May
23
Nuestra vecindad y lo que puede contarnos
por Emilio Silvera ~ Clasificado en Conociendo el Sistema Solar ~ Comments (0)
Como mencioné otras veces, la evolución de nuestro Sol, con el paso del tiempo, lo llevará de manera irremediable primero a expandirse como Gigante Roja hasta alcanzar los límites de la Tierra y, segundo a contraerse más y más para ganar la densidad de una estrella enana blanca y, sólo podrá evitar su propio colapso por la presión de degeneración de los electrones. La densidad que alcanzará la enana blancaserás de 5×108 Kg/m3.
Desde la secuencia que el gráfico nos enseña, finalmente, el Sol puede quedar como la imagen de arriba, es decir, una Nebulosa planetaria qwue podría ser como esta o diferente -las versiones son muy variadas-, en la que, en el centro, reluce una caliente enana blanca que emite una fuerte radiación ultravioleta que ioniza todo el gas circundante.
En su fase anterior, la de gigante roja, crece varias veces su tamaño original, y en el caso de nuestro Sol su órbita sobrepasará al planeta Mercurio, al planeta Venus y probablemente al planeta Tierra, que para entonces, por lo elevado de las temperaturas reinantes, habrá visto evaporarse el agua de los ríos y océanos hasta dejarlo seco y yermo, sin posibilidad de vida.
Para cuando todo eso ocurra, ¿quién estará aquí?; faltan varios miles de años y, si la Humanidad no se ha destruido a sí misma, espero que para entonces tenga preparado todos los medios necesarios para instalarse en otros mundos, preferiblemente fuera de nuestro Sistema Solar, ya que los planetas vecinos, una vez desaparecido el Sol, no creo que reúnan las condiciones idóneas para acoger la vida, y las lunas de esos planetas tampoco parecer suficientemente acogedoras: Io, el tercer satélite más grande de Júpiter, sólo tiene un diámetro de 3.630 Km y es una caldera volcánica donde la radiante lava fluye de sus muchos volcanes. Toda la superficie de Io tiene un color amarillento debido a los depósitos de azufre u óxido de azufre. Existen extensas llanuras y regiones montañosas en Io, aunque no cráteres de impacto, indicando que su superficie es muy joven geológicamente.
La densidad de Io, 3’57 g/cm3, sugiere que tiene un núcleo de hierro-azufre de unos 1.500 Km de radio y un manto de silicatos. Las actividades volcánicas de Io son el resultado del calor liberado por las fuerzas de marea, que distorsionan el satélite a medida que se acerca o se aleja de Júpiter en su órbita.
Europa, el cuarto satélite más grande de Júpiter y el segundo de los cuatro satélites galileanos en distancia al planeta, conocido también como Júpiter II, tiene un diámetro de 3.138 Km, ligeramente menor que nuestra Luna. La densidad de Europa es de 2’97 g/cm3 indicando que está compuesta fundamentalmente por rocas de silicio, mezcladas con, al menos, un 5% de agua.
La superficie es brillante y helada con un albedo de 0’64, dominada por redes de fracturas oscuras y lineales, algunas de más de 1.000 Km de longitud. Se han identificado en Europa al menos una docena de cráteres de impacto.
Ganímedes, el satélite más grande de Júpiter y el mayor del Sistema Solar, con un diámetro de 5.262 Km, conocido como Júpiter III y es el más brillante de los satélites galileanos. La densidad de este satélite es de 1’94 g/cm3 y posee una superficie helada llena de contrastes con regiones de alto y bajo albedo, cubiertos por complejos sistemas de surcos, indicando la existencia de varias fases de actividad en la corteza en el pasado. Algunos de los cráteres de impacto más grandes sobre la superficie se han convertido en palimpsestos debido al lento flujo del hielo, como en un glaciar.
Titán, el satélite más grande de Saturno y el segundo más grande del Sistema Solar, con un diámetro de 5.150 Km; también conocido como Saturno VI. Fue descubierto en 1.655 por C. Huygens. La composición más probable de Titán es rocas e hielo en partes iguales aproximadamente. Es el único satélite del Sistema Solar que tiene una atmósfera sustancial. La atmósfera está compuesta principalmente por nitrógeno, con un 2/10% de metano, un 0’2% de hidrógeno (porcentajes moleculares) y trazas de etano, propano, etino, cianuro de hidrógeno y monóxido de carbono. Su temperatura es de -180 ºC y pueden existir lloviznas de metano en la superficie y posiblemente nieve de metano. A unos 200 Km de altura abundan espesas nubes anaranjadas de hidrocarburos y existen además capas de neblina atmosférica hasta los 500 Km.
Las sondas Voyager revelaron un casquete polar norte en las nubes de Titán, con un collar ligeramente más oscuro a su alrededor. Además, el hemisferio norte era marcadamente más oscuro que el sur. Ambos son probablemente efectos estacionales.
Otras muchas lunas acompañan a nuestros planetas vecinos: Phobos y Deimos en Marte; Callisto, Amalthea, Leda, etc. en Júpiter; Pan, Atlas, Prometheus, Pandora, etc. en Saturno; Cordelia, Ophelia, Bianca, Ariel, etc. en Urano; Galatea, Larissa, Tritón, Nereid, etc. en Neptuno; Charon en Plutón… hasta formar un conjunto aproximado de más de 60 lunas.
Mercurio y Venus
De los planetas vecinos, Mercurio y Venus están descartados para la vida, y Marte con su delgada atmósfera compuesta (en volumen) por alrededor del 95% de dióxido de carbono, 2’7% de nitrógeno, 1’6% de argón, 0’1% de monóxido de carbono y pequeñas trazas variables de vapor de agua, con unas temperaturas superficiales de entre 0 y -125 ºC, siendo la media de -50 ºC.
Es relativamente frecuente la presencia de vapor de agua en nubes blancas o de dióxido de carbono en dichas nubes cerca de latitudes polares. Existen dos casquetes de hielo de agua permanentes en los polos, que nunca se funden y que en invierno aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado, hasta alcanzar los 60º de longitud.
Ocurren esporádicamente tormentas de polvo, pudiendo extenderse hasta cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares. La superficie de Marte es de basalto volcánico con un alto contenido en hierro, que le da al planeta el color característico por el que se le denomina “el planeta rojo”. Existen muchas áreas de dunas de arena rodeando los casquetes polares que constituyen los mayores campos de dunas del Sistema Solar.
Olimpus Mont en Marte
El volcán que da lugar al Monte Olimpo, en Marte, es la mayor cumbre conocida en el Sistema Solar: tiene unos 27 km de altura, tres veces la altura del Everest (8,85 km) Sus dimensiones son tales que una persona que estuviese en la superficie marciana no sería capaz de ver la silueta del volcán, ni siquiera desde una distancia a la cual la curvatura del planeta empezara a ocultarla. El efecto por tanto sería el de estar contemplando una “pared”, o bien confundir la misma con la línea del horizonte. La única forma de ver la montaña adecuadamente es desde el espacio. Igualmente, si alguien se encontrara en la cima del volcán y mirase hacia abajo no podría ver el final, ya que la pendiente llegaría hasta el horizonte…
La actividad volcánica fue intensa en el pasado. Tharsis Montes es la mayor región volcánica, estando Olympus Monts situado en el noroeste, y la vasta estructura colapsada Alba Patera, en el norte. Juntas, estas áreas volcánicas constituyen casi el 10% de la superficie del planeta. No hay volcanes activos en Marte, aunque en el pasado produjeron llanuras de lava que se extendieron cientos de kilómetros.
Muchos de los cráteres de impacto más recientes, como cráteres de terraplén, tienen grandes pendientes en los bordes de sus mantas de proyecciones, sugiriendo que la superficie estaba húmeda o llena de barro cuando se produjo el impacto.
Aunque -según parece- no existe en la actualidad agua líquida en la superficie de Marte, hay indicios muy firmes de que en el suelo si como lo han podido compribar varias de las sonsas allí enviadas como, por ejemplo, La Mars Phoenix. Las huellas halladas en el terreno de Marte, nos habla de que allí antiguamente el planeta tuvo ríos y lagos cuando existía una atmósfera más densa, caliente y húmeda. Uno de los canales secos es Ma’adim Vallis, de unos 200 Km de longitud y varios kilómetros de ancho.
Muchos son los lugares del planeta Marte en los que están presentes las huellas del agua corriente y cantarina que en otros tiempos, alegró el sonido del planeta. Internamente, Marte probablemente tiene una litosfera de cientos de kilómetros de espesor, una astenosfera rocosa y un núcleo metálico de aproximadamente la mitad del diámetro del planeta.
Marte no posee un campo magnético importante; su diámetro ecuatorial es de 6.794 Km, su velocidad de escape de 5,02 Km/s y su densidad media de 3’94 g/cm3. Dista del Sol 1’524 UA.
Tanto las lunas antes mencionadas como el planeta Marte son objetos de interesantes estudios que nos facilitarán importantes conocimientos de los objetos que pueblan el espacio exterior y de cómo serán muchos de los planetas y lunas que nos encontraremos más allá de nuestro Sistema Solar.
Pero todo se queda ahí, en una interesante experiencia que tenemos que confirmar
Sin embargo, como lugares para vivir e instalarse no parecen, por sus condiciones físicas-ambientales, los más idóneos. Si acaso, en algunos de estos objetos celestes se podrán instalar bases intermedias para el despegue hacia otros mundos más lejanos, para aprovechar sus recursos de materiales minerales, hidrocarburos, etc. que poseen en abundancia pero, desgraciadamente, no son lugares aptos para instalar a la Humanidad que necesitaría crear, artificialmente, costosas instalaciones que simularan las condiciones terrestres, y tal empresa ni económica, ni tecnológicamente es tarea fácil.
Así las cosas, el único camino posible para el futuro de la Humanidad será avanzar en la exploración del espacio exterior, construir naves espaciales mejor dotadas en todos los sentidos, sobre todo: aislante de radiaciones nocivas y peligrosas para la salud de los tripulantes, dispositivo antiflotabilidad que imite la gravedad terrestre, espacios hidropónicos que produzcan cosechas continuas de verduras y tubérculos, plantas de reciclaje que depuren de manera continuada el agua de toda la nave, motones lumínicos de fotones, antimateria, etc. que de alguna manera imite la velocidad relativista, laboratorios con instalaciones tecnológicas de última generación con potentes y sofisticados ordenadores que avancen y mejoren continuamente sobre el conocimiento científico de la física, la química y la biología, y, en fin y sobre todo, una conciencia colectiva de todos los gobiernos del mundo para comprender que su principal cometido es mirar y tratar de conseguir el mayor bienestar y la seguridad de todos los ciudadanos y, de entre otras cuestiones, una importante es la de destinar una parte importante de los recursos para investigar, explorar y preparar el futuro de las generaciones futuras.
No podemos descansar.
emilio silvera
Mar
12
Siempre queriendo saber
por Emilio Silvera ~ Clasificado en Conociendo el Sistema Solar ~ Comments (2)
Si las constantes fuesen variables, si la carga del electrón o la masa del protón variaran sólo una diezmillonésima… La Vida, tal como la conocemos no estaría en nuestro planeta ni en ningún otro. Al menos, las formas de vida que proliferan en el planeta Tierra y, no sabemos si, en tales circunstancias, podrían surgir otras formas de vida distintas a la fauna y la flora que habita en la Tierra.
Todos los días podemos sorprendernos de los hallazgos y logros de nuestros ingenios que, tanto aquí como en el espacio, están continuamente trabajando para que nosotros conozcamos el Universo y los objetos que lo pueblan. De momento (somos aún muy jóvenes), estamos algo limitados en Ciencia y Tecnología para que, seámos nosotros mismos los que vayamos a buscar esas emocionantes sensaciones in situ. Así que, enviamos a nuestras sondas robóticas para que lo hagan por nosotros que, en la distancia, nos sorprendemos y maravillamos de lo que vamos descubriendo por ahí fuera.
Plutón es un planeta enano del sistema solar, que forma parte de un sistema planetario doble con su satélite Caronte.
“La misión New Horizons (Nuevos Horizontes) es una misión espacial no tripulada de la agencia espacial estadounidense (NASA) destinada a explorar Plutón, sus satélites y probablemente el Cinturón de Kuiper. La sonda fue lanzada desde Cabo Cañaveral el 19 de enero de 2006 tras posponerse por mal tiempo la fecha original de lanzamiento. New Horizons viajó primero hacia Júpiter donde llegó en febrero-marzo de 2007. A su paso por Júpiter aprovechó la asistencia gravitatoria del planeta para incrementar su velocidad relativa unos 4 023,36 m/s (14 484 km/h). Llegará a Plutón en julio de 2015. Tras dejar atrás Plutón, la sonda probablemente sobrevuele uno o dos objetos del Cinturón de Kuiper.
Después de las Voyager 1 y 2 es la sonda con mayor velocidad de lanzamiento desde la Tierra hasta el momento, alcanzando respecto al Sol una velocidad máxima de 15,1km/s. (54 000 km/h aproximadamente.”
Las últimas noticias sobre el proyecto han salido en los medios y, en cualquiera de ellos (pongo el siguiente al azar), podemos leer cosas como estas:
“La nave New Horizons, que salió hacia plutón y que llegará a aquel mundo en Julio de 2015, se ha acercado lo suficiente para fotografiar su luna Caronte por primera vez”.
Lanzada en 2006, la nave espacial New Horizons de la NASA llegará a Plutón entre abril y Julio de 2015. Cuando sobrevuele este mundo enano, estimará sus contornos, temperatura, composición atmosférica y otras características, además de tomar imágenes de las cinco lunas que lo rodean. En realidad, la sonda ya ha comenzado el trabajo y ha utilizado su cámara telescópica de mayor resolución para fotografiar por primera vez la luna más grande del sistema, Caronte, un mundo cubierto de hielo.
La imagen representa un importante hito en el viaje de nueve años y medio de la nave espacial y, en cierto sentido, inicia el estudio del sistema de Plutón. Caronte orbita a más de 19.000 kilómetros de distancia del propio Plutón. «La imagen en sí misma puede no parecer muy impresionante para el ojo inexperto, pero en comparación con las imágenes del descubrimiento de Caronte desde la Tierra, son fantásticas», afirma el científico del proyecto New Horizons Hal Weaver, de la Universidad Johns Hopkins. «Estamos muy emocionados de ver a Plutón y Caronte como objetos separados por primera vez para New Horizons».
Allí donde se decía
La nave se encontraba todavía a 550 millones de millas de Plutón, una distancia aún mayor que la que separa a la Tierra de Júpiter, cuando su cámara de largo alcance logró un total de seis imágenes: tres el 1 de julio y tres más el 3 de julio. La excelente sensibilidad y resolución espacial del instrumento revelaron que Caronte se encuentra exactamente a la distancia de Plutón anunciada en su descubrimiento hace 35 años.
«Estamos emocionados de tener nuestro primer píxel de Caronte», afirma Alan Stern, «pero dentro de dos años, cuando estemos a punto de la máxima aproximación, tendremos casi un millón de píxeles de Caronte». Además de ser un logro técnico, estas nuevas imágenes ya pueden ayudar a los científicos a conocer algo más sobre las propiedades de la superficie de Caronte y Plutón, quizás la existencia de una capa superpuesta de partículas finas.” Declaró el cintífico en aquellos momentos.
Lo cierto es, amigo míos, que cuando nos empeñamos en alguna cosa y ponemos el punto de mira en algo, más tarde o más temprano lo conseguiremos y, una de las cosas que nos traemos entre manos es conocer, primero nuestro entorno más cercano (El Sistema solar), y, más tarde, daremos el salto hacia las estrellas.
Plutón, el último y más pequeño de los nueve planetas -ahora planeta enano- del sistema solar, es muy extraño. Ni es un cuerpo rocoso como la Tierra, Marte o Venus, ni un gigante gaseoso como Júpiter o Saturno. Además, sigue una órbita muy elíptica alrededor del Sol, de 248 años, situándose en determinados periodos más cerca de la estrella que de Neptuno. Los astrónomos dudan si realmente es un planeta o un cuerpo del cinturón de Kuiper, la remota región poblada por miles de pequeños cuerpos helados. New Horizons estudiará un mundo único, y por ahora sólo cabe imaginar lo que podremos aprender de él.
El objetivo de la misión, un viejo sueño de la exploración espacial que tardó años en concretarse dadas las dificultades que entrañaba, es pasar muy cerca de Plutón, a sólo 10.000 kilómetros de su superficie, haciendo observaciones científicas durante unos meses para poder saber de él, de lo que es en realidad y de lo que ocurre en sus alrededores. Poco a poco, vamos consiguiendo que las distancias no sean un abstáculo para nosotros.
Plutón es difícil de observar desde la Tierra, por su pequeño tamaño (2.360 kilómetros de diámetro, o dos tercios del de la Luna) y por lo lejos que está (5.900 millones de kilómetros de distancia media del Sol, frente a los 150 millones de kilómetros de distancia de la Tierra al Sol). En el cielo, ese pequeño cuerpo helado con una temperatura de 233 grados bajo cero se ve 50.000 veces más apagado que Marte. Cuando llegue, los instrumentos de la nave New Horizons verán Plutón 10.000 veces mejor que el telescopio Hubble.
Ya estamos en 2.015, ahora sólo nos queda esperar unos meses para saber, qué nos puede ofrecer la misión encomendada a la nave New Horizons.
emilio silvera
Dic
12
¡Siempre queriendo saber!
por Emilio Silvera ~ Clasificado en Conociendo el Sistema Solar ~ Comments (0)
El colapso del núcleo de las estrellas
Si las constantes fuesen variables, si la carga del electrón o la masa del protón variaran sólo una diezmillonésima… La Vida, tal como la conocemos no estaría en nuestro planeta ni en ningún otro. Al menos, las formas de vida que proliferan en el planeta Tierra y, no sabemos si, en tales circunstancias, podrían surgir otras formas de vida distintas a la fauna y la flora que habita en la Tierra.
En su momento fue publicado este trabajo que, al día de hoy, ya ha sido sobrepasado y, los resultados son bien conocidos por todos. Recordemos aquella aventura de reciente resolución.
Todos los días podemos sorprendernos de los hallazgos y logros de nuestros ingenios que, tanto aquí como en el espacio, están continuamente trabajando para que nosotros conozcamos el Universo y los objetos que lo pueblan. De momento (somos aún muy jóvenes), estamos algo limitados en Ciencia y Tecnología para que, seámos nosotros mismos los que vayamos a buscar esas emocionantes sensaciones in situ. Así que, enviamos a nuestras sondas robóticas para que lo hagan por nosotros que, en la distancia, nos sorprendemos y maravillamos de lo que vamos descubriendo por ahí fuera.
Plutón es un planeta enano del sistema solar, que forma parte de un sistema planetario doble con su satélite Caronte.
“La misión New Horizons (Nuevos Horizontes) es una misión espacial no tripulada de la agencia espacial estadounidense (NASA) destinada a explorar Plutón, sus satélites y probablemente el Cinturón de Kuiper. La sonda fue lanzada desde Cabo Cañaveral el 19 de enero de 2006 tras posponerse por mal tiempo la fecha original de lanzamiento. New Horizons viajó primero hacia Júpiter donde llegó en febrero-marzo de 2007. A su paso por Júpiter aprovechó la asistencia gravitatoria del planeta para incrementar su velocidad relativa unos 4 023,36 m/s (14 484 km/h). Llegará a Plutón en julio de 2015. Tras dejar atrás Plutón, la sonda probablemente sobrevuele uno o dos objetos del Cinturón de Kuiper.
Después de las Voyager 1 y 2 es la sonda con mayor velocidad de lanzamiento desde la Tierra hasta el momento, alcanzando respecto al Sol una velocidad máxima de 15,1km/s. (54 000 km/h aproximadamente.”
Las últimas noticias sobre el proyecto han salido en los medios y, en cualquiera de ellos (pongo el siguiente al azar), podemos leer cosas como estas:
“La nave New Horizons, que salió hacia plutón y que llegará a aquel mundo en Julio de 2015, se ha acercado lo suficiente para fotografiar su luna Caronte por primera vez”.
Lanzada en 2006, la nave espacial New Horizons de la NASA llegará a Plutón entre abril y Julio de 2015. Cuando sobrevuele este mundo enano, estimará sus contornos, temperatura, composición atmosférica y otras características, además de tomar imágenes de las cinco lunas que lo rodean. En realidad, la sonda ya ha comenzado el trabajo y ha utilizado su cámara telescópica de mayor resolución para fotografiar por primera vez la luna más grande del sistema, Caronte, un mundo cubierto de hielo.
La imagen representa un importante hito en el viaje de nueve años y medio de la nave espacial y, en cierto sentido, inicia el estudio del sistema de Plutón. Caronte orbita a más de 19.000 kilómetros de distancia del propio Plutón. «La imagen en sí misma puede no parecer muy impresionante para el ojo inexperto, pero en comparación con las imágenes del descubrimiento de Caronte desde la Tierra, son fantásticas», afirma el científico del proyecto New Horizons Hal Weaver, de la Universidad Johns Hopkins. «Estamos muy emocionados de ver a Plutón y Caronte como objetos separados por primera vez para New Horizons».
Allí donde se decía
La nave se encontraba todavía a 550 millones de millas de Plutón, una distancia aún mayor que la que separa a la Tierra de Júpiter, cuando su cámara de largo alcance logró un total de seis imágenes: tres el 1 de julio y tres más el 3 de julio. La excelente sensibilidad y resolución espacial del instrumento revelaron que Caronte se encuentra exactamente a la distancia de Plutón anunciada en su descubrimiento hace 35 años.
«Estamos emocionados de tener nuestro primer píxel de Caronte», afirma Alan Stern, «pero dentro de dos años, cuando estemos a punto de la máxima aproximación, tendremos casi un millón de píxeles de Caronte». Además de ser un logro técnico, estas nuevas imágenes ya pueden ayudar a los científicos a conocer algo más sobre las propiedades de la superficie de Caronte y Plutón, quizás la existencia de una capa superpuesta de partículas finas.” Declaró el cintífico en aquellos momentos.
Lo cierto es, amigo míos, que cuando nos empeñamos en alguna cosa y ponemos el punto de mira en algo, más tarde o más temprano lo conseguiremos y, una de las cosas que nos traemos entre manos es conocer, primero nuestro entorno más cercano (El Sistema solar), y, más tarde, daremos el salto hacia las estrellas.
Plutón, el último y más pequeño de los nueve planetas -ahora planeta enano- del sistema solar, es muy extraño. Ni es un cuerpo rocoso como la Tierra, Marte o Venus, ni un gigante gaseoso como Júpiter o Saturno. Además, sigue una órbita muy elíptica alrededor del Sol, de 248 años, situándose en determinados periodos más cerca de la estrella que de Neptuno. Los astrónomos dudan si realmente es un planeta o un cuerpo del cinturón de Kuiper, la remota región poblada por miles de pequeños cuerpos helados. New Horizons estudiará un mundo único, y por ahora sólo cabe imaginar lo que podremos aprender de él.
El objetivo de la misión, un viejo sueño de la exploración espacial que tardó años en concretarse dadas las dificultades que entrañaba, es pasar muy cerca de Plutón, a sólo 10.000 kilómetros de su superficie, haciendo observaciones científicas durante unos meses para poder saber de él, de lo que es en realidad y de lo que ocurre en sus alrededores. Poco a poco, vamos consiguiendo que las distancias no sean un abstáculo para nosotros.
Plutón es difícil de observar desde la Tierra, por su pequeño tamaño (2.360 kilómetros de diámetro, o dos tercios del de la Luna) y por lo lejos que está (5.900 millones de kilómetros de distancia media del Sol, frente a los 150 millones de kilómetros de distancia de la Tierra al Sol). En el cielo, ese pequeño cuerpo helado con una temperatura de 233 grados bajo cero se ve 50.000 veces más apagado que Marte. Cuando llegue, los instrumentos de la nave New Horizons verán Plutón 10.000 veces mejor que el telescopio Hubble.
Ya estamos en 2.015, ahora sólo nos queda esperar unos meses para saber, qué nos puede ofrecer la misión encomendada a la nave New Horizons.
emilio silvera
Feb
15
Tenemos que conocer mejor nuestro propio “barrio”
por Emilio Silvera ~ Clasificado en Conociendo el Sistema Solar ~ Comments (0)
El planeta Saturno con su gran familia ha despertado desde siempre nuestra curiosidad. Es el planeta del Sistema solar que tiene la forma más achatada y su diámetro ecuatorial es de 120 540 Km, mientras que el diámetro polar es de 108 730 Km. Además, tiene una peculiaridad que no todos conocen: ¡Su densidad es menor que la del agua! Es decir, si lo pudiéramos poner en un océano gigante… ¡Flotaría! Su densidad es de sólo o,7 g/cm3.
Su atmósfera está compuesta por el 96% de Hidrógeno y el 4% de Helio en porcentajes moleculares con trazas de metano, amoníaco, etano, etino y fosfina. La temperatura de la parte superior de la artmósfera es de -195 ºC. Interiormente se piensa que posee un núcleo rocoso a gran temperatura, conteniendo quizás hierro, de unos 20 000 km de diámetro.
Es posible que esté rodeado de una capa de materiales helados d eunos 5 ooo Km de grosor, y una capa de hidrógeno y helio metálicos de un grosor de unos 10 000 km, en donde existen unas corrientes de convección que son probablemente las respondablñes del campo magnético de Saturno, que es comparable al de la Tierra en intensidad. Rodeando a esta capa existe Hidrógeno líquido molecular y helio que gradualmente se une a una capa gaseosa más cercana a la superficie.
Al igual que Júpiter, la superficie visible de Saturno está cruzada por cinturones o bandas oscuras de nubes, con brillantes zonas entre medias, si bien la atmósfera es generalmente más tranquila que la de Júpiter. Gracias a las sondas espaciales enviadas para su estudio se pudieron localizar, en las imágenes captadas, volutas y festones que sugieren turbulencias en la atmósfera. Existe una “corriente de chorro” en la zona ecuatorial, donde el período de rotación es de aproximadamente media hora más corto que en cualquier otro lado. No existen estructuras de larga vida, aunque ocasionalmente aparecen espectaculares apariciones de manchas blancas en la zona ecuatorial.
El rasgo más distintivo de Saturno son sus brillantes anillos que son los más grandes conocidos a cualquier planeta. A través de los telescopios son visibles tres anillos principales. El anillo A exterior de 14 600 km de anchura, extendiéndose hasta a 136 800 Km del centro de Saturno, el anillo B central, el más brillante, de 25 ooo Km de anchura, y el anillo C interior o anillo de crespón, mucho más débil, de 17 500 Km de anchura. De los anillos podríamos explicar algunas y variadas peculiaridades que, al no ser este un estudio exhaustivo, los obviaré.
Concepción artística de la sonda Cassini en su maniobra de inserción en órbita alrededor de Saturno.
Acordáos de la misión espacial no tripulada conocida como Cassini-Huygens y cuyo objetivo era estudiar el rel planeta Saturno y sus satélites naturtales, comúnmente llamados lunas. El conjunto estaba formado por la nave Cassini y la sonda Huygens. El lanzamiento tuvo lugar el 15 de octubre de 1997 con un cohete y entró en órbita alrededor de Saturno el 1 de julio de 2004. El 25 de diciembre de 2004 la sonda se separó de la nave y alcanzó la mayor luna de Saturno, Titán, el 14 de enero de 2.005, momento en el que descendió a su superficie para recoger información científica. Se trata de la primera nave que orbitó Saturno y el cuarto artefacto espacial humano que lo visitó.
Animación del Cassini-Huygens
Los principales objetivos de la nave Cassini eran:
- Determinar la estructura tridimensional y el comportamiento dinámico de los anillos de Saturno
- Determinar la composición de la superficie de los satélites y la historia geológica de cada objeto
- Determinar la naturaleza y el origen del material oscuro de la superficie de Jápeto
- Medir la estructura tridimensional y el comportamiento dinámico de la magnetosfera
- Estudiar el comportamiento dinámico de la atmósfera de Saturno
- Estudiar la variabilidad atmosférica de Titán
- Realizar la cartografía detallada de la superficie de Titán
Los astrónomos han estado observando a Titán, la mayor luna de Saturno, por cientos de años. Desde la Tierra parece la luz de una cabeza de alfiler en órbita alrededor del planeta de los anillos (nada extraordinario). Pero cuando el Voyager de la NASA pasó por Titán en 1980, los observadores se dieron cuenta que era algo especial. Titán es enorme: es mayor que los planetas Mercurio y Plutón. Tiene también una densa atmósfera: tres veces más alta que la de la Tierra y una y media veces su masa. El aire de Titán está lleno de compuestos orgánicos afines al smog. Algunas de estas moléculas son los bloques de de la vida. ¿Podría la vida comenzar en un mundo cuya temperatura en la superficie llega a menos 179o Celsius? Nunca se sabe lo que la Naturaleza puede conseguir en condiciones que, pareciéndonos infernales a nosotros, pueden ser idóneas para algunos seres de morfologías extremófilas.
El sistema de Saturno recreado en un fotomontaje de imágenes tomadas por las sondas Voyageren su encuentro con Saturno, en noviembre de 1980. Esta visión del artista muestra Dione en el frente, Saturno elevándose detrás, Mimas, Tetis y desapareciendo en la distancia a la derecha, Encelado y Rea fuera de los anillos de Saturno a la izquierda, y Titán en su órbita a distancia en la parte superior.
El planeta Saturno tiene un gran número de satélites (unos 200 de los que, 61 tienen órbitas estables), el mayor de los cuales, Titán, es el único satélite del Sistema solar con una atmósfera importante que, en el futuro, nos podría dar una sorpresa en lo que a la presencia de vida se refiere. El sistema de satélites de Saturno ofrece varios ejemplos interesantes de dinámica orbital, tales como satélites coorbitales, satélites troyanos y satélites pastores. Algunos satélites también se encuentran en resonancia entre sí.
Los satélites que se conocen desde antes del inicio de la investigación espacial son: Mimas, Encélado, Tetis, Dione, Rea, Titán, Hiperión, Jápeto y Febe. En el año 2004 fueron detectados 12 nuevos satélites, cuyas órbitas sugieren que son fragmentos de objetos mayores capturados por Saturno, y cuya existencia ha sido confirmada por la misión Cassini-Huygens; esta misión también ha descubierto varios satélites nuevos.
Desde la superficie de Titán podríamos tomar ésta instantánea de Saturno. ¿Quién sabe las maravillas que nos esperan cuando, de verdad, podamos dominar los viajes espaciales? Lo cierto es que éste pequeño reportaje del planeta Saturno y el repaso a sus “lunas” más importantes, sobre todo Titán, es una simple muestra de lo poco que sabemos de nuestro propio Sistema solar en el que, tenemos muchas maravillas por descubrir y muchas sorpresas reservadas.
emilio silvera
Jul
8
Nuestra vecindad y lo que puede contarnos
por Emilio Silvera ~ Clasificado en Conociendo el Sistema Solar ~ Comments (0)
Como mencioné otras veces, la evolución de nuestro Sol, con el paso del tiempo, lo llevará de manera irremediable primero a expandirse como Gigante Roja hasta alcanzar los límites de la Tierra y, segundo a contraerse más y más para ganar la densidad de una estrella enana blanca y, sólo podrá evitar su propio colapso por la presión de degeneración de los electrones. La densidad que alcanzará la enana blancaserás de 5×108 Kg/m3.
Desde la secuencia que el gráfico nos enseña, finalmente, el Sol puede quedar como la imagen de arriba, es decir, una Nebulosa planetaria qwue podría ser como esta o diferente -las versiones son muy variadas-, en la que, en el centro, reluce una caliente enana blanca que emite una fuerte radiación ultravioleta que ioniza todo el gas circundante.
En su fase anterior, la de gigante roja, crece varias veces su tamaño original, y en el caso de nuestro Sol su órbita sobrepasará al planeta Mercurio, al planeta Venus y probablemente al planeta Tierra, que para entonces, por lo elevado de las temperaturas reinantes, habrá visto evaporarse el agua de los ríos y océanos hasta dejarlo seco y yermo, sin posibilidad de vida.
Para cuando todo eso ocurra, ¿quién estará aquí?; faltan varios miles de años y, si la Humanidad no se ha destruido a sí misma, espero que para entonces tenga preparado todos los medios necesarios para instalarse en otros mundos, preferiblemente fuera de nuestro Sistema Solar, ya que los planetas vecinos, una vez desaparecido el Sol, no creo que reúnan las condiciones idóneas para acoger la vida, y las lunas de esos planetas tampoco parecer suficientemente acogedoras: Io, el tercer satélite más grande de Júpiter, sólo tiene un diámetro de 3.630 Km y es una caldera volcánica donde la radiante lava fluye de sus muchos volcanes. Toda la superficie de Io tiene un color amarillento debido a los depósitos de azufre u óxido de azufre. Existen extensas llanuras y regiones montañosas en Io, aunque no cráteres de impacto, indicando que su superficie es muy joven geológicamente.
La densidad de Io, 3’57 g/cm3, sugiere que tiene un núcleo de hierro-azufre de unos 1.500 Km de radio y un manto de silicatos. Las actividades volcánicas de Io son el resultado del calor liberado por las fuerzas de marea, que distorsionan el satélite a medida que se acerca o se aleja de Júpiter en su órbita.
Europa, el cuarto satélite más grande de Júpiter y el segundo de los cuatro satélites galileanos en distancia al planeta, conocido también como Júpiter II, tiene un diámetro de 3.138 Km, ligeramente menor que nuestra Luna. La densidad de Europa es de 2’97 g/cm3 indicando que está compuesta fundamentalmente por rocas de silicio, mezcladas con, al menos, un 5% de agua.
La superficie es brillante y helada con un albedo de 0’64, dominada por redes de fracturas oscuras y lineales, algunas de más de 1.000 Km de longitud. Se han identificado en Europa al menos una docena de cráteres de impacto.
Ganímedes, el satélite más grande de Júpiter y el mayor del Sistema Solar, con un diámetro de 5.262 Km, conocido como Júpiter III y es el más brillante de los satélites galileanos. La densidad de este satélite es de 1’94 g/cm3 y posee una superficie helada llena de contrastes con regiones de alto y bajo albedo, cubiertos por complejos sistemas de surcos, indicando la existencia de varias fases de actividad en la corteza en el pasado. Algunos de los cráteres de impacto más grandes sobre la superficie se han convertido en palimpsestos debido al lento flujo del hielo, como en un glaciar.
Titán, el satélite más grande de Saturno y el segundo más grande del Sistema Solar, con un diámetro de 5.150 Km; también conocido como Saturno VI. Fue descubierto en 1.655 por C. Huygens. La composición más probable de Titán es rocas e hielo en partes iguales aproximadamente. Es el único satélite del Sistema Solar que tiene una atmósfera sustancial. La atmósfera está compuesta principalmente por nitrógeno, con un 2/10% de metano, un 0’2% de hidrógeno (porcentajes moleculares) y trazas de etano, propano, etino, cianuro de hidrógeno y monóxido de carbono. Su temperatura es de -180 ºC y pueden existir lloviznas de metano en la superficie y posiblemente nieve de metano. A unos 200 Km de altura abundan espesas nubes anaranjadas de hidrocarburos y existen además capas de neblina atmosférica hasta los 500 Km.
Las sondas Voyager revelaron un casquete polar norte en las nubes de Titán, con un collar ligeramente más oscuro a su alrededor. Además, el hemisferio norte era marcadamente más oscuro que el sur. Ambos son probablemente efectos estacionales.
Otras muchas lunas acompañan a nuestros planetas vecinos: Phobos y Deimos en Marte; Callisto, Amalthea, Leda, etc. en Júpiter; Pan, Atlas, Prometheus, Pandora, etc. en Saturno; Cordelia, Ophelia, Bianca, Ariel, etc. en Urano; Galatea, Larissa, Tritón, Nereid, etc. en Neptuno; Charon en Plutón… hasta formar un conjunto aproximado de más de 60 lunas.
Mercurio y Venus
De los planetas vecinos, Mercurio y Venus están descartados para la vida, y Marte con su delgada atmósfera compuesta (en volumen) por alrededor del 95% de dióxido de carbono, 2’7% de nitrógeno, 1’6% de argón, 0’1% de monóxido de carbono y pequeñas trazas variables de vapor de agua, con unas temperaturas superficiales de entre 0 y -125 ºC, siendo la media de -50 ºC.
Es relativamente frecuente la presencia de vapor de agua en nubes blancas o de dióxido de carbono en dichas nubes cerca de latitudes polares. Existen dos casquetes de hielo de agua permanentes en los polos, que nunca se funden y que en invierno aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado, hasta alcanzar los 60º de longitud.
Ocurren esporádicamente tormentas de polvo, pudiendo extenderse hasta cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares. La superficie de Marte es de basalto volcánico con un alto contenido en hierro, que le da al planeta el color característico por el que se le denomina “el planeta rojo”. Existen muchas áreas de dunas de arena rodeando los casquetes polares que constituyen los mayores campos de dunas del Sistema Solar.
Olimpus Mont en Marte
El volcán que da lugar al Monte Olimpo, en Marte, es la mayor cumbre conocida en el Sistema Solar: tiene unos 27 km de altura, tres veces la altura del Everest (8,85 km) Sus dimensiones son tales que una persona que estuviese en la superficie marciana no sería capaz de ver la silueta del volcán, ni siquiera desde una distancia a la cual la curvatura del planeta empezara a ocultarla. El efecto por tanto sería el de estar contemplando una “pared”, o bien confundir la misma con la línea del horizonte. La única forma de ver la montaña adecuadamente es desde el espacio. Igualmente, si alguien se encontrara en la cima del volcán y mirase hacia abajo no podría ver el final, ya que la pendiente llegaría hasta el horizonte…
La actividad volcánica fue intensa en el pasado. Tharsis Montes es la mayor región volcánica, estando Olympus Monts situado en el noroeste, y la vasta estructura colapsada Alba Patera, en el norte. Juntas, estas áreas volcánicas constituyen casi el 10% de la superficie del planeta. No hay volcanes activos en Marte, aunque en el pasado produjeron llanuras de lava que se extendieron cientos de kilómetros.
Muchos de los cráteres de impacto más recientes, como cráteres de terraplén, tienen grandes pendientes en los bordes de sus mantas de proyecciones, sugiriendo que la superficie estaba húmeda o llena de barro cuando se produjo el impacto.
Aunque -según parece- no existe en la actualidad agua líquida en la superficie de Marte, hay indicios muy firmes de que en el suelo si como lo han podido compribar varias de las sonsas allí enviadas como, por ejemplo, La Mars Phoenix. Las huellas halladas en el terreno de Marte, nos habla de que allí antiguamente el planeta tuvo ríos y lagos cuando existía una atmósfera más densa, caliente y húmeda. Uno de los canales secos es Ma’adim Vallis, de unos 200 Km de longitud y varios kilómetros de ancho. También se han hallado huelvas mareales de antiguos mares y océanos.
Muchos son los lugares del planeta Marte en los que están presentes las huellas del agua corriente y cantarina que en otros tiempos, alegró el sonido del planeta. Internamente, Marte probablemente tiene una litosfera de cientos de kilómetros de espesor, una astenosfera rocosa y un núcleo metálico de aproximadamente la mitad del diámetro del planeta.
Marte no posee un campo magnético importante; su diámetro ecuatorial es de 6.794 Km, su velocidad de escape de 5,02 Km/s y su densidad media de 3’94 g/cm3. Dista del Sol 1’524 UA.
Tanto las lunas antes mencionadas como el planeta Marte son objetos de interesantes estudios que nos facilitarán importantes conocimientos de los objetos que pueblan el espacio exterior y de cómo serán muchos de los planetas y lunas que nos encontraremos más allá de nuestro Sistema Solar.
Pero todo de queda ahí, en una interesante experiencia que tenemos que confirmar
Sin embargo, como lugares para vivir e instalarse no parecen, por sus condiciones físicas-ambientales, los más idóneos. Si acaso, en algunos de estos objetos celestes se podrán instalar bases intermedias para el despegue hacia otros mundos más lejanos, para aprovechar sus recursos de materiales minerales, hidrocarburos, etc. que poseen en abundancia pero, desgraciadamente, no son lugares aptos para instalar a la Humanidad que necesitaría crear, artificialmente, costosas instalaciones que simularan las condiciones terrestres, y tal empresa ni económica, ni tecnológicamente es tarea fácil.
Así las cosas, el único camino posible para el futuro de la Humanidad será avanzar en la exploración del espacio exterior, construir naves espaciales mejor dotadas en todos los sentidos, sobre todo: aislante de radiaciones nocivas y peligrosas para la salud de los tripulantes, dispositivo antiflotabilidad que imite la gravedad terrestre, espacios hidropónicos que produzcan cosechas continuas de verduras y tubérculos, plantas de reciclaje que depuren de manera continuada el agua de toda la nave, motones lumínicos de fotones, antimateria, etc. que de alguna manera imite la velocidad relativista, laboratorios con instalaciones tecnológicas de última generación con potentes y sofisticados ordenadores que avancen y mejoren continuamente sobre el conocimiento científico de la física, la química y la biología, y, en fin y sobre todo, una conciencia colectiva de todos los gobiernos del mundo para comprender que su principal cometido es mirar y tratar de conseguir el mayor bienestar y la seguridad de todos los ciudadanos y, de entre otras cuestiones, una importante es la de destinar una parte importante de los recursos para investigar, explorar y preparar el futuro de las generaciones futuras.
No podemos descansar.
emilio silvera