May
4
Entrelazamiento cuántico
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (2)
En 1935 un molesto Albert Einstein, junto con sus colegas Podolsky y Rosen, presentaron la llamada “paradoja EPR”, por sus iniciales. Esta quería servir de ejemplo para decir que la mecánica cuántica era una “teoría” incompleta y fallida. Que necesitaba de una profunda revisión. ¿Y por qué? Porque, según el propio Einstein, este conjunto de hipótesis violaba el universo tal y como lo conocemos. Por lo tanto, tenía que estar mal en algún punto. Sin embargo, lo que no sabía Einstein es que la paradoja presentada es en realidad una manifestación real de lo que ocurre en la naturaleza. Efectivamente, en los tiempos que corren hemos podido comprobar un fenómeno inquietante y extraordinario que permite que dos partículas separadas entre sí por una distancia monstruosa sean capaces de “comunicarse” sin que exista nada, ningún canal de transmisión, entre las dos. A este extraño fenómeno, que rompe por completo nuestra manera de entender el mundo, lo llamamos entrelazamiento cuántico.
Científicos del Instituto de Óptica Cuántica e Información Cuántica (IQOQI) de la Academia Austríaca de Ciencias, de la Universidad de Viena y de la Universidad Autónoma de Barcelona (UAB) han conseguido por primera vez entrelazar tres partículas de luz o fotones utilizando una propiedad cuántica relacionada con el retorcimiento (twist) de la estructura de sus frentes de onda.
De la misma manera que el famoso gato de Schrödinger está simultáneamente vivo y muerto, todas las demostraciones experimentales realizadas hasta ahora de entrelazamiento de varias partículas han sido llevadas a cabo con objetos cuánticos en dos dimensiones, dos niveles discretos posibles. Los fotones retorcidos utilizados en el experimento de Viena no tienen ese límite bidimensional y pueden existir en tres o más estados cuánticos vez.
El estado de entrelazamiento entre tres fotones creado por el grupo de Viena bate el récord previo de dimensionalidad, y da luz a una nueva forma de entrelazamiento asimétrico que nunca ha sido observado hasta ahora. Los resultados aparecen esta semana publicados en Nature Photonics.
El entrelazamiento es una propiedad antiintuitiva de la física cuántica que siempre ha desconcertado a los científicos y los filósofos. Los cuantos de luz entrelazados parecen ejercer una influencia entre ellos, no importa la distancia a la que se encuentren. De manera metafórica puede considerarse un patinador de hielo con la asombrosa habilidad de girar sobre sí mismo tanto en el sentido de las agujas del reloj como en el sentido contrario, al mismo tiempo.
Un par de patinadores entrelazados alejándose entre ellos mientras hacen este sorprendente giro tendrán las direcciones de giro perfectamente correlacionadas: si en un instante el primero gira en un sentido, también lo hace el otro, aunque estén tan lejos que terminen en pistas en continentes diferentes.
“Los fotones entrelazados de nuestro experimento se pueden ilustrar no con dos, sino con tres patinadores, danzando una coreografía cuántica pefectamente sincronizada”, explica Mehul Malik, el primer autor del artículo. “Su danza es un poco más compleja, con dos de los patinadores mostrando, además, otro movimiento correlacionado, además del giro mencionado. De hecho, somos los primeros que hemos conseguido este tipo de entrelazamiento cuántico asimétrico en el laboratorio”, continúa Malik.
Los investigadores han creado el estado de entrelazamiento entre tres fotones utilizando otro artificio cuántico: han combinado dos pares de fotones con entrelazamiento de alta dimensión de tal manera que era imposible saber de dónde procedía cada uno de los fotones. Aparte de servir como campo de pruebas para estudiar muchos conceptos fundamentales de la mecància cuántica, los estados de entrelazamiento de varios fotones vez, como este, tienen aplicaciones que van desde la computación cuántica hasta la encriptación cuántica.
En esta línea, los autores de la investigación proponen un nuevo tipo de protocolo de criptografía cuántica, basado en este estado de entrelazamiento asimétrico, que permite que diferentes capas de información se compartan de forma asimétrica entre varios emisores y destinatarios con total seguridad.
Los científicos consideran que, aunque todavía habrá que solventar muchos obstáculos técnicos antes de que este protocolo se pueda utilizar en la práctica, el rápido progreso de la tecnología cuántica hace que sea sólo cuestión de tiempo que esta tecnología encuentre su lugar en las redes cuánticas del futuro. “El experimento abre las puertas a un futuro Internet cuántico, con más de dos interlocutores, que permitiría una comunicación de más de dos bits por fotón”, añade Zeilinger.
En la investigación ha participado Mehul Malik, Manuel Erhard, Mario Krenn, Robert Fickler, Anton Zeilinger, del Instituto de Óptica Cuántica e Información Cuántica de la Academia Austríaca de Ciencia (IQOQI) y el investigador del Grupo de información y de Fenómenos Cuánticos del Departamento de Física de la UAB Marcus Huber, físico teórico que ha inventado las técnicas necesarias para analizar el experiemento. La investigación ha sido financiada por la Comisión Europea, el Consejo Europeo de Investigación (ERC) y la Austrian Science Fund (FWF). (Fuente: UAB)
Abr
21
La Vida de las partículas
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
La Mente: Ese misterio
La mente humana es tan compleja que no todos ante la misma cosa vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De entre diez personas, sólo coinciden tres, los otros siete divergen en la apreciación de lo que el dibujo o la figura les sugiere. Un paisaje puede ser descrito de muy distintas maneras según quién lo pueda contar.
Solo el 1% de las formas de vida que han vivido en la Tierra están ahora presentes, el 99%, por una u otra razón se han extinguido. Sin embargo, ese pequeño tanto por ciento de la vida actual, supone unos cinco millones de especies según algunas estimaciones. La Tierra acoge a todas esas especies u palpita de vida que prolifera por doquier. Hay seres vivos por todas partes y por todos los rincones del inmenso mosaico de ambientes que constituye nuestro planeta encontramos formas de vida, cuyos diseños parecen hechos a propósito para adaptarse a su hábitat, desde las profundidades abisales de los océanos hasta las más altas cumbres, desde las espesas selvas tropicales a las planicies de hielo de los casquetes polares. Se ha estimado la edad de 3.800 millones de años desde que aparecieron los primeros “seres vivos” sobre el planeta (dato de los primeros microfósiles). Desde entonces no han dejado de aparecer más y más especies, de las que la mayoría se han ido extinguiendo. Desde el siglo XVIII en que Carlos Linneo propuso su Systema Naturae no han cesado los intentos por conocer la Biodiversidad…, de la que por cierto nuestra especie, bautizada como Homo sapiens por el propio Linneo, es una recién llegada de apenas 200.000 años.
Ahora, hablaremos de la vida media de las partículas elementales (algunas no tanto). Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.
También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.
Si miramos una tabla de las partículas más conocidas y familiares (fotón, electrón muón tau, la serie de neutrinos, los mesones con sus piones, kaones, etc., y, los Hadrones bariones como el protón, neutrón, lambda, sigma, psi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales maneras de desintegración, veríamos como difieren las unas de las otras.
Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”.
¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.
Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.
Una colisión entre un protón y un antiprotón registrada mediante una cámara de chispas del experimento UA5 del CERN.
En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su carta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.
Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.
Se habla de ondas cuánticas y también, de ondas gravitacionales. Las primeras han sido localizadas y las segundas están siendo perseguidas.
Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.
Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.
Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”
Si la vida de una partícula es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.
Bariones Delta. Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.
Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).
Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.
Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:
∆⁺⁺→р + π⁺; ∆⁰→р + πˉ; o п+π⁰
En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.
El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (aunque nos parezca lo contrario), son aún bastante limitados, nos queda mucho por descubrir antes de que podamos decir que dominamos la materia y sabemos de todos sus componentes. Antes de que eso llegue, tendremos que conocer, en profundidad, el verdadero origen de la Luz que esconde muchos secretos que tendremos que desvelar.
Esperemos que con los futuros experimentos del LHC y de los grandes Aceleradores de partículas del futuro, se nos aclaren algo las cosas y podamos avanzar en el perfeccionamiento del Modelo Estándar de la Física de Partículas que, como todos sabemos es un Modelo incompleto que no contiene a todas las fuerzas de la Naturaleza y, cerca de una veintena de sus parámetros son aleatorios y no han sido explicados. Uno de ellos, el Bosón de Higgs, dicen que ha sido encontrado. Sin embargo, a mí particularmente me quedan muchas dudas al respecto.
emilio silvera
Abr
12
El Vacío superconductor: La máquina de Higgs Kibble
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (1)
De vez en cuándo debemos mirar atrás.
Resulta que el vacío está lleno a rebosar de partículas virtuales y…
Por su parte, el científico británico Peter Higgs, de más años, que dio su nombre a la llamada “partícula divina” en 1964, afirmó que cree que su Bosón seríaá hallado gracias al Gran Colisionador. “Creo que es bastante probable” dijo pocas horas después de que entrara en funcionamiento el gigantesco acelerador. Y, según parece, se está saliendo con la suya.
De todas las maneras, estaría bien saber, a ciencia cierta, cómo es el campo de Higgs del que toman la masa todas las partículas, y conocer, mediante que sistema se transfieren la masa, o, si cuando las partículas entran en el campo de Higgs e interracionan con él, es el efecto frenado el que les otorga la masa.
Claro que, esa, como otras conjeturas sobre los Océanos de Higgs y su dichosa Partícula “repartidora de masa”, no son más que conjeturas que, más adelante, debemos ir comprobando para poder escribirlas con letras de oro en el Libro de la Física, o, por el contrario, desecharlas como se ha hecho con tántas otras ideas y teorías frustradas que nunca llegaron a ninguna parte.
¡Los fotones de Yang-Mills adquieren su masa y el proncipio gauge se sigue cimpliendo! Al principio esta visión no mereció la atención que merecía. Por una parte, la gente penso que el modelo era feo. El principio gauge estaba ahí, pero ya no era el tema central. El “Campo de Higgs” había sido puesto ahí “a propósito” y la “partícula de Higgs”, en sí misma, no era una “partícula gauge”. Si se admitía esto, ¿por qué no introducir más partículas y campos arbitrarios? Estas ideas se consideraron como simples modelos con los que jugart, sin mucho significado fundamental al que ahora se quiere llegar con el LHC pretendiendo hacer bueno todo aquello y, al menos los físicos, insisten en que, el campo y la partícula están ahí…¡ya veremos en qué queda todo esto! Son muchos los cabos sueltos y las cosas sin explicar.
En segundo lugar estaba lo que se llamó “teorema de Goldstone”. Ya se habían priducido antes modelos de partículas con “rotura espontánea de simetría”, pero para la mayoría de esos modelos, Jeoffrey Goldstone habia probado que siempre contenían partículas sin masa y sin espín. Muchos investigadores, por lo tanto, pensaron que la teoría de Higgs también debía contener esa partícula de Goldstone, sin masa y que esto era un inconveniente porque entre las partículas conocidas no había ninguna partícula de Goldstone. Incluso el propio Goldstone había advertido que el Modelo de Higgs no satisfaccía las condiciones para su demostración, así que no tenía que ser válido para este caso, pero todo el mundo estaba tan impresionado con las matemáticas del teorema que el Modelo de Huggs-Kibble no tuvo éxito durante mucho tiempo.
El bosón de Higgs pretende ser una parte integral de nuestra comprensión de la Naturaleza. Se trata de una partícula que es una excitación de lo que se llama el campo de Higgs. El campo de Higgs impregna todo el espacio y cuando algunas de las partículas fundamentales que viajan a través de este campo adquieren masa (al interaccionar con el Campo dónde, probablemente, ve frenada su marcha y su desplazamiento es más lento debido al medio por el que discurre su viaje). La cantidad de masa que adquieren depende de la fuerza en que interactúan con el campo de Higgs. Algunas particulas, como el electrón adquieren una pequeña masa, mientras que otras adquieren una masa mucho mayor.
Y así, el teorema de Goldstone se utilizó como un “teorema de imposibilidad”: si el espacio vacío no es simétrico, entonces no se puede evitar la presencia de partículas sin masa y sin espín. Ahora sabemos que, en nuestro caso, la letra pequeña invalida el teorema; las partículas de Goldstone se hacen incisibles debido a la invariancia gauge y no son más que las “partículas fantasmas” que encontró Feynman en sus cáculos. Además, debemos recordar que el Mecanismo Higgs no es una auténtica rotura de simetría.
Ingenios que quieren entrar en los campos de Higgs
Un aspecto peculiar de esto es que este campo de Higgs que impregna en todo el espacio es parte de lo que llamamos espacio vacío o el vacío. Es sólo su impacto sobre las partículas que viajan a través de él y el bosón de Higgs que podemos observar en el laboratorio. El bosón de Higgs vive por un lapso muy corto de tiempo, así que no lo observan directamente, sino que más bien se observa que las partículas se descompone en y tienen que inferir su existencia a partir de eso. En la teoría actual que tenemos para comprender la naturaleza podemos hacer afirmaciones precisas acerca de qué fracción del tiempo que se desintegra en dos fotones en comparación con dos quarks abajo.
Claro que, algunos, me piden más profundidad en las explicaciones y, no se conforman con pasar por encima de las cuestiones, hay que entrar más en materia y dejar sentados algunos de los parámetros maemáticos que en todo esto están presente, y, para ellos…
Los físicos han buscado al bosón de Higgs por cerca de 50 años porque su descubrimiento completaría el Modelo Estándar de la física de partículas. El bosón de Higgs y su campo asociado explican cómo la simetría electrodébil se rompió justo después del Big Bang, lo que le dio a ciertas partículas elementales la propiedad de la masa. Sin embargo del Modelo Estándar no predice la masa de Higgs, y varios programas experimentales en el LEP del CERN, en el Tevatron de Fermilab y ahora el LHC del CERN habían intentado medir la masa de la partícula.
En el seminario llevado a cabo hoy en CERN como preludio a la mayor conferencia de física de partículas de este año, el ICHEP2012 en Melbourne, los experimentos ATLAS y CMS presentaron sus resultados preliminares en la búsqueda del Bosón de Higgs. Ambos experimentos observaron una nueva partícula en la región de masa entre 125-126 GeV.
“Observamos en nuestros datos claras señales de una nueva partícula, al nivel de 5 sigma, en la región de masa alrededor de 126 GeV. El impresionante rendimiento del LHC y ATLAS y el gran esfuerzo de mucha gente nos trajo a esta excitante etapa”, dijo la presentadora del experimento ATLAS Fabiola Gianotti, “pero se necesita más tiempo para preparar estos resultados para su publicación”
“Los resultados son preliminares pero la señal 5 sigma alrededor de 125 Gev que estamos viendo es dramática. Ésta es de hecho una nueva partícula. Sabemos que tiene que ser un bosón y es el bosón más pesado que hemos encontrado hasta ahora,” dijo el presentador del experimento CMS Joe Incandela. “Las implicaciones son muy significantes y es precisamente por esta razón que debemos ser extremadamente diligentes en todos nuestros estudios.”
¿Donde aparece el Higgs en todo esto?
Pues pasemos a hablar de teoría cuántica de campos, en ese tendremos unas densidades lagrangianas que dependerán del campo de cada partícula, dependiendo de su spin será un lagrangiano o otro, por ejemplo para N (a = 1,….N) campos escalares(omito fórmula).
.Al buscar el mínimo del potencial (en realidad un extremal de la acción, pero para lo que nos interesa a nosotros serán mínimos) resulta que hay varios posibles (con el mismo valor) pero para que la energía se minimice hace falta fijar un vacío (debido a que el Hamiltoniano depende del potencial y de unos términos positivos que van con las derivadas del campo). Ahora bien, inicialmente nuestra acción podría tener una simetría gauge global, es decir que al efectuar una transformación de un grupo sobre los campos la acción no cambia, al fijar el vacío la simetría se reduce a un subgrupo y algunos campos obtienen masa (originalmente ninguno tiene masa), pues bien el teorema de Goldstone lo que dice es que campos se quedan sin masa, estos son los bosones de Goldstone.
¿Y el higgs?
Ya llegamos, en el apartado anterior hemos considerado transformaciones globales, pero por ejemplo en electromagnetismo tenemos transformaciones locales, así que hay que mirar lo que pasa en las transformaciones locales. Lo primero que pasa es que la derivada parcial no preserva los vectores (lo que hemos llamado antes psi igual que pasa en relatividad general, al hacer una transformación que depende de las coordenadas la derivada ya no es covariante, así que hay que buscar una covariante para seguir con lo que sabemos (en este caso la transformación se debe a un grupo gauge arbitrario, que no tiene porque ser el de difeomorfismos como en relatividad general. En este contexto aparecen los campos gauge que jugaran un papel similar al de la conexión en relatividad general y en el caso del electromagnetismo el campo gauge es el potencial electromagnético). Ahora al ser transformaciones locales, aparecen campos gauge que por similitud con el electromagnetismo escribiremos el lagrangiano de Yang-Mills igual que en el electromagnetismo F depende de los campos gauge, pero debido a que no es abeliano hay un termino extra que tiene que ver con las constantes de estructura del álgebra de Lie, . Ahora ya vien lo bueno, aparte del lagrangiano de la partícula también tenemos el de Yang-Mills, resulta que debido a la simetría local:
- Los bosones de Goldstone desaparecen, es decir no son partículas físicas.
- campos gauge obtienen masa
Pues eso es el efecto Higgs. Ahora para llegar ya al famoso bosón, en el modelo estandar no se pueden construir terminos de masa para las partículas debido a que no se pueden acoplar adecuadamente para ese propósito los campos de Yang-Mills y las partículas, debido a las simetrías que deben satisfacer (en general el famoso aunque cada campo tendrá una simetría concreta) y ahí es donde entra el bosón de Higgs, ya que el modelo más sencillo para añadir masa es justamente ese, añadir un doblete de campos escalares complejos y al romper la simetría …….. Higgs !!!!
Dos prestigiosos investigadores habñían sugerido de forma independiente que se podían construir modelos realistas dde partículas en los cuales, el sistema de Yang-Mills fuera responsable de la interacción débil y el mecanismo de Higgs-Kibble la causa de su corto alcance. Uno de ellos era el paquistaní Abdus Salam que estaba buscando modelos estéticos de partículas y pensó que la belleza de la idea de Yan-Mills era razón suficiente para intentar construir con ella un modelo de interacción débil. La partícula mediadora de la interacción débil tenía que ser un fotón de Yang-Mills y el mecanismo de Higgs-Kibble la única explicación aceptable para que esta partícula tuviera una cierta cantidad de masa en reposo.
Una simetría puede ser perfecta en el plano de las ecuaciones y resultar rota en el plano de las soluciones. Como decía Weinberg: «Aunque una teoría postule un alto grado de simetría, no es necesario que los estados de las partículas muestren la simetría. Nada me parece tan halagüeño en física como la idea de que una teoría puede tener un alto grado de simetría que se nos oculta en la vida ordinaria».
La teoría que unifica las interacciones electromagnéticas y débil se debe a Glashow, Salam y Weinberg que obtuvieron por ella el Premio Nobel de física de 1979. La dificultad esencial de esta teoría es que los bosones del estado inicial simétrico debían ser de masa nula (masa nula de los bosones de interacción origina una fuerza a gran distancia), mientras que se necesitan bosones intermedios (partículas que originan la fuerza) muy masivos para justificar la interacción débil (corto alcance) . El mecanismo de Higgs, permite resolver esa dificultad, mediante la ruptura espontánea de simetría hace masivos los bosones W y Z (interacción débil) y mantiene nula la masa del fotón (interacción electromagnética).
Los famosos diagramas de Feynaman, nos explican algunos mecanismos de los que se pueden producir (de hecho se producen) en ese misterioso campo de las partículas elementales cuando están presentes en cuertos lugares y se juntas con otros individuos de la especie.
Salam que estaba muy cerca de poder alcanzar la gloria…no llegaba a poder explicar y aplicar las reglas de Feynman y tuvo quer admitir que la teoría parecía estar llena de partículas fantasmas que estaban a punto de estropearlo todo. En estas, llegó el otro investigador, Steven Weinberg, que supo dar un paso más al formular con mucho más detalle un modelo sencillo en el cual indicaba con precisión los campos que existían y cómo podían interactuar. Pero se limitó a los leptones. Weinberg comprendió que, junto al fotón ordinario tenía que haber tres fotones de Yang-Mills pesados::
– Uno cargado positivamente.
– Otro cargado negativamente.
– Otro Neutro.
El panorama completo
En lo que se refiere a los fotones cargados, todo el mundo estaba de acuerdo en que estos se necesitarían para describir la interacción débil: serían los famoso bosones vectoriales intermediarios, W+ y W–. De acuierdo con Weinberg, sus masas tenían que ser mayores de 60.000 MeV. Pero solos, estos bosones, vectoriales cargados eran suficientes para explicar todos los procesos de interacción débil que conocían en aquella época. Que aparte de ellos y del fotón ordinario, y, también se necesita otro componente neutro (Weinberg le llamó Zº) no era evidente en absoluto. Se encontró que la masa del Zº tenía que ser un poco mayor que la de los bosones cargados.
De todo aquello surgió una tería para las interacciones débiles en las cuales jugaban un papel dominante distintos diagramas de Feynman, de los que se podían plasmar un número infinito para mostrar, de manera gráfica, los sucesos que acontecían en aquellos fenómenos de la radiación producida en la interacción débil. Pasado el tiempo y mirado con una mejor perspectiva, es fácil comprender todo aquello pero, en aquellos momentos en que se estaba gestando, las cosas no resultaban tan fáciles.
Después de todo aquello, se prestó más atención al mecanismo Higgs-Kibble y, algunos, como Veltman fueron muy escépticos con aquellas ideas, y, desde luego, no fue fácil converlo de que pudiéramos llamar vacío a algo lleno de partículas invisibles. ¿No delatarían dijo, su presencia por sus campos gravitatorios? La teoría puede ser formulada de tal manera que esos campos gravitatorios se compensen exactamente con otras partículas invibles o por una contribución misteriosa del propio espacio vacío.
Cómo consigue la Naturaleza enmascarar tan exacta y eficientemente esos factores de la gravedad que no podemos notar nada, es un misterio que continua siendo muy debatido hoy en día. Claro que, todo esto dejará de ser un misterio cuando un día (lejos aún en el futuro), podamos comprender la Gravedad Cuántica.
Miehntras todo esto sucede… ¡Dejémos volar nuestra imaginación! con ideas y teorías como la de los ¡Campos de Higgs! ¡Bosones que, generosos ellos, regalan masas a otras partículas! ¡Materia que no podemos ver pero que, dem manera acérrima, nos empeñamos en que sí está! ¡Fluctiaciones de vacío que rasgan el espacio-tiempo, y, que de vez en cuando, hace surgir nuevos universos! ¡Universos paralelos que nacieron sin vida! ¡Ciclos eternos en el que las cosas se repetin una y otra vez hasta el infinito! ¡Nuevos Big Bangs después del nuestro! ¡Agujeros negros en nuestro universo y, blancos al otro lado, en otro universo. Aquí recoge materia y, allú, la expulsa por el contrario, un Agujero Blanco! ¡Agujeros de Gusano que nos podrían llevar a otras galaxias! ¡El sueño de vencer (mejor burlar) a la velocidad de la luz, ese muro que nos tiene confinados en nuestro pequeño mundo, el Sistema Solar!
Después de leer todo esto, ¿por qué no dedicais aunque sólo sea una hora para pensar sobre ello?
emilio silvera
Abr
12
¡Fluctuaciones de vacío! ¿Que son?
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (2)
Un fuerte campo gravitatorio puede inducir un efecto desbocado en las fluctuaciones cuánticas que se producen en el espacio, aparentemente vacío, …
En física cuántica, la fluctuación cuántica es un cambio temporal en la cantidad de energía en un punto en el espacio como resultado del Principio de Incertidumbre que imaginó Werner Heisenberg. De acuerdo a una formulación de este principio energía y tiempo se relacionan de la siguiente forma:
Esto significa que la conservación de la energía puede parecer violada, pero sólo por breves lapsos. Esto permite la creación de pares partícula-antipartícula de partículas virtuales. El efecto de esas partículas es medible, por ejemplo, en la carga efectiva del electrón, diferente de su carga “desnuda”. En una formulación actual, la energía siempre se conserva, pero los estados propios del Hamiltoniano no son los mismos que los del operador del número de partículas, esto es, si está bien definida la energía del sistema no está bien definido el número de partículas del mismo, y viceversa, ya que estos dos operadores no conmutan.
Las fluctuaciones del vacío entre una esfera y una superficie plana
En un estudio realizado por un equipo de físicos con avanzados aparatos, han hallado un resultado del que nos dicen:
La materia se construye sobre fundamentos frágiles. Los físicos acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vació cuántico. Los investigadores simularon la frenética actividad que sucede en el interios de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común.
Cada protón (o neutrón) se compone de tres quarks – véase ilustración – pero las masas individuales de estos quarks apenas comprenden el 1% del total de la masa del protón ¿Entonces de dónde sale el resto? La teoría sostiene que esta masa es creada por la fuerza que mantiene pegados a los quarks, y que se conoce como fuerza nuclear fuerte. En términos cuánticos, la fuerza fuerte es contenida por un campo de partículas virtuales llamadas gluones, las cuales irrumpen aleatoriamente en la existencia para desaparecer de nuevo. La energía de estas fluctuaciones del vacío debe sumarse a la masa total del neutrón y del protón.
En nuestras mentes se acumulan signos y fórmulas que quieren ser los exponentes de la verdadera razón y origen de la materia pero… ¡Estaremos acertando!
Tiene y encierra tantos misterios la materia que estamos aún y años-luz de y conocer sobre su verdadera naturaleza. Es algo que vemos en sus distintas formas materiales que configuran y conforman todo lo material desde las partículas elementales hasta las montañas y los océanos. Unas veces está en estado “inerte” y otras, se eleva hasta la vida que incluso, en ocasiones, alcanza la consciencia de SER. Sin embargo, no acabamos de dilucidar de dónde viene su verdadero origen, su esencia, lo que era antes de “ser” materia. ¿Existe acaso una especie de sustancia cósmica anterior a la materia? Y, si realmente existe esa sustancia… ¿Dónde está?
Claro que hemos llegado a saber que las llamadas fluctuaciones del vacío son oscilaciones aleatorias, impredecibles e ineliminables de un campo de fuerza (electromagnético o gravitatorio) que son debidas a un “tira y afloja” en el que pequeñas regiones del espacio toman prestada, momentáneamente, energía de regiones adyacentes y luego las devuelven. Pero…
– ¿Qué regiones adyacentes?
Acaso universos paralelos, acaso deformaciones del espacio-tiempo a escalas microscópicas, micros agujeros negros que pasan a ser agujeros blancos salidos de estas regiones o campos de fuerza que no podemos ver pero sí sentir, y, en última instancia, ¿por qué se forman esas partículas virtuales que de inmediato se aniquilan y desaparecen antes de que puedan ser capturadas? ¿Qué sentido tiene todo eso?
Las consecuencias de la existencia del cuanto mínimo de acción fueron revolucionarios para la comprensión del vacío. Mientras la continuidad de la acción clásica suponía un vacío plano, estable y “realmente” vacío, la discontinuidad que supone el cuanto nos dibuja un vacío inestable, en continuo cambio y muy lejos de poder ser considerado plano en las distancias atómicas y menores. El vacío cuántico es de todo menos vacío, en él la energía nunca puede quedar estabilizada en valor cero, está fluctuando sobre ese valor, continuamente se están creando y aniquilando todo tipo de partículas, llamadas por eso virtuales, en las que el producto de su energía por el tiempo de su existencia efímera es menor que el cuanto de acción. Se llaman fluctuaciones cuánticas del vacío y son las responsables de que exista un que lo inunda todo llamado campo de punto cero.
Pero volvamos de nuevo a las fluctuaciones de vacío, que al igual que las ondas “reales” de energía positiva, están sujetas a las leyes de la dualidad onda/partícula; es decir, tienen tanto aspectos de onda como aspectos de partícula.
Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del , y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.
De las llamadas fluctuaciones de vacío pueden surgir, partículas virtuales y quién sabe que cosas más… Hasta un nuevo Universo.
Son muchas las preguntas que no tienen respuestas
Parece que las fluctiuaciones ocurren en cualquier lugar, pero que, son tan minúsculas que ningún observador o experimentador las ha detectado de una manera franca hasta la fecha y, se sabe que están ahí por experimentos que lo han confirmado. Estas fluctuaciones son más poderosas cuanto menos escala se considera en el espacio y, por debajo de la longitud de Planck-Wheeler las fluctuaciones de vacío son tan enormes que el espacio tal como lo conocemos “pareciera estar hirviendo” para convertirse en una especie de espuma cuántica que parece que en realidad, cubre todo el espacio “vacío cuántico” que sabemos que está ahí y es el campo del que surgen esas partículas virtuales que antes menccionaba.
¿Espuma cuántica? Si profundizamos mucho en la materia… Podríamos ver otro universo distinto al nuestro. Las cosas miles de millones de veces más pequeñas que en nuestro mundo cotidiano, no parecen las mismas cosas.
Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, es la escala de longitud por debajo de la cual el tal como lo conocemos deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro. ¡Qué locura!
En el complejo general, por ahí, en alguna parte, permanece oculta esa teoría cuántica de la gravedad que incansables (pero sin ningún éxito hasta el momento) buscamos. Cuando sepamos unir las dos teorías de lo pequeño y lo grande, lo tendremos todo.
Como tantas veces hemos comentado, los trabajos que se han realizado sobre poder construir una teoría cuántica de la gravedad nos llevan a un sorprendente de implicaciones. Por un lado, sólo se ha podido conceptuar a la gravedad cuántica, siempre y cuando, el universo tenga más de cuatro dimensiones. Además, se llega a considerar que en la era de Planck, tanto el universo como la gravedad pudieron ser una sola cosa compacta estructurada por objetos cuánticos infinitamente diminutos, como los que suponemos que conforman las supercuerdas. A esta escala, el mismísimo espaciotiempo estaría sometido a imprescindibles fluctuaciones muy semejantes a las que causan las partículas al nacer y desaparecer de la existencia en el espaciotiempo ordinario. Esta noción ha conducido a los teóricos a describir el universo de la era cuántica como una especie de extremadamente densa y agitada espuma que pudo haber contenido las vibrantes cuerdecillas que propugnan los cosmólogos cuerdistas.
Los físicos especulan que el cosmos ha crecido a desde una «nada» primigenia que al nacer comenzó el principio del tiempo y que, en ese parto, contenía toda la materia y toda la energía.
En física como en todas las demás disciplinas científicas, los conocimientos avanzan y las teorías que sostuvieron los cimientos de nuestros conocimientos se van haciendo viejas y van teniendo que ser reforzadas con las nuevas y más poderosas “vigas” de las nuevas ideas y los nuevos hallazgos científicos que hacen posible ir perfeccionando lo que ya teníamos.
Recientemente se han alzado algunas voces contra el Principio de Incertidumbre de Heisenberg. He podido leer en un artíoculo de la prestigiosa Revista Nature, un artículo del premio Nobel de Física Gerald ´t Hoofft, en el que propone que la naturaleza probabilistica de la mecánica cuántica, desaparecería a la escala de Planck, en la que el comportamiento de la materia sería determinista; a longitudes mayores, energías más pequeñas.
El mundo de lo muy pequeño (el micro espacio), a nivel atómico y subatómico, es el dominio de la física cuántica, así nunca podríamos saber, de acuerdo m con el principio de incertidumbre, y, en un momento determinado, la posición y el estado de una partícula. Este estado podría ser una función de la escala espacio-temporal. A esta escala tamaños todo sucede demasiado deprisa para nosotros.
El “universo cuántico” nada es lo que parece a primera vista, allí entramos en otro mundo que en nada, se parece al nuestro
Cuando hablamos de la mecánica cuántica, tenemos mirar un poco hacia atrás en el tiempo y podremos darnos del gran impacto que tuvo en el devenir del mundo desde que, en nuestras vidas, apareció el átomo y, más tarde, sus contenidos. Los nombres de Planck, Einstein, Bohr, Heisenberg, Schrödinger, Pauli, Bardeen, Roentgen, Dirac y muchos otros, se pudieron a la cabeza de la lista de las personas más famosas. Aquel primer premio Nobel de Física otorgado en 1900 a Roentgen por descubrir los rayos X, en el mismo año llegaría el ¡cuanto! De Planck que inspiró a Einstein para su trabajo sobre el Efecto fotoeléctrico que también, le valdría el Nobel, y, a partir de ese momento, se desencadenó una especie de alucinante por saber sobre el átomo, sus contenidos, y, de qué estaba hecha la materia.
La conocida como Paradoja EPR y los conceptos de Tiempo y , presente, pasado y futuro.
“Nadie ha resuelto la paradoja del gato de Schroedinger, ni la paradoja de Einstein-Podolsky-Rosen. El principio de incertidumbre no se ha explicado y se asume como un dogma, lo mismo pasa con el spin. El spin no es un giro pero es un giro. Aquí hay un desafío al pensamiento humano. ¡Aquí hay una aventura del pensamiento!”
Fueron muchas las polémicas desatadas a cuenta de las aparentes incongruencias de la moderna Mecánica Cuántica. La paradoja de Einstein-Podolsky-Rosen, denominada “Paradoja EPR”, trata de un experimento mental propuesto por Albert Einstein, Boris Podolsky y Nathan Rosen en 1935. Es relevante, pues pone de manifiesto un problema aparente de la mecánica cuántica, y en las décadas siguientes se dedicaron múltiples esfuerzos a desarrollarla y resolverla.
A Einstein (y a muchos otros científicos), la idea del entrelazamiento cuántico le resultaba extremadamente perturbadora. Esta particular característica de la mecánica cuántica permite preparar estados de dos o más partículas en los cuales es imposible obtener útil sobre el estado total del sistema haciendo sólo mediciones sobre una de las partículas.
Por otro lado, en un entrelazado, manipulando una de las partículas, se puede modificar el estado total. Es decir, operando sobre una de las partículas se puede modificar el estado de la otra a distancia de manera instantánea. Esto habla de una correlación entre las dos partículas que no tiene paralaje en el mundo de nuestras experiencias cotidianas. Cabe enfatizar pues que cuando se mide el estado de una partícula, enseguida sabemos el estado de la otra, lo cual aparentemente es instantáneo, es decir, sin importar las distancias a las que se encuentren las partículas, una de la otra, ambas saben instantáneamente el estado de la otra.
El experimento planteado por EPR consiste en dos partículas que interactuaron en el pasado y que quedan en un estado entrelazado. Dos observadores reciben cada una de las partículas. Si un observador mide el momento de una de ellas, sabe cuál es el momento de la otra. Si mide la posición, gracias al entrelazamiento cuántico y al principio de incertidumbre, puede la posición de la otra partícula de forma instantánea, lo que contradice el sentido común.
Animación que muestra dos átomos de oxígeno fusionándose para formar una molécula de O2 en su estado cuántico fundamental. Las nubes de color representan los orbitales atómicos. Los orbitales 2s y 2p de cada átomo se combinan para formar los orbitales σ y π de la molécula, que la mantienen unida. Los orbitales 1s, más interiores, no se combinan y permiten distinguir a cada núcleo. Lo que ocurre a escalas tan pequeñas es fascienante.
Si nos pudiéramos convertir en electrones, por ejemplo, sabríamos dónde y cómo estamos en cada momento y podríamos ver asombrados, todo lo que estaba ocurriendo a nuestro alrededor que, entonces sí, veríamos transcurrir a un ritmo más lento del que podemos detectar en los electrones desde nuestro macroestado espacio temporal. El electrón, bajo nuestro punto de vista se mueve alrededor del núcleo atómico a una velocidad de 7 millones de km/h.
A medida que se asciende en la escala de tamaños, hasta el tiempo se va ajustando a esta escala, los objetos, a medida que se hacen mayores se mueven más despacio y, además, tienen más duración que los pequeños objetos infinitesimales del micro mundo cuántico. La vida media de un neutron es de unos 15 minutos, por ejemplo, mientras que la vida media de una estrellas se puede contar en miles de millones de años.
En nuestra macroescala, los acontecimientos y ,los objetos se mueven a velocidades que a nosotros nos parecen normales. Si se mueven con demasiada lentitud nos parece que no se mueven. Así hablamos de escala de tiempo geológico, para referirnos al tiempo y velocidad de la mayor parte de los acontecimientos geológicos que afectan a la Tierra, el tiempo transcurre aquí en millones de años y nosotros ni lo apreciamos; nos parece que todo está inmóvil. Nosotros, los humanos, funcionamos en la escala de años (tiempo biológico).
El Tiempo Cosmológico es aún mucho más dilatado y los objetos cósmicos (mundos, estrellas y galaxias), tienen una mayor duración aunque su movimiento puede ser muy rápido debido a la inmensidad del espacio universal en el que se mueven. La Tierra, por ejemplo, orbita alrededor del Sol a una velocidad media de 30 Km/s., y, el Sol, se desplaza por la Galaxia a una velocidad de 270 km/s. Y, además, se puede incrementar el tiempo y el espacio en su andadura al estar inmersos y ligados en una misma maya elñástica.
Así, el espacio dentro de un átomo, es muy pequeño; dentro de una célula, es algo mayor; dentro de un animal, mayor aún y así sucesivamente… hasta llegar a los enormes espaciosa que separan las estrellas y las galaxias en el Universo.
Distancias astronómicas separan a las estrellas entre sí, a las galaxias dentro del cúmulo, y a los cúmulos en los supercúmulos.
Las distancias que separan a los objetos del Cosmos se tienen que medir con unidades espaciales, tal es su inmensa magnitud que, nuestras mentes, aunque podamos hablar de ellas de manera cotidiana, en realidad, no han llegado a asimilarlas.Y, a todo ésto, los físicos han intentado con denuedo elaborar una teoría completa de la gravedad que incluya la mecánica cuántica. Los cálculos de la mayoría de las teorías propuesta de la «gravedad cuántica» arrojan numerosos infinitos. Los físicos no están seguros si el problema es técnico o conceptual. No obstante, incluso prescindiendo de una teoría completa de gravedad cuántica, se puede deducir que los efectos de la teoría cuántica, habrían cruciales durante los primeros 10-43 segundos del inicio del universo, cuando éste tenía una densidad de 1093 gramos por centímetro cúbico y mayor. (El plomo sólido tiene una densidad de aproximadamente diez gramos por centímetro cúbico.) Este período, que es el que corresponde a la era de Planck, y a su estudio se le llama cosmología cuántica. Como el universo en su totalidad habría estado sujeto a grandes incertidumbres y fluctuaciones durante la era de Planck o era cuántica, con la materia y la energía apareciendo y desapareciendo de un vacío en grandes cantidades, el concepto de un principio del universo podría no tener un significado bien definido. En todo caso, la densidad del universo durante este período es de tal magnitud que escapa a nuestra comprensión. Para propósitos prácticos, la era cuántica podría considerarse el estado inicial, o principio, del universo. En consecuencia, los procesos cuánticos ocurridos durante este período, cualquiera sea su naturaleza, determinaron las iniciales del universo.
Una cosa nos ha podido quedar clara: Los científicos para lograr conocer la estructura del universo a su escala más grande, deben retroceder en el tiempo, centrando sus teorías en el momento en que todo comenzó. Para ello, como todos sabeis, se han formulado distintas teorías unificadoras de las cuatro fuerzas de la naturaleza, con las cuales se han modelado acontecimiento y en el universo primitivo casi a todo lo largo del camino hasta el principio. Pero cómo se supone que debió haber habido un «antes», aparece una barrera que impide ir más allá de una frontera que se halla fijada a los 10-43 [s] después del Big Bang, un instante conocido como «momento de Planck», en homenaje al físico alemán Max Planck.
Esta barrera existe debido a que antes del momento de Planck, durante el período llamado la «era de Planck o cuántica», se supone que las cuatro fuerza fundamentales conocidas de la naturaleza eran indistinguibles o se hallaban unificadas , que era una sola fuerza. Aunque los físicos han diseñado teorías cuánticas que unen tres de las fuerzas, una por una, a través de eras que se remontan al momento de Planck, hasta ahora les ha prácticamente imposible armonizar las leyes de la teoría cuántica con la gravedad de la relatividad de Einstein, en un sólo modelo teórico ampliamente convincente y con posibilidades claras de ser contrastado en experimentos de laboratorio y, mucho menos, con observaciones.
Y después de todo ésto, sólo una caso me queda clara: ¡Lo poco que sabemos! A pesar de la mucha imaginación que ponemos en las cosas que creemos conocer.
emilio silvera
Abr
9
Cosas de la Mecánica Cuántica
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (1)
¡La Física! Esa maravilla que está presente en todo lo que podemos ver y en aquello donde la vista no llega. La infinitud de las partículas elementales que forman todo cuanto existe en la Naturaleza, no siempre se dejan ver ni hacen posible que podamos observar las maravillas que pueden llevar a cabo.
Las sustancias formadas por una sola clase de átomos se llaman elementos químicos, y, si está conformada por distintos átomos, son compuestos. La palabra “átomo” procede del griego ατομος, que significa “indivisible” y el uso de la palabra “elemento” sugiere que se ha llegado a los ladrillos básicos con los que está formada la materia. De hecho, esta es la imagen que se tenía a mediados del siglo XIX cuando se acuñaron estos términos. Sin embargo, hoy sabemos que todo esto es falso, que los átomos se pueden dividir y que, de esta manera, los elementos han dejado de ser verdaderamente elementales. Los físicos continúan con esta nomenclatura aunque sea formalmente incorrecta, ya que, la costumbre, como dicen los juristas, no pocas veces rigen la jerga de las leyes.
A todo esto y hablando de los átomos, por fuerza, nos tenemos que acordar del electrón que da al átomo su forma esférica. Son partículas cargadas eléctricamente que se mueven alegremente alrededor del núcleo. El electrón es muy ligero: su masa es solamente 1/1.8836 de la del núcleo más ligero (el hidrógeno). La carga eléctrica del electrón es de signo opuesto a la del núcleo, de manera que los electrones están fuertemente atraídos hacia el núcleo y se repelen mutuamente. Si la carga eléctrica total de los electrones en un átomo iguala a la del núcleo, para lo que generalmente se necesitan varios electrones, se dice que el átomo está en equilibrio o que es eléctricamente neutro.
Claro que, no debemos olvidarnos de que, ¡Todo lo grande está hecho de cosas pequeñas! Una inmensa galaxia se conforma de un conjunto inmenso de átomos inifinitesimales que juntos, hace ese gran todo.
La fuerza a la que obedecen los electrones, la denominada fuerza electrostática o de Coulomb, es matemáticamente bastante sencilla y, sin embargo, los electrones son los responsables de las importantes propiedades de los “enlaces químicos”. Esto se debe a que las leyes de movimiento de los electrones están regidas completamente por la “mecánica cuántica”, teoría que se completó a principios del siglo XX. Es una teoría paradójica y difícil de entender y explicar, pero al mismo tiempo es muy interesante, fantástica y revolucionaria. Cuando uno se introduce en las maravillas de la mecánica cuántica es como si hiciera un viaje a un universo que está situado fuera de este mundo nuestro, ya que, las cosas que allí se ven, desdicen todo lo que dicta nuestro sentido común de cómo tiene que ser el mundo que nos rodea.
La perfecta sincronía Está en la Naturaleza
No solamente los electrones, sino también los núcleos atómicos y los átomos en su conjunto obedecen y se rigen por la mecánica cuántica. La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck, escribió un artículo de ocho páginas y allí propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos.
Estaban bien aceptados entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para las longitudes mayores como para las longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.
Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de la onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:
E = h x v
Donde E es la energía del paquete, v la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.
Los cuantos de energía etán presentes por todas partes y en todos los objetos
Poco tiempo después, en 1905, Einstein formuló esta teoría de una forma mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos de los paquetes de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.
El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Erwin Schrödinger descubrió como escribir la teoría ondulatoria de Debroglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños estaban exactamente determinados por la recién descubiertas “ecuaciones de onda cuánticas”.
Pocas dudas nos pueden caber a estas alturas de que la mecánica cuántica (de Planck) y, la Relatividad –tanto especial como general- (de Einstein), además de ser las dos teorías más importantes de la Física de nuestro tiempo, funcionan de tal forma que uno, cuando profundiza en sus predicciones y las compara con lo que ocurre en el Universo, no puede por menos que, asombrarse, al comprobar como unas mentes humanas han sido capaces de llegar a estos profundos pensamientos que nos acerca a la realidad de la Naturaleza.
emilio silvera