podría ser, y eso es exactamente lo que hace la ciencia ficción”, dice Riddle.
Para Barceló, este género que mueve legiones puede enseñarnos que “hay otras maneras de vivir, de organizar la política, de relacionarnos unos con otros”. Al fin y al cabo, si algo sabemos con seguridad sobre el mañana es que llegará. Y en palabras de Barceló, “la ciencia ficción es un maravilloso aprendizaje para vivir en el futuro”.
Abr
2
¿Lo que pasó? ¿Lo que pasará? o, simple imaginación
por Emilio Silvera ~ Clasificado en Ciencia futura ~ Comments (1)
¿Cómo podríamos resolver la estructura del Universo?
“Imaginaos ahora este instante en que los murmullos se arrastran discretamente y las espesas tinieblas llenan el navío del Universo.”
Esas palabras de Chakesperare en Enrique V (acto IV, esc. 1), nos podría valer ahora a nosotros para estrapolarlas a este tiempo y haciendo un ejercicio de imaginación, convertir esas tinieblas en la “materia oscura”, esa clase de materia que postulan los cosmólogos, que no podemos ver, que no emite radiación, que no sabemos de qué está hecha y, en realidad, tampoco sabemos donde está (sólo lo suponemos) pero, nos soluciona, de un plumazo, todos los problemas de la estructura del Universo. Esa clase de materia “transparente” que sí emite la fuerza gravitatoria podría explicar el ritmo a grandes escalas que hemos podido observar en el comportamiento de nuestro universo y que antes de la llegada de la “materia oscura”, no sabíamos, a qué era debido… “¡ahora sí lo sabemos!”. Bueno, al menos, eso dicen algunos pero, lo tienen que demostrar.
Sitios como este, en nuestro planeta, los tenemos en multitud de lugares
No pocas veces me encuentro mirando al cielo nocturno estrellado desde la orilla del Atlántico cuya superficie brilla con millones de luces titilando al reflejar el resplendor de la Luna, la inmensidad del océano que se pierde en el horizonte y, la infinitud del firmamento me podrían hacer sentir insignificante. Sin embargo, no es así como lo siento. He dicho alguna vez que todo lo grande está hecho de cosas pequeñas, y, esa afirmación, nos dá la respuesta. Formamos parte de algo muy grande: El Universo.
Estamos en un punto, o en un nivel de sabiduría aceptable pero insuficiente, es mucho el camino que nos queda por recorrer y, como dijo el sabio, la energía necesaria para explorar la décima dimensión es mil millones de veces mayor que la energía que puede producirse en nuestros mayores colisionadores de átomos. La empresa resulta difícil para seres que, como nosotros, apenas tenemos medios seguros para escapar del débil campo gravitatorio del planeta Tierra.
Nada puede surgir de la “nada”, si surgió, es porque había
Energías del tal calibre, que sepamos, solo han estado disponibles en el instante de la creación del Universo, en su nacimiento, en eso que llamamos Big Bang. Solamente allí estuvo presente la energía del Hiperespacio de diez dimensiones y, por eso se suele decir que, cuando se logre la teoría de cuerdas sabremos y podremos desvelar el secreto del origen del Universo.
A los físicos teóricos siempre les resultó provechoso introducir dimensiones más altas para fisgar libremente en secretos celosamente escondidos.
Según esa nueva teoría, antes del Big Bang nuestro cosmos era realmente un universo perfecto de diez dimensiones, decadimensional, un mundo en el que el viaje interdimensional era posible. Sin embargo, ese mundo decadimensional era inestable, y eventualmente se “rompió” en dos, dando lugar a dos universos separados: un universo de cuatro y otro universo de seis dimensiones.
El Universo en el que vivimos nació en ese cataclismo cósmico. Nuestro Universo tetradimensional se expandió de forma explosiva, mientras que nuestro universo gemelo hexadimensional se contrajo violentamente hasta que se redujo a un tamaño casi infinitesimal.
Surgió la sustancia cósmica de la que, miles de millones de años más tarde, nacería la consciencia
Eso podría explicar el origen del Big Bang, y, si la teoría es correcta, demuestra que la rápida expansión del Universo fue simple consecuencia de un cataclismo cósmico mucho mayor, la ruptura de los propios espacio y tiempo. La energía que impulsa la expansión observada del Universo se halla entonces en el colapso del espacio-tiempo de diez dimensiones. Según la teoría, las estrellas y las Galaxias distantes están alejándose de nosotras a velocidades astronómicas debido al colapso original del espacio y el tiempo de diez dimensiones.
Esta teoría predice que nuestro Universo sigue teniendo un gemelo enano, un universo compañero que se ha enrollado en una pequeña bola de seis dimensiones (en la escala de Planck) muy pequeña para ser observada.
Ese Universo decadimensional, lejos de ser un apéndice inútil de nuestro mundo, podría ser en última instancia, nuestra salvación. Claro que, si las galaxias siguen alejándose las unas de las otras, será la muerte térmica del universo, y, en ese escenario, ni los átomos se moveran.
Todo quedará quieto, congelado en los -273 ºC, la Densidad Crítica que se vislumbra nos habla de la muerte térmica del Universo
Para el cosmólogo, la única certeza es que el Universo morirá un día. Algunos creen que la muerte final del Universo llegará en la forma del big crunch. La gravitación invertirá la expansión cósmica generada por el big bang y comprimirá las estrellas y las galaxias, de nuevo, en una masa primordial. A medida que las estrellas se contraen, las temperaturas aumentan espectacularmente hasta que toda la materia y la energía del universo están concentradas en una colosal bola de plasma ardiente que será el resultado final de la destrucción del Universo tal como lo conocemos. Esta teoría parece que ha dejado de tener “creyentes” y, casi todos los expertos se decantan por la muertetérmica. Las Galaxias se alejan las unas de las otras, el universo está en continua expansiòn y, el frío, se apodera más y más de todo el Cosmos, así, cuando se alcancen los -273 ºC… ‘Todo se acabará!
Todas las formas de vida serán borradas de la faz de los mundo que las pudieran contener: evaporadas por las enormes temperaturas o aplastadas, ¡qué más dá! No habrá escape. Y, sabiendo lo que ahora sabemos, conociendo la historia del universo mismo que, durante miles de millones de años ha estado fabricando materiales en las estrellas para que los seres vivos conscientes pudieran venir, ¿cómo imaginar un final así? ¿Para qué tánto trabajo y tanto tiempo perdido? Seguramente, para cuando eso puede ir llegando, si es que la inteligencia sigue aquí, habrá buscado ya la manera de escapar a tal desastre y, las especies inteligentes se salvarán saltanto a otros universos, o, incluso, ¿por qué no? viajando hacia atrás en el Tiempo, hacia otras épocas de tiempos más benignas para tener otros miles de millones de años por delante y hacer las cosas, de manera diferente. ¡Una segunda oportunidad!
Bertrand Russell
Científicos y filósofos, como Charles Darwin y Bertrand Russell, han escrito lamentándose de la futilidad de nuestras míseras existencias, sabiendo que nuestra civilización morirá inexorablemente cuando llegue el fin de nuestro mundo. Las leyes de la física, aparentemente, llevan la garantía de una muerte final e irrevocable para todas las formas de vida, inteligente o no, del Universo.
Yo, como Gerald Feinberg, físico de la Universidad de Columbia (ya desaparecido), creo que sí puede haber, quizá sólo una esperanza de evitar la calamidad final. Ese atisbo de esperanza está en nosotros mismos, es decir, si somos capaces de no destruirnos antes, si procuramos comprender los mensajes que el universo nos envía continuamente, si desvelamos secretos de la Naturaleza que nos posibilitarán para hacer cosas, ahora inimaginables, entonces y solo entonces, habrá alguna esperanza.
Poder escapar a universos conexos que, como el nuestro, nos de cobijo
Gerald Feinberg especuló que la vida inteligente, llegando a dominar los misterios del espacio de más dimensiones (para lo que contaba con un poderoso aliado, el Tiempo de miles de millones de años), sabría utilizar las dimensiones extras para escapar de la catástrofe del Big Crunch. En los momentos finales del colapso de nuestro Universo, el Universo hermano se abriría de nuevo y el viaje interdimensional se haría posible mediante un túnel en el Hiperespacio hacia un Universo alternativo, evitando así la pérdida irreparable de la inteligencia de la que somos portadores.
Si algo así es posible, entonces, desde su santuario en el espacio de más dimensiones, la Humanidad, podría ser testigo de la muerte del Universo que la vio nacer y florecer.
Son muchas las cosas que no sabemos
Aunque la teoría de campos demuestra que la energía necesaria para crear estas maravillosas distorsiones del espacio y el tiempo está mucho más allá de cualquier cosa que pueda imaginar la civilización moderna, esto nos plantea dos cuestiones importantes:
¿cuánto tardaría nuestra civilización, que está creciendo exponencialmente en conocimiento y poder, en alcanzar el punto de dominar la teoría de hiperespacio?
¿Y qué sucede con otras formas de vida inteligente en el Universo, que puedan haber alcanzado ya este punto?
Lo que hace interesante esa discusión es que científicos serios han tratado de cuantificar el progreso de la civilización en un futuro lejano, cuando los viajes por el espacio sean una rutina en los sistemas estelares o incluso las galaxias vecinas hayan sido colonizadas. Aunque la escala de energía necesaria para manipular el Hiperespacio es astronómicamente grande, estos científicos señalan que el crecimiento del conocimiento científico aumentara, sin ninguna duda, de forma exponencial durante los siglos y milenios próximos, superando las capacidades de las mentes humanas para captarlo (como ocurre ahora con la teoría M, parada en seco, esperando que alguien vea las matemáticas necesarias para continuar su desarrollo).
Calaboré con el Año Internacional de la Astronomía y, por aquellos días, pude aprender muchas cosas y tuve la oportunidad de codearme con los mejores Astrónomos del mundo en la recepción que predía el hoy Rey
Somos conscientes de que el Tiempo inexorable sigue su implacable caminar y la Entropía, que sabe hacer bien su trabajo, lo transforma todo, lo que ayer era una cosa, hoy se ha convertido en otra distinsta, irreconocible, y, sin embargo, ese deterioro natural no es algo perdido, sino que, por el contrario, hasta que llega ese final, se hizo un trabajo que dará sus frutos en la mente de otros seres, en las cosas mismas que, transformadas, servirán y tendrán cometidos nuevos. Nada se pierde y todo tiene su por qué. La Naturaleza no hace nada porque sí, todo está programado y tiene un fin. Y, si eso es así (que los es), ¿que nos deparará el destino a nosotros? Habiendo llegado al nivel de cpomprensión alcanzado, no creo que el final sea el de la desaparición sin más, algo más debe estar oculto en los designios de la Naturaleza que no llegamos a comprender.
Ahora, sin temor a equivocarnos, podemos decir que tenemos en Mundo en las manos. No existen ningún rincón de la Tierra que se nos escape y con el que no podamos contactar en unos instantes. Tampoco existen aquellas largas separaciones de seres queridos en largos viajes, ni existe ningún problema para saber de alguna cosa que, incluso con imágenes podemos obtener al instante con sólo preguntar. En cuanto a los nuevos métodos de trabajo en la computación, es algo de increíblñe eficacia e impensada realidad hace sólo unos pocos años. ¿Qué decir de los nuevos materiales? La medicina ha dado un salto cualitativo gracias a los avances del CERN y el mismo LHC, los viajes espaciales ha mejorado nuestr0 confort en la vida cotidiana y del hogar…
Reportaje de Marisa Dorta | Madrid |
“Cuando pensamos en aplicaciones de la investigación espacial en nuestro día a día, seguramente recordemos el GPS. Pero el espacio aporta una enorme gama de beneficios a nuestra vida. En esta exposición de la Comisión Europea en colaboración con la ESA, se ofrecen algunos ejemplos.
“El sistema Copernicus ayudará en casos de desastres naturales”. Así lo asegura Javier Ventura, director de Programas de Educación de la Agencia Espacial Europea. En los mares, para hacer la pesca más eficiente y sostenible, se toman fotos de los bancos de pesca y sólo se puede hacer desde los satélites, afirma Miguel Puente, director de Comunicación de la Comisión Europea.
Existen más de 30.000 aplicaciones que dependen de tecnologías espaciales, aunque algunos no lo sepan. Esta exposición interactiva ofrece toda la información para acercarnos un poco más al espacio.”
Cada 10/15 años el conocimiento científico se doblará, crecerá el cien por ciento, así que, el avance superará todas las previsiones. Tecnologías que hoy solo son un sueño (la energía de fusión o en robótica, los cerebros positrónicos), serán realidad en un tiempo muy corto en el futuro. Quizá entonces podamos discutir con cierto sentido la cuestión de si podremos o no ser señores del Hiperespacio.
Viaje en el tiempo. Universos paralelos. Ventana dimensional.
¡Sueños! Claro que, si echamos una atenta mirada a la Historia veremos que, muchos sueños se hicieron realidad.
emilio silvera
Mar
13
¡La Ciencia! ¿Cómo podríamos definirla?
por Emilio Silvera ~ Clasificado en Ciencia futura ~ Comments (0)
No existe una buena definición de la Ciencia. Algunas Sociedades Científicas se decidieron a dejar la suya propia pero, nunca quedaron satisfechos, ya que, si la definición era muy amplia, podría colarse en ella pseudociencias tales como ; si la hacían demasiado restrictiva, podrían quedar excluidos temas como la teoría de cuerdas, la biología evolutiva e incluso la Astronomía.
lo que este simple comentario trata de reflejar, bastaría decir que la Ciencia es un estudio lógico y sistemático de la Naturaleza y del mundo físico que abarca todo el Universo y todo lo que dentro de él está presente. Generalmente incluye tanto experimento como teorías que son verificadas por aquellos.
’El túnel de la ciencia’, en el Museo de Artes e Historia del Forum Cultural de Guanajuato. México
La ciencia (del Latín scientia “conocimiento”) es el conjunto de conocimientos sistemáticamente estructurados, y susceptibles de ser articulados unos con otros formar un todo en un entendimiento “general” de la Naturaleza del Universo.
Aunque la definición pueda resultar algo floja, es, sin embargo un compendio general de lo que entendemos por ciencia. Más arriba escribo “generalmente” en cursiva, porque si planteáramos una exigencia absoluta de experimentos, tendríamos que excluir la Astronomía, la más antigua de todas las ciencias, ya que no es posible recrear nuevas estrellas o galaxias en Laboratorio, ni escenificar la creación del sistema solar. Sin embargo, en Astronomía las observaciones son a menudo tan valiosas los mismos experimentos. El Cometa Halley regresa con una regularidad sorprendente; el Sol sale cada mañana.
El filósofo Karl Popper añadió el requisito de la “refutación” La Ciencia es refutable; la Religión no lo es. Una Teoría o una Ley científica nunca pueden ser demostradas de manera absoluta; de ahí que sea posible refutarlas. Por ejemplo, Newton dijo que la fuerza es igual al producto de la masa por la aceleración (D = ma). No podemos demostrar que todos los objetos de todas las galaxias obedecen ley o que todos los objetos obedecerán siempre esta Ley. Sin embargo, para demostrar la falsedad de esta Ley bastaría un solo experimento. (Albert Einstein y varios expertos en física cuántica han demostrado que algunos de los conceptos de Newton son erróneos.) Por lo tanto, los científicos deben proponer sólo teorías que puedan ser refutadas, tal como afirmó Popper. Estas Teorías han de ser comprobables. No existe tal requisito en el caso de la Religión, en la que prevalece la fe a ciegas.
La Mente Humana está en conexión con el Universo
Dicho esto, sigue habiendo problemas con la definición. , por ejemplo, es refutable. Si nuestros astrólogos nos dicen que nos encontraremos con una guapa extranjera el martes, esto puede comprobarse. Por otra parte, la teoría de las supercuerdas, planteada por algunos físicos como la “teoría del todo”, requeriría un acelerador de partículas con un diámetro de diez años-luz para poder refutarla. La mayor parte de la Biología evolutiva tampoco puede comprobarse experimentalmente. No se puede reproducir la evolución de una especie, ni recrear los dinosaurios comenzando con un animal unicelular. Si aplicamos la regla de la refutación demasiado estrictamente, tendremos que incluir la astrología en el campo de la ciencia y excluir la biología evolutiva, la teoría de cuerdas e incluso quizá la Astronomía.
En consecuencia, es mejor que no nos tomemos demasiado en serio lo de la “refutación” del filósofo de la Ciencia, ya que, de otro modo, podríamos vernos obligados a excluir toda la Ciencia de los antiguos griegos. Estos no sólo eludían el experimento, sino que abominaban de ellos, confiando en que la razón estaba por encima de la evidencia empírica.
Yo, sí he llegado a tener mi propia definición de la Ciencia: “Es el estudio que nos lleva, a través de la observación y el experimento, a la verdadera realidad de la Naturaleza, y, ello, utilizamos nuestra imaginación para construir modelos y teorías que nos acerquen a esa verdad que presentimos y tratamos de desvelar”.
Los que bebemos de la Ciencia, sentimos que Dios se aleja más y más. Sin embargo, no podemos dejar de sentir que, de alguna manera, algo superior nos vigila, yo lo achaco a ese miedo ancestral que, siempre, hemos tenido por lo desconocido y que, inmerso en una profunda ignorancia, no pocas veces hemos querido explicar mediante causas “divinas”, y, sin embargo, cuando, finalmente, hemos dado con las respuestas, estas eran de este mundo y, siempre, eran respuestas lógicas que la Naturaleza nos ofrecía y que no sabíamos compreneder.“ ¿El Creador? Es el Universo con sus complejos sistemas de ritmos y energías el que nos lleva hacia ese futuro que deseamos alcanzar. No existe ningún creador.
Bueno, la definición que de la Ciencia que hago y reseño encima de la imagen de arriba, no será perfecta pero, cumplir los objetivos propuestos es válida y suficiente aunque (como es el caso) le falten algunos matices.
Aquí, en página, siempre nos hemos limitado a aquellas disciplinas más estrictas: La Física, La Astronomía, La Cosmología, La Geología, La Química y La Tecnología, Sin olvidar las matemáticas, ya que son indispensables para la Ciencia y están ineludiblemente conexionada con todas ellas que, de una u otra manera, las necesita para poder expresar, en su más alto grado, lo más profundo que esa Ciencia nos quiere decir. Es decir, las matemáticas son el lenguaje del que se vale la Ciencia para decir al mundo lo que realmente son en cada una de sus vertientes. He dejado aparte y sin querer tratar de ellas, las disciplinas más ligeras –La Antropología, La Agronomía, La Psicología, La Medicina y otras del mismo estilo o parecidas- para otros momentos.
Mohammeid ibn-Musa Al-Jwarizmi (780-846), matemático árabe, trabajó en la biblioteca del califa Al-Mahmun en Bagdag. De su nombre deriva la palabra algoritmo. Es el autor del trabajo Al-jabr wa´l muqäbala , del cual procede la palabra álgebra. Introdujo en occidente el sistema hindú de numeración decimal, que explicó con todo detalle en su obra Aritmética
Algo que nunca he tomado en consideración ha sido el pragmatismo de la Ciencia o la motivación de los científicos. Estas cuestiones se han utilizado a menudo para desacreditar las Ciencias no occidentales: sí es un bien hecho, pero no es “puro”, o, a la inversa, no resulta práctico. En cuanto a la motivación, muchos descubrimientos científicos fueron impulsados por la religión: los matemáticos árabes perfeccionaron el álgebra en parte para facilitar las leyes islámicas de la herencia, del mismo modo que los védicos de la India resolvieron raíces cuadradas para construir los altares de los sacrificios con unas dimensiones adecuadas. En estos casos la Ciencia estuvo al servicio de la religión, pero no obstante era Ciencia.
La ley de los epónimos de Stigler, formulada por el experto en estadística Stephen Stigler, afirma que ningún descubrimiento científico lleva el de su descubridor original. El periodista Jim Holt indica que la propia Ley Stigler confirma lo que dice, ya que Stigler admite que la Ley que lleva su nombre fue descubierta por otra persona, concretamente por Robert K. Merton, un especialista en Sociología de la Ciencia.
El área del cuadrado construido sobre la hipotenusa de un triángulo rectángulo, es igual a la suma de las áreas de los cuadrados construidos sobre los catetos. El teorema de Pitágoras ha merecido la atención de muchos matemáticos, especialmente de la antigüedad. Actualmente están registradas unas 370 demostraciones de este teorema.
todos los casos en que se cumple la Ley de Stigler, el más famoso es el del Teorema de Pitágoras (a²+ b² = c², donde a y b son los lados perpendiculares y c es la hipotenusa). Jakob Bronowski escribe lo siguiente:
“Hasta la , el Teorema de Pitágoras sigue siendo el teorema más importante de todas las matemáticas. Esta afirmación puede parecer atrevida y extraordinaria, pero no es extravagante, ya que lo que el teorema de Pitágoras establece es una caracterización fundamental del espacio en que nos movemos y es en este teorema donde dicha caracterización se expresa por primera vez traducida a números. Además, el encaje exacto de los números describe las leyes exactas que rigen el universo. De hecho, se ha propuesto que los números correspondientes a las dimensiones de los triángulos rectángulos sean mensajes que podrían enviarse (de hecho se ha hecho) a planetas de otros sistemas estelares a modo de test, para comprobar si estos planetas tienen ocupación debida a seres dotados de vida racional.
La palabra cero deriva probablemente de “zephirum”, forma latinizada del árabe “sifr” que es, a su vez, una traducción de la palabra hindú “sunya” que significa vacío o nada. Y, de la misma manera, el famoso teorema de Pitágporas tien su origen en ese pueblo hindú.
Ahí reside el problema, en que, no fue Pitágoras el primero que propuso “su” teorema. Los hindúes, los egipcios y los babilonios utilizaban “tríos de números pitagóricos” para determinar ángulos rectos en la construcción de edificios. Un trío de números pitagóricos es un conjunto de tres números que representan las dimensiones de los lados de un triángulo rectángulo. El trío más habitual es 3 : 4 : 5 (3² + 4² = 5² o 9 + 16 = 25). Pitágoras “inventó” este teorema el año 550 a. C. Los Babilonios, según todos los indicios, ya habían catalogado quizá cientos de tríos antes del año 2000 a. C., en una época muy anterior a la de Pitágoras. Uno de los tríos que hallaron los babilonios tienen unos números tan enormes como: 3.367 : 3.456 : 4.825.”
Mira a tu alrededor. ¿Qué ves? Los colores, las paredes, las ventanas… son obviedades que están allí. Por eso quizá te resulte raro pensar que vemos lo que vemos gracias a las partículas de luz –llamadas fotones- que rebotan en estos objetos y llegan a nuestros ojos.
Los fotones son absorbidos por cerca de 126 millones de células sensibles a la luz. Y nuestro cerebro traduce las diferentes energías y direcciones de los fotones en formas y colores que nos permiten ver el mundo en tecnicolor.
Ain embargo no podemos ver la radiación gamma ni ultravioleta, por ejemplo, y, tampoco podemos ver lo muy pequeño, lo que está muy lejos o lo que está inmerso en la oscuridad. Nuestra visión que crremos perfecta es muy limitada y, tenemos que inventar aparatos tecnológicos para mejorarla-
Las ramificaciones de multiversos ya han sido consideradas una herejía científica, pero aparentemente es cada vez más probable que resulte cierto. De hecho, la sugerencia de que existe una multiplicidad de universos fue hecha por un número de científicos y metafísicos de renombre.
Lugares de fantasía de extraña belleza que surgen de nuestras Mentes
El ojo humano tiene sus limitaciones para ver, sin embargo, la imaginación no tiene barreras y, a lo largo de la historia de la Humanidad se han dado pruebas de lo lejos que pueden llegar nuestros pensamientos.Los Babilonios, egipcios e Hindúes le dejaron un campo sembrado a Pitágoras que, en realidad, sólo tuvo que recoger la abundante cosecha. Él sí supo “ver”.
Ahí están y existen indicios de que los babilonios utilizaron diversas técnicas algebraicas derivadas de la fórmula a² + b² = c². Lo que reconocerse como un logro de Pitágoras, que impresionó a muchos, fue la elaboración de una demostración geométrica del teorema… El área del cuadrado construido sobre la hipotenusa de un triángulo rectángulo, es igual a la suma de las áreas de los cuadrados construidos sobre los catetos.
Fue Euclides quien proclamó dos siglos más tardes la idea de que la demostración podía ser algo más importante que el propio teorema. Por consiguiente, las matemáticas no occidentales han quedado consideradas como unas matemáticas de segunda categoría debido a que se apoyan sobre una base empírica y no sobre demostraciones.
Ambos métodos son útiles. La Geometría euclidiana que aprendimos la mayoría de nosotros es axiomática. Parte4 de un axioma, es decir, una ley que se supone cierta, y los teoremas se deducen razonando de manera descendente a partir de ahí. Es deductiva y axiomática. Siglos más tarde, al-Hazin en Oriente y Galileo en Occidente contribuyeron a popularizar un método inductivo y empírico para la Ciencia, algo más parecido a lo que los babilonios, los egipcios y los hindúes habían utilizado. No se parte de suposiciones sino de y mediciones, para luego razonar de forma ascendente hacia verdades que recubren los datos conocidos. Lo que actualmente llamamos Ciencia es una materia que en su mayor parte es empírica. Cuando Isaac Newton recopiló relativos al paso de los cometas, a las lunas de Júpiter y de Saturno y a las mareas que se producían en el estudio del río Támesis para elaborar una gran síntesis en los Principia, estaba trabajando de una manera empírica e inductiva.
Las matemáticas son ligeramente diferentes, pero muchos matemáticos ven la necesidad de realizar tanto trabajos basados en las demostraciones como trabajos basados en las observaciones empíricas. Un caso puntero que podemos mencionar es el del gran matemático indio Srinivasa Ramanujan, cuyos “cuadernos perdidos” de anotaciones contienen el germen de la teoría de las supercuerdas y cuyos trabajos han sido utilizados para calcular el π hasta millones de dígitos en su parte decimal.
Uno de los secretos más profundos de la teoría de cuerdas, que aún no es bien comprendido, es por qué está definida sólo en diez, once y veintiséis dimensiones. Es ahí, donde la Teoría se hace fuerte y nos facilita la posibilidad de su desarrollo.
Si calculamos cómo se rompen y se vuelven a juntar las cuerdas en el espacio N-dimensional, constantemente descubrimos que pululan términos absurdos que destruyen las maravillosas propiedades de la teoría. Afortunadamente, estos términos indeseados aparecen multiplicados por (N-10). Por consiguiente, para hacer que desaparezcan estas anomalías, no tenemos otra elección cuántica que fijar N = 10. La teoría de cuerdas, de hecho, es la única teoría cuántica conocida que exige completamente que la dimensión del espacio-tiempo esté fijada en un único, el diez.
Por desgracia, los teóricos de cuerdas están, por el momento, completamente perdidos para explicar por qué se discriminan las diez dimensiones. La respuesta está en las profundidades de las matemáticas, en un área denominada funciones modulares (¿Las de Ramanujan?). Al manipular los diagramas de lazos de Kikkawa, Sakita y Virasoro creados por cuerdas en interacción, allí están esas extrañas funciones modulares en las que el 10 aparecen en los lugares más extraños. Estas funciones modulares son tan misteriosas como el hombre que las investigó, el místico del este. Quizá si entendiéramos mejor el de este genio indio, comprenderíamos por qué vivimos en nuestro universo actual.
Una partícula, una cuerda abierta y
una cerrada, describiendo sus órbitas en el
espacio-tiempo 4D.
El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y como Riemann antes que él, trabajó en total en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.
Dispersas oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. Esta extraña función contiene un término elevado a la potencia veinticuatro.
La Teoría de cuerdas, para algunos, es como un revoltijo de números incomprensibles.
El 24 aparece repetidamente en la obra de Ramanujan. Este es un ejemplo de lo que las matemáticas llaman números mágicos, que aparecen continuamente donde menos se les esperan por razones que nadie entiende. Milagrosamente, la función de Ramanujan aparece también en la teoría de cuerdas. El número 24 que aparece en la función de Ramanujan es también el origen de las cancelaciones milagrosas que se dan en la teoría de cuerdas. En la teoría de cuerdas, cada uno de los veinticuatro modos de la función de Ramanujan corresponde a una vibración física de la cuerda. Cuando quiera que la cuerda ejecuta sus movimientos complejos en el espacio-tiempo dividiéndose y recombinándose, deben satisfacerse un gran número de identidades matemáticas altamente perfeccionadas. Estas son precisamente las entidades matemáticas descubiertas por Ramanujan. Puesto que los físicos añaden dos dimensiones más cuando cuentan el número total de vibraciones que aparecen en una teoría relativista, ello significa que el espacio-tiempo debe tener 24 + 2 = 26 dimensiones espacio-temporales.
Una interacción general cuerdas se puede representar como la suma de interacciones más “elementales”, empezando con el diagrama árbol que representa la interacción con la mayor probabilidad de ocurrir, seguida por las correcciones perturbativas, es decir, por los demás diagramas de la serie infinita.
Las cuerdas siguen siendo un misterio por desvelar, y, de momento, no podemos hacerlo. Estamos limitados a conjeturar y teorizar. Parece que Witten lleva razón cuando dice que es una teoría del futuro que se adelantó a su tiempo. No tenemos aceleradores de partículas tan potentes como para poder llegar a las cuerdas.
Para comprender este misterioso factor de dos (que añaden los físicos), consideramos un rayo de luz que dos modos físicos de vibración. La luz polarizada vibrar, por ejemplo, o bien horizontal o bien verticalmente. Sin embargo, un campo de Maxwell relativista Aµ tiene cuatro componentes, donde µ = 1, 2, 3, 4. Se nos permite sustraer dos de estas cuatro componentes utilizando la simetría gauge de las ecuaciones de Maxwell. Puesto que 4 – 2 = 2, los cuatro campos de Maxwell originales se han reducido a dos. Análogamente, una cuerda relativista vibra en 26 dimensiones. Sin embargo, dos de estos modos vibracionales pueden ser eliminados rompemos la simetría de la cuerda, quedándonos con 24 modos vibracionales que son las que aparecen en la función de Ramanujan.
Srinivasa Ramanujan
Con tan solo doce años dominaba la trigonometría; unos años después se hizo con una copia del libro de George Carr <<A sinopsis of Elementary Results in Pure and Applied Mathematics>>. El libro contenía una lista de los 4.400 resultados clásicos de la matemática, pero sin demostraciones, así es que Ramanujan lo asumió como un reto. Durante los siguientes años se dedicó a fondo en este libro, y comenzó a llenar su libreta de resultados e ideas que no aparecían en el libro original. Al igual que Euler poseía un talento y una intuición excepcional, esto hacía que jugase y trasformarse las fórmulas conseguir nuevas perspectivas.
Cuando se generaliza la función de Ramanujan, el 24 queda reemplazado por el 8. Por lo tanto, el número crítico para la supercuerda es 8+2=10. Este es el origen de la décima dimensión que exige la teoría. La cuerda vibra en diez dimensiones porque requiere estas funciones de Ramanujan generalizadas para permanecer auto consistente. Dicho de otra manera, los físicos no tienen la menor idea de por qué 10 y 26 dimensiones se seleccionan como dimensión de la cuerda. Es como si hubiera algún tipo de numerología profunda que se manifestara en estas funciones que nadie comprende. Son precisamente estos números mágicos que aparecen en las funciones modulares elípticas los que determinan que la dimensión del espacio-tiempo sea diez.
En el análisis final, el origen de la teoría decadimensional es tan misterioso como el propio Ramanujan. Si alguien preguntara a cualquier físico del mundo por qué la naturaleza debería existir en diez dimensiones, estaría obligado a responder “no lo sé”. Se sabe en términos difusos, por qué debe seleccionarse alguna dimensión del espacio tiempo (de lo contrario la cuerda no puede vibrar de una cuánticamente autoconsistente), pero no sabemos por qué se seleccionan estos números concretos.
Quizá la respuesta a todo esto esté esperando a ser descubierta cuando alguien (algún genio matemático como Perelman) sea capaz de entender el contenido de los cuadernos perdidos de Ramanujan.
Al final del camino nos damos cuenta de que, la Cienca, es simplemente el descubrir la realidad de las cosas, del mundo, de la Naruraleza del Universo en Fín. Todo eso esconde muchos secretos que no hemos sabido desvelar y, para eso, está la Ciencia, la mejor herramienta que conocemos para desvelar tántos misterios que nos quedan por descubri. Lo cierto es que sabemos mucho menos, de lo que creemos que sabemo.
Está claro que, este simple comentario no explica lo que la Ciencia es y, desde luego, tendríamos que ir a una complejidad mucho más profunda y elevada para poder hablar de algunas ramas de la Ciencia que requieren de un nivel de comprensión de la Naturaleza que, de ninguna manera poseo. ¿Cómo he terminado este como lo he hecho? Empecé con una intención y, por el camino, como si tuviera vida propia, los pensamientos te llevan por otros senderos que, nunca habías pensado recorrer. ¡Qué cosas!
emilio silvera.
Mar
13
Que nos deparará la Ciencia en el Año 2.016
por Emilio Silvera ~ Clasificado en Ciencia futura ~ Comments (0)
Cuando se acercaba el nuevo año, se publicó; “La ciencia que nos espera en 2015”
¿Tejidos y órganos fabricados a la carta? ¿La evidencia directa de las ondas gravitacionales? ¿Nuevos logros en la exploración espacial? Éstas son nuestras predicciones sobre los avances que veremos gracias a la ciencia en 2015.
Nos encontramos escribiendo las últimas líneas del 2014. A nuestro repaso de los mejores avances científicos y tecnológicos de este año, queremos hoy añadir una perspectiva de futuro. ¿Qué nos deparará la ciencia en 2015?
Resulta sorprendente echar la vista atrás y comprobar el inmenso número de logros que hemos podido alcanzar de la mano de la investigación científica y tecnológica. Sin embargo, es todavía más estimulante mirar hacia adelante, y tratar de predecir el futuro. Ésta es nuestra apuesta sobre los diez avances científicos que veremos el próximo año:
1. El CERN arranca de nuevo
Es, sin duda, la puesta en marcha más esperada. Tras ser protagonista del Premio Nobel de Física de 2013, el laboratorio de física de partículas más importante del mundo arranca de nuevo tras una parada de dos años. Gracias al CERN se halló una partícula consistente con el bosón de Higgs, que añadiría la última pieza al puzzle del Modelo estándar.El CERN produce anualmente más de 30 petabytes de información
El parón del Gran Colisionador de Hadrones (LHC), cuyo trabajo consiste en acelerar protones a una velocidad cercana a la de la luz, ha permitido reparar y modernizar sus instalaciones. En los últimos meses, se ha trabajado en la reactivación y enfriamiento de esta máquina. A principios de 2015, el LHC retomará su actividad.
El objetivo no es otro que seguir acelerando y colisionando protones, recreando las condiciones que sucedieron durante los primeros instantes del Big Bang. Los científicos esperan que estos experimentos nos permitan conocer partículas nunca vistas, que ayudarían a comprender cuestiones fundamentales sobre la naturaleza de la materia. El CERN también asumirá un importante reto técnico: gestionar el big data generado, que superará anualmente los 30 petabytes de información.
2. El arma invisible contra el cáncer, a prueba
La inmunoterapia fue considerada como el avance científico más importante del 2013. Tras varios meses de ensayos clínicos, esta innovadora técnica contra el cáncer mostraba sus beneficios en el tratamiento del melanoma metastásico y de algunos tumores de pulmón y riñón. La idea es tan simple como potente: atacar a las células cancerosas utilizando el propio sistema inmune del paciente.
En 1890, el cirujano William Coley estudiaba los beneficios de usar nuestras propias defensas como arma contra el cáncer. A pesar de que su idea se abandonó durante décadas, debido principalmente a la eficacia de la quimioterapia y la radioterapia, en los últimos meses ha vuelto a resurgir con fuerza. 2015 será un año clave para comprobar su éxito. Los ensayos clínicos más recientes en cáncer de cérvix y de vejiga anticipan resultados positivos.
3. Del cometa a Plutón
La exploración espacial marcó un punto de inflexión histórico con el aterrizaje de Philae sobre el cometa 67P. La ciencia en 2015 asistirá de nuevo a una jornada memorable el próximo 14 de julio, fecha en la que veremos por primera vez el verdadero rostro de Plutón.En 2015 visitaremos dos planetas enanos (Ceres y Plutón)
La culpa la tendrá la misión New Horizons de la NASA, una sonda que despertó de su hibernación hace sólo unas semanas, cuando se encontraba a 261 millones de kilómetros de Plutón. Su viaje comenzó en 2006, con el objetivo de explorar el último planeta del Sistema Solar -hoy considerado como planeta enano-. El próximo año también visitaremos otro planeta enano (Ceres), gracias al trabajo de la misión Dawn. No hay duda: la ciencia en 2015 nos ayudará a seguir haciendo historia.
4. Una autopista de información bajo el mar
La ingente cantidad de datos producida por el CERN, junto con otros centros de investigación, requiere de respuestas. Una de estas soluciones se encuentra bajo el océano Atlántico. ¿En qué consiste? Los cables submarinos son en realidad verdaderas autopistas de información que permiten la transferencia ultrarrápida de datos.
La extensión de esta increíble red permitirá transmitir información a una velocidad de 340 gigabits por segundo, apoyando el trabajo de decenas de instalaciones científicas. Según explican desde el Departamento de Energía de Estados Unidos, estos cables submarinos nos ayudarán a compartir los datos de los experimentos ATLAS y CMS del CERN, pero también podrán revolucionar investigaciones relacionadas con la genómica, el cambio climático, la astrofísica o la ciencia e ingeniería de materiales.
5. La luz y los suelos, protagonistas del 2015
Otro de los grandes eventos científicos del próximo año se centrará en la celebración de dos fechas importantes: el Año Internacional de la Luz y el Año Internacional de los Suelos. En el primer caso, la Organización de las Naciones Unidas declaró 2015 como el tiempo para celebrar una efeméride con una doble vertiente: divulgadora y promotora de la investigación. Y es que algunas estimaciones indican que la fotónica alcanzará una cuota de mercado superior a los 600 mil millones de euros en 2020.La fotónica tendrá un impacto de 600 mil millones de euros en 2020
Por otro lado, el Año Internacional de los Suelos fue proclamado por la Organización de la Naciones Unidas para la Alimentación y la Agricultura (FAO). Persigue, sin duda, un objetivo fundamental: concienciar y difundir la importancia del suelo en el mantenimiento de la seguridad alimentaria y de las funciones ecosistémicas esenciales. Dos citas imprescindibles que suponen una forma diferente de acercar la ciencia a la sociedad.
6. En busca del elixir de la eterna juventud
Lo cantaba Antonio Vega en la década de los ochenta. Y la ciencia en 2015 no permanecerá ajena a este reto: retrasar en lo posible el envejecimiento manteniendo una buena calidad de vida. En esta lucha también participan gigantes como Google a través de su filial Calico. ¿Cuáles son las principales investigaciones sobre esta temática?
La búsqueda del ‘factor Matusalén’ en nuestros genes se ha realizado principalmente a través del estudio de las telomerasas. Además hace unos meses conocíamos unos impactantes resultados: la sangre de ratones podía frenar su envejecimiento y evitar problemas relacionados con las funciones cognitivas y la plasticidad sináptica. ¿Hemos encontrado el elixir de la eterna juventud? El futuro estará marcado por los ensayos clínicos en seres humanos, con el objetivo de comprobar la eficacia demostrada en roedores.
7. Detectar los susurros cósmicos
La investigación de Albert Einstein permitió predecir la existencia de ondas gravitaciones, es decir, distorsiones del espacio-tiempo que se propagan por el universo, y que son provocadas por objetos acelerados. En 1973 se obtuvo la primera evidencia indirecta de esta radiación gravitacional. Una pareja formada por una estrella de neutrones y un púlsar (estrella de neutrones que emite luz mientras gira) acortaba la distancia que les separaba poco a poco. La única explicación posible encajaba con la existencia de estas ondas gravitacionales.
En 2015 arrancará el mayor experimento de la historia para detectar de forma directa este tipo de radiación. Se trata del proyecto Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), impulsado conjuntamente por el MIT y Caltech. Su puesta en marcha podría permitir la confirmación directa de la existencia de ondas gravitacionales. De lograrlo, conseguiremos entender un poco más sucesos tan extraños como las colisiones de agujeros negros o las explosiones de supernovas.
Las ondas gravitacionales permitirían confirmar el modelo de inflación cósmica
Y si algo nos queda pendiente de 2014 es precisamente asegurar la detección de ondas gravitacionales en relación con los primeros instantes del universo. En marzo el equipo de John Kovac anunció la observación de “ondas gravitacionales primigenias”. Sus conclusiones, sin embargo, fueron demasiado optimistas. Posteriores estudios entre los físicos del telescopio estadounidense BICEP2 y del satélite europeo Planck demostraron que habían confundido las señales con polvo galáctico.
El varapalo para la comunidad científica fue inmenso, ya que este experimento pasó de ser comparado con la búsqueda del bosón de Higgs a quedarse en mero polvo galáctico. La confusión, sin embargo, no implica que el anuncio inicial sea completamente incorrecto. Todavía hay esperanzas de oír esos “susurros cósmicos” procedentes de los instantes posteriores al Big Bang. Esta evidencia directa nos permitiría confirmar que el cosmos se expandió exponencialmente tras la gran explosión, y que por tanto ese gran “objeto acelerado” provocó distorsiones en el espacio-tiempo que todavía hoy podemos escuchar. ¿Lo conseguiremos?
8. Diagnóstico precoz basado en tus genes
La secuenciación masiva del genoma (NGS) se ha hecho mayor. Leer la información genética que contiene nuestro ADN puede ser una herramienta fundamental para detectar enfermedades de una manera más rápida y eficaz. La aplicación de esta técnica en medicina nos permite diferenciar, por ejemplo, un tumor de origen hereditario y en el futuro, los expertos apuestan por esta tecnología para saber cómo responderán los pacientes oncológicos a las terapias e incluso estimar su supervivencia.
El big data resultante de estas investigaciones puede ser aplicado también en el tratamiento de enfermedades infecciosas. Por ejemplo, si nos ha atacado una bacteria multirresistente a antibióticos, los médicos podrían analizar su genoma y ver en cuestión de horas qué terapias deben elegir para acabar con la infección. La llegada de la medicina personalizada revolucionará, sin duda, el cuidado de nuestra salud.
9. El reto espacial de las telecomunicaciones
La Agencia Espacial Europea, tras la proeza de la misión Rosetta, inicia 2015 con el objetivo de impulsar las telecomunicaciones. Lo hará de la mano de la plataforma de satélites geoestacionarios Small Geo, cuya primera misión, el Hispasat AG1, será lanzado en la segunda mitad del año.
Small Geo es una iniciativa que surge fruto de la colaboración entre el sector público y la industria privada. El satélite Hispasat AG1 incorpora la carga útil REDSAT, que permitirá mejorar la capacidad de transmisión reduciendo el coste de las comunicaciones (cuenta con hasta 20 transpondedores en banda Ku y hasta 3 en banda Ka). Su lanzamiento mejorará la velocidad de los servicios multimedia utilizados en la Península Ibérica, las Islas Canarias y América.
10. Órganos y tejidos a la carta
¿Será 2015 el año de la bioimpresión 3D? Tras múltiples avances y esperanzadores resultados, los tejidos y órganos a la carta están cada vez más cerca. Una de las compañías punteras del sector, Organovo, sigue trabajando para que veamos por fin el primer órgano imprimido en tres dimensiones.La impresión de tejidos mejorará las pruebas de fármacos y cosméticos antes de que sean comercializados
La impresión 3D en medicina tiene ante sí retos importantes que resolver, como por ejemplo evitar que las células se estresen y lograr una correcta estructura tridimensional.
La alianza de Organovo con la Escuela de Medicina de Yale podría permitir un avance más rápido en la fabricación de órganos en el laboratorio, en un momento en el que los primeros tejidos bioimpresos ya se usan en el desarrollo de fármacos. Además, el convenio firmado con L’Oreal en octubre anticipa la llegada de la revolucionaria “piel bioimpresa”, que servirá para probar los cosméticos antes de que sean lanzados al mercado.”
Hasta aquí el reportaje.
2015 ha sido un año sencillamente asombroso para la exploración espacial. La sonda Dawn ha explorado de cerca Ceres y la New Horizons ha hecho lo propio con Plutón. ¿Qué nos espera en 2016?
¿Qué duda nos puede caber? En este mismo año que acaba de comenzar, muchos serán los logros que alcancemos, no sólo en el ámbito del Espacio Interestelar, la Física, la Biología, la Química y demás disciplinas del saber Humano, sino que, también en matemáticas serán descubiertos nuevos caminos que nos posibiliten para continuar con nuevos Modelos y Teorías que están anclados a la espera de nuevas herramientas.
¡Quedamos a la espera!
emilio silvera
Mar
4
¡La Ciencia! ¿Por qué no dejamos que vuele hacia el futuro?
por Emilio Silvera ~ Clasificado en Ciencia futura ~ Comments (0)
Los cosmólogos nos dicen que, aproximadamente, sólo el 5 por 100 de la masa del Universo es del tipo de material del que estamos hechos nosotros, los seres humanos -”materia bariónica” (moléculas, átomos, protones, neutrones, electrones y demás). Que aproximadamente el 35 por 100 está en alguna forma desconocida de “materia oscura fría”, que (como la materia bariónica) puede ser atraída por la gravedad para formar halos alrededor de las galaxias, y también podría formar “galaxias” “estrellas” y “planetas” de materia oscura que no emiten luz. En lo que se refiere al 60 por 100 restante de la masa del universo; está en alguna forma igualmente desconocida de “energía oscura” (como la llaman ellos, los cosmólogos) que impregna el universo entero y posee una enorme tensión ¿Es su tensión mayor que su densidad de energía? ¿Pudiera entonces ser el tipo de material exótico necesario que algunos postulan para poder mantener abiertos los agujeros de gusano que nos llevarían a otros lugares muy lejanos?
Como veréis, todo parece una gran estructura compuesta por una inmensa cadena de especulaciones y, la mayoría de las cuestiones que exponemos están basadas en ellas, no tenemos el certificado de certeza que la ciencia exige para dar por buena una teoría.
Diagrama de un agujero de gusano en un espaciotiempo de dos dimensiones
¿Por qué es “curva” la geometría del espaciotiempo? Una razón por la que la introducción por parte de Minkowski de la idea de geometría espaciotemporal resultaba tan importante es que permitió a Einstein utilizar la idea de geometría espaciotemporal curva para describir la gravedad. La propia frase “espaciotiempo curvo” tiene una imaginería tan mística que demasiado a menudo se rechaza como incomprensible. Al menos en un sentido, sin embargo, el argumento de que la gravedqad curva el esapciotiempo no sólo es comprensible, sino que es obligado.
Dos importantes predicciones derivadas de la Teoría General de la Relatividad de Einstein fueron confirmadas con una precisión sin precedentes gracias a una sonda espacial que fue diseñada precisamente con el ese objetivo. La Gravity Probe-B, una misión de la NASA, fue lanzada en 2004 y, con cuatro giroscopios ultraprecisos, estuvo midiendo el efecto de la curvatura del espacio-tiempo y el llamado efecto de arrastre de marco, en el que un cuerpo en rotación -la Tierra- arrastra el espacio-tiempo. “Imagine que la Tierra están inmersa en una sustancia viscosa como la miel, a medida que el planeta rota, la miel a su alrededor hará un remolino. Eso mismo sucede con el espacio tiempo”. “La Gravity Probe-B ha confirmado dos de las predicciones más profundas del universo de Einstein”. La sonda dejó de funcionar y los científicos publicaron los resultados de sus experimentos en la revista Physical Review Letters.
Esa sí es la manera admisible de proceder para la Ciencia, comprobar en todo momento lo que realmente ocurre con lo que predicen las teorías para, si son ciertas sus predicciones, otorgarles el certificado de credibilidad y, si no lo son, postergarlas y proseguir la búsqueda de otras que sí, coincidan con la realidad de lo que la Naturaleza es.
1) Distribución en 3D de la materia oscura en la zona del Universo estudiada. Foto: ESA. 2) Comparación de distribución de materia normal (izquierda) y materia oscura (derecha) en la misma zona del Universo estudiada. Foto: ESA.
Pero, los científicos tienen que vivir, los presupuestos y subvenciones tienen que ser justificados y, como podeis ver en lo que arriba contemplamos y las explicaciones que nos ofrecen de dichas imágines…¡la cosa no tiene remedio! Se realizan observaciones y se hacen estudios de los que se obtienen datos que no sabemos descifrar y, para justificar tanto esfuerzo y dinero, se lanzan al mundo explicaciones tan peregrinas como alñs que debajo de las imágenes podemos leer. Es pintar de manera que, la imagen resultante nos muestre lo que queremos ver. Todo esto me recuerda (salvando las distancdias) a los astrónomos de la antigüedad en China que, sin excepción, adaptaban las predicciones de las observaciones del Universo a las conveniencias del Emperador de turno.
Claro que, la Ciencia es joven. La empresa científica lleva en marcha menos de los 1.000 años que Alfred North Whitehead estimaba necesarios para que un n uevo modo de pensamiento penetre en el corazón de una cultura. Pese a todo, la Ciencia ya ha transformado profundamente el mundo, al menos de tres maneras: tecnológica, intelectual y también políticamente. Bastante culpa de los atrasos que podamos sufrir en el avance científico, no pocas veces, se debe al status establecido que no dejan que las cosas cambien, ellos están muy confortablemente situados en esta situación y, los nuevos paradigmas científicos, no les convienen.
Por muchas vueltas que podamos dar alrededor de una misma cosa…, nunca podremos avanzar, siempre estaremos situados en el mismo sitio. Así, el conjunto de prácticas que definen una disciplina científica durante un período específico de tiempo, como todo en nuestro Universo, no debe ser inamovible y, nuevas ideas, nuevos cambios y nuevas normas deben venir a suplir a las actuales que, como por otra parte es comprensible, deben ser renovadas con los nuevos conocimientos que de nuestro entorno, de la Naturaleza vamos adquiriendo.
Si eso es así (que lo es), un paradigma científico establece aquello que se debe observar; el tipo de interrogantes que hay que formular para hallar las respuestas en relación al objetivo; cómo deben estructurarse dicho interrogantes; y cómo deben interpretarse los resultados de la investigación.
Cuando un paradigma ya no puede satisfacer las necesidades de una Ciencia (por ejemplo, ante nuevos descubrimientos que invalidan los conocimientos prevuios), es sucedido por otro. Se dice que un cambio de paradigma es algo dramático para la ciencia, ya que éstas aparecen como estables y maduras y, por eso precisamente cuesta tanto admitir nuevos paradigmas que nos traeran, en este caso, la nueva ciencia y otras maneras y formas de interpretar lo que observamos a nuestro alrededor. Llevamos ya mucho tiempo estancados en las teorías de la relatividad general y la cuántica, se necesitan nuevos caminos que recorrer y otras ideas nuevas y atrevidas que, como la teoría de cuerdas (por ejemplo), nos transporte a otros universos, otras maneras de “ver”.
Los logros tecnológicos de la Ciencia han hecho al mundo desarrollado más rico en ideas y, los avances en todos los ámbitos del saber humano (sobre todo en la Física), han posiblitado incluso mejoras en el mundo de la salud con sus contribucones que abarcarían una larga lista que hace posible que ahora, nuestras medias de vida, estén en los 80 años. Claro que, tanto adelanto, también ha venido a elevar nuestro nivel de ansiedad. Parte de esa ansiedad surge de la razonable aprensión de que el poder tecnológico, como todo poder, tiene sus peligros. Claro quer, algo de ello tiene que ver con el hecho de que muchas personas se encuentran rodeadas (y, a veces amenazadas) por máquinas cuyo funcionamiento no entienden, y tras las que hay una actividad científica que tampoco entienden. Acordaos de la que se formó cuando se puso en marcha el LHC.
Ahora observamos el espacio interestelar y, más o menos, con mucha aproximación, podemos interpretar casi todo lo que vemos. Intelectualmente, la Ciencia nos ha traído una nueva forma de pensar en la que no hay sitio para el miedo, la supertición o la obediencia ciega a la autoridad que han sido reemplazadas por una forma de indagación y de experimento para poder llegar a la verdad de las cosas y poder contestar a tántos por qués que surgen en nuestro camino. Como resultado, los que tienen la suerte de tener una formación científica se ven ahora engranados en una madeja de vida de la que han brotado, pasajeros a bordo de uno de los miles de millones de planetas en un universo en expansiòn de extensión desconocida y quizá infinita.
Para algunos, esa nueva visión es excitante y estimulante, pero para otros es vagamente amenazadora (lo que no se comprende da miedo). Estos últimos retiran la vista del Telescopio para preguntar: “¿No hace todo esto que sientas onsignificante, ante tánta grandeza?” Quizá un término más preciso sea “inseguro”. La Ciencia amenaza no sólo las viejas concepciones sobre nosotros mismos (como aquella absurda idea de que ocupábamos el centro del Universo) sino también las viejas maneras de pensar (por ejemplo, que nuestra profunda sensación de que algo debe ser verdadero tiene relación con la cuestión de si realmente puede demostrarse que es verdadero). Esta amenzaza es real en ambos aspectos, debería ser reconocida como tal por los que se dedican a divulgar la ciencia (yo, al menos así lo reconozco), aunque también somos libres, si nos sentimos cómodos viviendo con tales “peligros”, para explicar como son, realmente las cosas.
Por una crianza antiautoritaria de nuestras hijas e hijos
La Ciencia es intrínsecamente antiautoritaria: reemplaza los sistemas de arriba-abajo de pensamiento político que Thomas Paine agrupaba bajo el término “despotismo”, por un sistema de abajo-arriba, en el que cualquiwera capaz de hacer observaciones competentes y realizar experimentos controlados puede ser acertadamente considerado como una fuente potencial de autoridad -una autoridad que r3eside, no en el individuo sino en los resultados.
La Ciencia nos anima -en realidad, nos obliga- a vivir con la duda y la ambigüedad, y a apreciar la vastedad de nuestra propia ignorancia. Estos hábitos mentales han calado, hasta cierto punto, en el dominio de los asuntos políticos tanto como los científicos. Como decía Richard Feyman, “El Gobierno de los Estados Unidos se desarrolló bajo la idea de que nadie sabía cómo formar un Gobierno, o cómo gobernar. El resultado es la invención de un sistema para gobernar cuando no se saber cómo hacerlo. Y la forma de conseguirlo es permitir un sistema, como el que nosotros tenemos, en el que nuevas ideas puedan desarrollarse, ensayarse y desecharse”.
Claro que, Richard Feyman hablaba de otra cosa. Él quería que los físicos pudioeran desarrolar sus ideas sin travas y con ,os medios necesarios para poder llegar a esas verdades que incansables buscamos.
La práctica de la Investigación Científica exige y requiere libertad de expresión y asociación, Ya es suficientemente difícil hacer física sin que te digan también que no puedes ir a la mitad de las conferencias relevantes, y que tus ideas ¡deben adecuarse a la filosofía oficial! para que no te quedes fuera de juego, es decir, sentado en el banquillo mirando como otros sí pueden jugar al ser más maleables y adaptativos.
Es una lástima que, aún hoy día, pasada la primera década del siglo XXI, las cosas continúen siendo así. Los físicos, como cualesquiera otros científicos, no pueden estar confinados de esa manera que les impida expresarse con libertad y puedan exponer sus ideas, estén éstas cercanas o no al establemint establecido en el momento.
La Ciencia, amigos míos, necesita libertad de expresión, de exponer libremente sus ideas y de, sin ninguna traba, poder publicar sus descubrimientos sean o no convenientes para el poder erstablecido. Si no dejamos que la Ciencia surja y siga su camino…¡apaga y vamonos!
emilio silvera