El Observatorio Espacial Herschel ha descubierto un filamento gigante repleto de galaxias en las que brillan miles de millones de estrellas. El filamento conecta dos c徂mulos de galaxias que, al colisioarn con un tercer cúmulo, darán lugar a uno de los mayores supercúmulos de galaxias del universo.
Mar
5
El Universo de ayer, el Universo de hoy ¿Cómo será el de mañana?
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (1)
https://youtu.be/4BEBnoBx49A
Allá por el siglo IV a, C,, en la Magna Grecia, Arquitas de Tarento demostró ser un gran político y un buen militar, además de un gran pensador. En aquellos tiempos, para los colegas griegos de Arquitas, por ejemplo, el pensamiento de que la Tierra no era el centro del universo habría sido simplemente impensable. Para nosotros, tal pensamiento es casi una segunda naturaleza, y esto a su vez tiene su efecto sobre el tipo de modelos del universo que construimos en nuestras mentes.
Modelo de Ptolomeo
Modelo de Aristarco de Samos que ya colocó al Sol en su lugar
Al final se pudo conformar un buen modelo del Sistema solar
Si se desprende una sola lección del progreso que ha realizado la raza humana en sus sucesivas concepciones del universo, es ésta: cuanto más sabemos, menos centrales parecen ser nuestro planeta y la raza humana. Hemos llegado a vernos como los habitantes de una pequeña roca que gira alrededor de un sol muy corriente situado en un tipo de galaxia poco especial. Y también hemos llegado a comprender que en el Cosmos las cosas no suceden al Azar, sino que todo suceso es gobernado por una o por un pequeño número de leyes naturales, leyes que podemos descubrir en nuestros laboratorios y comprobar con nuestros ingeniosos aparatos que los conocimientos tecnológicos nos han posibilitado construir para que eso sea posible. Todo lo que vemos en el cielo, igual que todo lo que vemos sobre la Tierra, sucede de un modo racional y ordenado, siguiendo unos patrones que hemos llegado a descubrir. Sin embargo, ese universo que es el que estudiamos, no es el único universo que nuestras mentes pueden imaginar.
55 Cancri e
Un planeta cercano en la constelación de Cáncer podría tener una composición bastante peculiar
Conocido como 55 Cancri e
“Está probablemente cubierto de grafito y diamante en lugar de agua y granito”
Perteneciente a la clase de mundos conocidos como planetas de diamante
Se cree que 55 Cancri e es rico en carbono
Siempre hemos imaginado extraños mundos, universos imposibles a los que nos llevaron la ignorancia. Sin embargo, no es que el universo sea extraño, sino que lo es mucho más de lo que podamos imaginar. Arriba
Para los babilonios, incluso la existencia del universo era un hecho contingente, algo que podía suceder. Estamos aquí porque Marduk ganó su batalla contra el monstruo. Si no hubiera sido así, todavía prevalecería el caos primordial. No hubiera habido ni tierra ni cielos y, por supuesto, seres humanos que se maravillasen ante la creación. Así, los aspectos más importantes del mundo dependen de sucesos a los que no se aplica ninguna ley inmutable.
Impresión de un Cilindro-sello babilónico en la que se aprecia la lucha de Marduk contra el monstruo serpentiforme Tiamat. Ya en aquella lejana época los miembros de nuestra especie dejaron muestras de su inmensa imaginación para describir las cosas que ellos “creían” que eran el significado de los fenómenos de la Naturaleza que traducían en dioses. Ahora nosotros, lo hacemos con “la materia oscura” y cosas similares.
El universo sólo podía ser controlado por los dioses, y los dioses sólo podían ser inducidos a atender a las necesidades humanas mediante el uso de rituales. Sospecho que los “universos de espíritus y dioses” proporcionaban mucha más gratificación emocional a los que creían en ellos de la que nuestro universo nos proporciona a nosotros que, habiendo llegado a comprender, más que gratificarnos lo que hace es asombrarnos y sólo nos gratifican los descubrimientos que de la Naturaleza vamos conquistando. Después de todo, el universo de los babilonios era un lugar en el que las cosas que sucedían eran muy humanas.
Tales de Mileto dejó a un lado la Mitología y aplicó la Lógica
El atractivo de todas estas viejas creencias (de alguna manera) no ha desaparecido ni suqiera ahora, en nuestro tiempo actual. Una gran parte del movimiento contracultural de los sesenta implicaba un rechazo de la cultura racional y científica de la Norteamérica moderna que comenzaba a florecer con fuerza y una vuelta a una visión más mítica del universo.
No obstante, por muy satisfactorios emocionalmente que fueran los viejos sistemas, dejaba mucho que desear en el terreno intelectual. Batalla o no batalla en el mundo inferior, el Sol sale cada mañana. Los movimientos de las estrellas y de los planetas pueden depender del humor de los dioses, pero son regulares y predecibles. De algún modo, la yuxtaposición de las verdades muy personales y contingentes de los antiguos universos con el comportamiento regular de los cielos parece difícil de explicar, al menos para las mentes del siglo XXI.
Fueron los griegos los primeros que concibieron un universo algo parecido al que concebimos hoy. Sus ideas se caracterizaban por un vivo escepticismo. Por ejemplo, en una generación anterior a Arquitas, el historiador Heródoto hizo un viaje por Egipto. Le mostraron un templo en el que los sacerdotes ponían comida para el dios todas las noches. La comida había desaparecido siempre por la mañana, hecho que presentaban a Heródoto como demostración de la existencia del dios.
“Yo no vi ningún dios -comentó-, pero vi muchas ratas junto a la base de la estatua.”
¡Es difícil no encontrar simpático a alguien que piensa de ese modo!
Este tipo de mente inquisitiva condujo a los griegos a un universo que era notablemente diferente de los que hemos podido conocer que representaban civilizaciones más antiguas. Y su trabajo era tan impresionante que siguió siendo la versión aceptada de los cielos hasta después del Renacimiento, casi mil quinientos años y, ante eso, me tengo que preguntar: ¿Durará tánto tiempo nuestra actual visión del Universo?
Y llegó Ptolomeo
Retrato medieval de Ptolomeo
Nació en Tolemaida Hermía, en el Alto Egipto. Fallece en Alejandría, ciudad en donde desarrolló toda su actividad. Está considerado como uno de los personajes más relevante e importante de la historia. Astrónomo, matemático y geógrafo. Ptolomeo propuso el sistema geocéntrico como la base de la mecánica celeste que persistió durante más de 1400 años. Sus teorías, investigaciones y explicaciones astronómicas prevalecieron en el pensamiento científico hasta el siglo XVI. Esta considerado como el último científico más importante de la antigüedad y su fama se debe a su exposición del sistema ptolomaico. Recopiló los conocimientos científicos de su época, añadiendo sus observaciones y las de Hiparco de Nicea. Escribo una obra conocida con el nombre de “Almagesto” (Ptolomeo la había denominado Sintaxis Matemática) realizada en 13 volúmenes, llegando a Europa en una versión traducida al árabe.
Aunque no perduró ninguna carta de Ptolomeo, en el Renacimiento se reconstruían Mapa Mundi a partir de la Geographia de Ptolomeo. Esta carta es una copia de Johannes de Armsshein, Ulm, en 1482.
En la explicaciones del Almagesto del sistema ptolemaico, la Tierra se encuentra situada en el centro del Universo y el Sol, la Luna y los planetas giran en torno a ella arrastrados por una gran esfera llamada “Primum Movile”, mientras que la Tierra es esférica y estacionaria. Las estrellas están situadas en posiciones fijas sobre la superficie de dicha esfera.
Claudio Tolomeo, es el hombre en el que se piensa siempre como expositor de la astronomía griega, vivió en Alejandría en el siglo II d. C., y trabajaba en el Museo de Alejandría que funcionaba en cierto modo como un moderno centro de investigación y laboratorio gubernamental.
Tolomeo recopiló las mediciones de sus antecesores griegos y babilonios, hizo algunas por sí mismo y utilizó el trabajo previo para producir un modelo de universo que explicara todo lo que había sido observado y, como es natural, si pensamos en los medios que tenía, puso a la Tierra en el centro, mientras que esferas de cristal giraban siendo portadoras del Sol, de la Luna, de los planetas y de las estrellas.
Explicar aquí ahora lo que era el universo tolemaico no parece lo más adecuado por lo sabido del tema. Sin embargo, sí es preciso decir que, estaba basado en el supuesto tácito del geocentrismo, y, aunque algunos científicos griegos, como Pitágoras e Hiparco, sugirieron que el Sol no debería ocupar un lugar central en el cosmos, pocos hicieron caso a sus argumentos.
Galileo Galilei (1564 – 1642) y Johannes Kepler (1571 – 1630)
Después de quello, como todos con0cemos, llegaron Galileo, Tycho Brahe y Kepler…Newton y Einstein que nos trajeron un Universo muy diferente. Se explicaba las órbitas de los planetas, se descubrió la Gravedad causada por las grandes masas como las galaxias, estrellas y planetas, se habló de cómo se curvaba el espacio-tiempo, se conocieron los cuásares, las estrellas de neutrones y los agujeros negros y, en definitiva, supimos que estamos en un universo en expansión donde la materia y la energía está representada por la materia y las interacciones de fuerzas que interactúan entre sí.
Es cierto, el acto de explorar modifica la perspectiva del explorador. Así ha sucedido con la investigación científica de los extremos de las escalas, desde la grandiosa extensión del espacio cosmológico hasta el “mundo” infinitesimal y vertiginosamente enloquecido de las partículas subatómicas y del átomo.
La exploración del ámbito de las galaxias extendió nuestro alcance de visión en un factor de 1026 veces mayor que nuestra propia escala humana, y produjo la revolución que llamamos relatividad, la cual reveló que la visión newtoniana del mundo sólo era una imagen local y pequeña en un universo más vasto donde el espacio es curvo y el tiempo se hace flexible. La exploración del dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a unos 10-15 de la escala humana, y también significó una revolución, la de la física cuántica que vino a cambiarlo todo en ese dominio infinitesimal.
Aunque la semilla la puso Planck en 1900, fue a partir de 1930 cuando la mecánica cuántica se aplicó con mucho éxito a problemas relacionados con núcleos atómicos, moléculas y materia en estado sólido. La mecánica cuántica hizo posible comprender un extenso conjunto de datos, de otra manera enigmáticos. Sus predicciones han sido de una exactitud notable. Ejemplo de esto último es la increíble precisión de diecisiete cifras significativas del momento magnético del electrón calculadas por la EDC (Electrodinámica Cuántica) comparadas con el experimento.
Imagen ilustrativa de la dualidad onda-partícula, en el que se aprecia cómo un mismo fenómeno puede ser percibido de dos modos distintos. La mecánica cuántica describe, en su visión más ortodoxa, cómo en cualquier sistema físico –y por tanto, en todo el universo- existe una diversa multiplicidad de estados, los cuales habiendo sido descritos mediante ecuaciones matemáticas por los físicos, son denominadoss estados cuánticos. De esta forma la mecánica cuántica puede explicar la existencia del átomo y desvelar los misterios de la estructura atómica, tal como hoy son entendidos; fenómenos que no puede explicar debidamente la física o más propiamente la mecánica clásica.
Este es el Universo que hoy podemos ver gracias a los avances de la tecnología y los nuevos conocimientos
¡Qué lejos quedan los babilonios y el universo de Marduk!
¡Qué simple se ve ahora el universo de Ptolomeo!
El desarrollo de la relatividad especial creó un escenario nuevo. Una de las conclusiones del trabajo de Eisntein es que ningún objeto -de hecho, ninguna influencia o perturbación de ninguna clase- puede viajar a una velocidad mayor que la de la luz. Sin embargo, como hemos podido leer muchas veces, la teoría universal de la gravedad de Newton, que experimentalmente funciona tan bien y es tan grata para la intuición, habla de influencias que se transmiten en el espacio a grandes distancias instantáneamente. De nuevo fue Einstein el que intervino en el conflicto y lo resolvió ofreciendo un nuevo concepto de la Gravedad en su teoría general de la relatividad.
Así, nuestro mundo cambió de nuevo y ahora, se rige por estas dos leyes: Cuántica y Relativista que son las que marcan las pautas de la Ciencias físicas y Cosmológicas. ¿Cómo veremos el Universo dentro de un milenio? Seguramente nos parecerá el universo ahora presente, tan atrasado como nos parece hoy el de Ptolomeo.
No es sólo que el Espacio y el Tiempo estén influidos por el estado del movimiento del observador, sino que, además, pueden alabearse y curvarse como respuesta a la presencia de materia o energía. Tales distorsiones en la estructura del Espacio y el Tiempo, transmiten la fuerza de Gravedad de un lugar a otro que, más cercano o más lejano, recibe la influencia de esta fuerza fundamental. Así que, desde entonces no se puede ya pensar que el Espacio y el Tiempo sean un telón de fondo inamovible e inerte en el que se desarrollan los sucesos del universo; al contrario, según la relatividad especial y la relatividad general, son actores de primera fila que desempeñan un papel íntimamente ligado al desarrollo de todos los hechos que en el universo ocurren.
Una vez más el modelo se repite: el descubrimiento de la relatividad general, aunque resuelve un conflicto, nos lleva a otro. A lo largo de tres décadas a partir de 1900, los físicos desarrollaron la mecánica cuántica en respuesta a varios problemas evidentes que se pusieron de manifiesto cuando los conceptos de la física del siglo XIX se aplicaron al mundo microscópico. Como he mencionado anteriormente, el tercer conflicto, el más trascendental, surge de la incompatibilidad entre la mecánica cuántica y la relatividad general. La forma geométrica ligeramente curvada del espacio, que aparece a partir de la relatividad general, es incompatible con el comportamiento microscópico irritante y frenético del universo que se deduce de la mecánica cuántica.
Un amigo tiene en sus manos la teoría luz-luz… ¿será el futuro?
Y, volvemos otra vez al principio: Tenemos que persistir en aquellos trabajos de los años ochenta, cuando se presentó la solución que ofrecía la teoría de cuerdas para este tercer conflicto o problema. En realidad, es el mayor conflicto que se nos presenta en la física moderna. Necesitamos ya, para poder explicar muchas cosas y seguir avanzando, una teoría cuántica de la gravedad. Estamos parados, no podemos avanzar como sería deseable y, desde luego muchas son las iniciativas que se intentan: Teoría de Cuerdas, Teoría Luz-luz (energía-masa) y otras muchas que están, en la mente de los mejores físicos del mundo pero que no acaban de germinar.
Esperémos que pronto salgan a la luz esas ideas y pensamientos que nos lleven hacia una ciencia física del futuro en la que, nuevos paradigmas vengan a jubilar (cariñosamente lo digo) a estas dos que ahora son el soporte de todo: ¡Cuántica y Relatividad! y, me pregunto yo: ¿Habrá algo más después de esas dos teorías que, llevando un siglo en el candelero, piden a gritos que las jubilemos?
Según todos los indicios, para cuando pasen algunos miles de millones de años más, si es que aún estamos aquí (como poco probable), cuando apuntemos con nuestros telescopios al cielo profundo, ya no podremos ver imágenes como esta, toda vez que las galaxias, se alejan las unas de las otras y nuestro universo se estará dirigiendo, de manera inexorable, hacia su “muerte térmica”. Claro que, esa podría ser una visión del presente que, en realidad, nada tendría que ver con la realidad del universo futuro.
emilio silvera
Mar
4
¿Es igual el Universo en todas partes?
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (3)
La curiosidad siempre nos ha empujado a querer asomarnos al lugar del suceso, sin pensar en los posibles riesgos, los testigos del acontecimiento se acercan al lugar.
En libros de Ciencia Ficción, no pocas veces hemos leído sobre una nave extraterrestre que cae en la Tierra. La escena que describen era la que se podía esperar después de la caída de una nave en plena montaña. Los pocos testigos que por el lugar estaban, llamaron a las autoridades que enviaron, de inmediato, a personal especializado en este tipo de investigaciones.¡
“Mira, un trazo de la nave caída, ¿de qué materiales estará hecha? Nunca he visto algo así! ¿De dónde vendrán estos seres, de qué estará conformado su mundo? Esto preguntaba uno de los investigadores al otro que con él, recogía muestras de aquella extraña nave caída y que, según el seguimiento hecho en su acercamiento a la Tierra, venía de más allá de los confines del Sistema Solar y, quién sabe de dónde pudieron partir. Sin embargo, el material que recogían, debería ser el mismo que está repartido por todo el Universo.
Veamos los materiales más densos del Universo:
El Iridio tiene una Densidad de 22.560 Kg/m3 . Es decir, es más denso que el núcleo terrestre que pesa 13.000 Kgs/m3.
Osmio que tiene una Densidad de 22.570 Kgs/m3 . Es posiblemente el metal más denso del Universo y se utiliza en aleaciones con el Platino.
Densidad de 40.700 Kgs/m3 . No es un elemento Natural
El Núcleo del Sol tiene una Densidad de 150.000 Kgs/m3 . Es la densidad media del núcleo estelar. Sin embargo, a partir de aquí, las cosas parecen de Ciencia Ficción.
Densidad de una Enana Blanca es de 10.000.000.000 kg/m3. El satélite GAIA de la ESA, pudo comprobar por primera vez como se solidifica (o cristaliza) una estrella como el Sol al final de su vida, cuando se convierte en Gigante roja primero y enana blanca después. La enana blanca es 66.000 veces más densa que el Sol.
El punto blanco del centro de la Nebulosa planetaria es la enana blanca que radia en ultravioleta e ioniza el material de la Nebulosa. A este final se llega debido al Principio de exclusión de Pauli.
“Los productos de las reacciones nucleares de fusión que tuvieron lugar durante las etapas previas en la vida de la estrella) junto a trazas de otros elementos químicos, como los isótopos 22Ne (neón), 25Mg (magnesio) y 54Fe (hierro). Las enanas blancas tienen una masa similar a la del Sol, pero un tamaño equiparable al de la Tierra. Su densidad alcanza valores formidables, del orden de una tonelada por centímetro cúbico.”“Su densidad es tan alta que si llenáramos una botella de 1 litro con el material de su corteza y la trajéramos a la Tierra, esa botella pesaría tanto como 71 millones de ballenas azules. En cambio, una botella llena de osmio, el elemento más denso de la tabla periódica, «sólo» pesaría 22,3 kilos.”“Una estrella de neutrones puede contener 500 000 veces la masa de la Tierra en una esfera de un diámetro de una decena de kilómetros.”“Una estrella de neutrones típica tiene una masa entre 1,35 y 2,1 masas solares,123a con un radio correspondiente aproximado de 12 km.4b En cambio, el radio del Sol es de unas 60 000 veces esa cifra. Las estrellas de neutrones tienen densidades totales de 3,7×1017 a 5,9×1017 kg/m³ (de 2,6×1014 a 4,1×1014 veces la densidad del Sol),c comparable con la densidad aproximada de un núcleo atómico de 3×1017 kg/m³.5 La densidad de una estrella de neutrones varía desde menos de 1×109 kg/m³ en la corteza, aumentando con la profundidad a más de 6×1017 u 8×1017 kg/m³ aún más adentro (más denso que un núcleo atómico).6 Esta densidad equivale aproximadamente a la masa de un Boeing 747 comprimido en el tamaño de un pequeño grano de arena.”“!Una estrella de neutrones es un tipo de remanente estelar resultante del colapso gravitacional de una estrella supergigante masiva después de agotar el combustible en su núcleo y explotar como una supernova tipo II, tipo Ib o tipo Ic. Como su nombre indica, estas estrellas están compuestas principalmente de neutrones, más otro tipo de partículas tanto en su corteza sólida de hierro, como en su interior, que puede contener tanto protones y electrones, como piones y kaones. Las estrellas de neutrones son muy calientes y se apoyan en contra de un mayor colapso mediante presión de degeneración cuántica, debido al fenómeno descrito por el principio de exclusión de Pauli. Este principio establece que dos neutrones (o cualquier otra partícula fermiónica) no pueden ocupar el mismo espacio y estado cuántico simultáneamente.”
Plasma de quarks: 10^19 kg/m3
“Seguimos con cosas increíbles. Y a partir de ahora son tan asombrosas que su presencia de forma natural no se ha observado. Empecemos esta nueva etapa con el conocido como “plasma de quarks”. Se trata de un estado de la materia que se cree que era la forma en la que se encontraba el Universo apenas unos milisegundos después del Big Bang.Todo lo que daría lugar al Cosmos estaba contenido en este plasma asombrosamente denso. Su posible existencia en los orígenes del Universo se demostró cuando, en 2011, científicos del Gran Colisionador de Hadrones consiguieron crear la sustancia en cuestión haciendo colisionar (valga la redundancia) átomos de plomo entre ellos a la (casi) velocidad de la luz.”“Llegamos a la densidad de Planck. La partícula de Planck es una hipotética partícula subatómica que se define como un agujero negro en miniatura. Y muy miniatura. Para entenderlo “fácilmente”, imaginemos esta partícula como un protón, pero 13 millones de cuatrillones de veces más pesada y varios trillones de veces más pequeña.”Partícula de Planck: 10^96 kg/m3
Y como un agujero negro es un punto del espacio en el que la densidad es tan alta que genera una gravedad de la que ni siquiera la luz puede escapar, de ahí que digamos que una partícula de Planck es un “agujero negro en miniatura”.
“El agujero negro es el objeto más denso del Universo. Y nunca nada le quitará este trono porque, básicamente, las leyes de la física impiden que haya algo más denso. Un agujero negro es una singularidad en el espacio, es decir, un punto de infinita masa sin volumen, por lo que, por matemáticas, la densidad es infinita. Y esto es lo que hace que genere una fuerza gravitacional tan alta que ni la luz puede escapar de su atracción. Más allá de esto, no sabemos (y seguramente nunca lo haremos) qué sucede en su interior. Todo son suposiciones.”
Sabiendo todo esto sobre los materiales que existen en nuestro Universo, también sabemos que lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra, llevando a cabo aleaciones con técnicas para nosotros desconocidas. Porque, en última instancia ¿es en verdad inerte la materia?
¿Os podéis imaginar que pudiéramos manejar el material de la estrella de neutrones para hacer vehículos espaciales indestructibles?
Sí, son muchas las cosas que nos quedan por aprender e incluso, el agua tan familiar en nuestras vidas esconde secretos que ahora se están desvelando, Algún día conoceremos la verdadera “personalidad” de éste líquido elemento y de la luz, y, entonces, seremos un poco más sabios,
El Agua y la Luz son esenciales para la Vida. Sin embargo, aún esconden secretos que debemos desvelar
Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos. Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos. Los que están más allá del Uranio y que son artificiales, no se encuentran libres en el Universo.
Algunos son:
ATÓMICO | NOMBRE | SÍMBOLO | MASA ATÓMICA |
92 | uranio | U | 283,03 |
93 | neptunio | Np | 237,048 |
94 | plutonio | Pu | 244 |
95 | amercio | Am | 243 |
96 | curio | Cm | 247 |
97 | berquelio | Bk | 247 |
98 | californio | Cf | 252 |
99 | Einstenio | Es | 254 |
100 | fermio | Fm | 257 |
101 | mendelevio | Md | 258 |
102 | nobelio | No | 259 |
103 | laurencio | Lr | 260 |
104 | rutherfordio | Rf | 261 |
105 | dubnio | Db | 262 |
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.
¡Parece que la materia está viva!
Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas. El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).
Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto. Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico: no se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.
Lo cierto es que, el electrón, es una maravilla en sí mismo. El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora para poder construir conjuntos tan bellos como el que abajo podemos admirar.
¡No por pequeño, se es insignificante! La enorme complejidad del átomo lo hace importante
Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo). Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.
A la izquierda la imagen captada de un fotón, la otra imagen es una conjetura de como sería
El fotón tiene una masa de 1, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.
Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales. Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.
La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.
De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.
Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.
De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria. La masa del gravitón es o, su carga es o, y su espín de 2. Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.
Agujeros negros binarios. Mejor no pasar por allí
Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros. Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.
La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.
Espuma cuántica
Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo. Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.
Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e in-eliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.
Andamos a la caza del vacío, del gravitón, de las ondas gravitatorias…
Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita. En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales. Por debajo de 10-7 pascales se conoce como un vacío ultra-alto.
De ese “vacío” nos queda muchísimo por aprender. Al parecer, todos los indicios nos dicen que está abarrotado de cosas, y, si es así, no es lo que podemos llamar con propiedad vacío, ese extraño lugar es otra cosa, pero, ¿Qué cosa es?
El modelo estándar considera que las partículas elementales son entes irreductibles y cuantos cuya cinemática está regida por las cuatro interacciones fundamentales conocidas, excepto la gravedad, que no encaja en los modelos matemáticos del mundo cuántico.
Antes se denominaba éter luminífero (creo) a toda esa inmensa región. Más tarde, nuevas teorías vino a desechar su existencia. Pasó el tiempo y llegaron nuevas ideas y nuevos modelos, y, se llegó a la conclusión de que el Universo entero estaba permeado por “algo” que algunos llamaron los océanos de Higgs. Ahí, se tiene la esperanza de encontrar al esquivo Bosón que le da la masa a las demás partículas, y, el LHC del CERN, es el encargado de la búsqueda para que el Modelo Estándar de la Física de Partículas se afiance más.
Andamos un poco a ciega, la niebla de nuestra ignorancia nos hace caminar alargando la mano para evitar darnos un mamporro. Pero a pesar de todo, seguimos adelante y, es más la fuerza que nos empuja, la curiosidad que nos aliente que, los posibles peligros que tales aventuras puedan conllevar.
Está claro que, dentro del Universo, existen “rincones” en los que no podemos sospechar las maravillas que esconden, ni nuestra avezada imaginación, puede hacerse una idea firme de lo que allí pueda existir. Incansables seguimos la búsqueda, a cada nuevo descubrimiento nuestro corazón se acelera, nuestra curiosidad aumenta, nuestras ganas de seguir avanzando van creciendo y, no pocas veces, el físico que, apasionado está inmerso en uno de esos trabajos de búsqueda e investigación, pasa las horas sin sentir el paso del tiempo, ni como ni duerme y su mente, sólo tiene puesto los sentidos en ese final soñado en el que, al fín, aparece el tesoro perseguido que, en la mayor parte de las veces, es una nueva partícula, un parámetro hasta ahora desconocido en los comportamientos de la materia, un nuevo principio, o, en definitiva, un nuevo descubrimiento que nos llevará un poco más lejos.
Encontrar nuevas respuestas no dará la opción de plantear nuevas preguntas.
Emilio silvera V.
Feb
17
¿Increíble? Y, sin embargo… Cierto
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (1)
Repasando ideas y pensamientos
Un día despertamos al mundo y generamos ideas y pensamientos, tuvimos consciencia de Ser, adquirimos la facultad de imaginar y pudimos conjeturar sobre lo que podía ser en relación a… ¡tantas cosas!
Un equipo de astrónomos ha conseguido encontrar una vasta reserva de gas intergaláctico situada a unos 400 millones de años luz de la Tierra en la que podría encontrarse la “materia perdida” del Universo que los científicos llevan años buscando.
Captamos imágenes asombrosas que no siempre podemos explicar y tratamos de ponerles un letrero que pueda significar lo que observamos, y, de esa manera, hablamos de “huracanes de materia oscura” y similares conjeturas que, en realidad, no dicen absolutamente nada.
La Naturaleza hace cosas que son difíciles de explicar, AQUÍ VEMOS UN REMANENTE ESTELAR, HILOS DE PLASMA QUE CONFORMAN UNA FIGURA E IMAGEN ASOMBROSA
Es una de las nebulosas más brillantes que existen Está situada a 76 años luz de la Tierra, y posee un diámetro aproximado de 24 años luz. El material que la conforma se va constituyendo en arabescas figuras formadas por el empuje de los vientos solares provenientes de jóvenes estrellas que emiten radiación en el ultravioleta. Es la gran Nebulosa de Orión.
La forma de las alas del ángel se deben a una estrella masiva, que debido a su gran actividad expulsa hacia fuera dos lóbulos gemelos de gas muy caliente de color azul brillante. Además posee un anillo de polvo y gas a su alrededor con la apariencia de un cinturón que se expande y le brinda la forma de un “reloj de arena”.
Gracias a las nítidas imágenes obtenidas en febrero de 2011 por el Hubble, se puede observar que la tenue luz que emana de la estrella central se refleja en las partículas de polvo, iluminando su entorno y permitiendo observar las ondas de choque de los gases a medida que interactúan con el medio interestelar más frío.
Sh2-106, S106 o más popularmente conocida como ángel de nieve cósmico, es una región de formación estelar bipolar cuya forma da la apariencia de un ángel celestial con sus “alas” desplegadas de aproximadamente 2 años luz de extensión. Se encuentra a unos 2 000 años-luz de la Tierra, en un sector relativamente aislado de la Vía Láctea, en la región HII de la Constelación del Cisne.
“Los análisis detallados indican que la galaxia central, conocida también como 3C 348 , es en realidad más de 1.000 veces más masiva que nuestra galaxia, la Vía Láctea, y que el agujero negro central es casi 1.000 veces más masivo que el agujero negro que hay en centro de la Vía Láctea .”Inmensos chorros de plasma son eyectados al Espacio Interestelar
Eta Carinae es una estrella del tipo variable luminosa azul hiper-masiva, situada en la Constelación de la Quilla. Su masa, se estima que oscila entre 100 y 150 veces la masa solar (se sabe que cuando una estrella sobrepasa las 120 masas solares, es propensa a que su propia radiación la pueda destruir, precisamente por eso, Eta Carinae, eyecta continuamente material al espacio para evitar su muerte y descongestionarse) lo que la convierte en una de las estrellas más masivas conocidas en nuestra Galaxia. Asimismo, posee una altísima luminosidad, de alrededor de cuatro millones de veces la del Sol; debido a la gran cantidad de polvo existente a su alrededor, Eta Carinae irradia el 99% de su luminosidad en la parte infrarroja del espectro, lo que la convierte en el objeto más brillante del cielo en el intervalo de longitudes de onda entre 10 y 20 μm.
Eta Carinae es una estrella muy joven, con una edad entre los 2 y los 3 millones de años, y se encuentra situada en NGC 3372, también llamada la Gran Nebulosa de Carina o simplemente Nebulosa de Carina. Dicha nebulosa contiene varias estrellas supermasivas.
Feb
14
El Universo siempre asombroso
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (1)
El Universo, la Vida…, y, ¿el destino?
A medida que se expandía a partir de su estado primordial uniforme, el universo se enfriaba. Y con las temperaturas más bajas vinieron nuevas posibilidades. La materia fue capaz de agregarse en enormes estructuras amorfas: las semillas de las galaxias actuales. Empezaron a formarse los átomos allanando el camino para la química y la formación de objetos físicos sólidos.
El Webb ofrece detalles nunca antes vistos del Universo primitivo
Comparado con los patrones actuales, el universo en dicha época era sorprendentemente homogéneo. La sustancia cósmica estaba presente por todo el espacio con una uniformidad casi perfecta. La Temperatura era la misma en todas partes. La materia, descompuestas en sus constituyentes básicos por el tremendo calor, estaba en un estado de extraordinaria simplicidad.
Sí, solo en la Vía Láctea… ¡Existen muchas Tierras”
“El resultado es que el número de planetas terrestres en la Vïa Láctea es de unos 45,5 mil millones: 11 548 millones alrededor de estrellas de tipo M, 12 930 millones en las de tipo K, 7622 millones en las de tipo G y 5556 millones en las de tipo F.”
Nuestro mundo, aunque en la Galaxia existan muchos como él (que no los hemos podido encontrar), es un lugar privilegiado que conforma un Ecosistema superior en su conjunto formado por muchos ecosistemas locales aislados los unos de los otros y sin embargo, todos conexionados. La Diversidad de regiopnes diferentes que existen dentro del mismo planeta es asombroso y, lo mismo nos podemos encontrar en un lugar como ese que vemos arriba, o en una isla paradisíaca, una selva, un desierto, o perdidos en un inmenso y embravecido océano, en la ventisca de nieve de inmensas montañas y, también, en grutas enormes en las profundidades del planeta.
En el Presente tenemos a nuestro alcance regiones lejanas del Universo. Sin embargo, hubo un Tiempo en el que, nuestros ancestros miraban hacia la noche estrellada y, sólo podían imaginar lo que serían aquellos puntitos brillantes que titilaban como queriéndoles decir alguna cosa.
De todas ellas hemos aprendido algunas cosas, y, reconocer lo que les debemos… ¡Es lo justo!
- ¿Qué fueron las civilizaciones antiguas?
- La Antigua China.
- La Antigua Mesopotamia.
- El Antiguo Egipto.
- La Antigua Grecia.
- La Antigua Roma.
- Los fenicios.
- El Imperio Aqueménida.
La Humanidad, esa forma de vida que conforma nuestra especie, siempre miró hacia los confines del cielo estrellado y se hacía preguntas que no podía contestar. En muchos de los trabajos que aquí se han expuesto quedaron reflejadas aquellas Civilizaciones antiguas que nos hablaban, con sus grabaciones en la piedra de los lejanos confines del cosmos que ellos imaginaban.
Somos conscientes de que no podemos vivir aislados y desde siempre hemos tratado de saber qué había más allá en regiones desconocidas primero y, más tarde, en posesión de tecnologías superiores, hemos querido hurgar en la lejanía de las estrellas donde algunos imaginativos pensaban que otras criaturas habitaban un sin fín de mundos que, como la Tierra, tendrían las condiciones necesarias. Para ellos, el Universo ofrecía todas las posibilidades a favor y en contra, su diversidad era tanta que mundos llenos de vida pululaban alrededor de estrellas situadas a decenas, cientos, miles o millones de años-luz de nosotros y, también, había mundos imposibles donde nunca podría surgir a la vida.
Titán tiene las características similares a las que la Tierra tenía en sus primeros inicios, es decir, hace más de 3.800 millones de años. En aquella época en la que (se cree), surgieron los primeros microorganismos, de los que provinieron las diferentes especies conocidas hoy (según los fósiles hallados en las rocas más antiguas del planeta).
Titán, la mayor luna de Saturno, tiene mares y lagos llenos de hidrocarburos líquidos, pero ¿cómo se formaron sus lechos? Un nuevo estudio sugiere que un proceso similar al que forma las dolinas aquí en la Tierra está disolviendo la superficie de Titán.
Titán es el satélite mayor de Saturno y la segunda de las mayores lunas del Sistema Solar, la cual sólo rivaliza en tamaño con Ganimedes -satélite de Júpiter-. Este mundo siempre ha resultado de enorme interés a los científicos pues se considera un “laboratorio de la vida”, un lugar que podría ser reflejo -como antes decía y desde el punto de vista biológico- de lo que era el planeta Tierra hace más de 3800 millones de años.
Titán es un mundo único en el Sistema Solar y muy enigmático: su superficie es una incógnita, pues su densa atmósfera formada fundamentalmente por nitrógeno nunca nos ha permitido observar sus rasgos superficiales. A todo ello se le suman una gran cantidad de incógnitas: la posibilidad de existencia de mares o lagos superficiales de hidrocarburos, de materia orgánica e incluso de alguna clase de vida.
Titan, una luna prometedora
Lo grande y lo pequeño
El mundo de la Física tiene planteado un gran problema y los físicos son muy conscientes de ello, conocen su existencia desde hace décadas. El problema centra la gran aventura de la Física actual y consiste en hallar una formulación que combine las dos grandes teorías de la Ciencia: La Relatividad y la Mecánica Cuántica. Aunque parece que, tal matrimonio, resulta imposible y que, los contrayentes son incompatibles.
Existen dos pilares fundamentales en los cuales se apoya toda la Física moderna. Uno es la relatividad general de Albert Einstein, que nos proporciona el marco teórico para la comprensión del Universo a una escala máxima: estrellas, Galaxias, cúmulos(o clusters) de Galaxias, y aún más allá, hasta la inmensa expansión del propio Universo.
Aunque fue Planck, el que en 1.900 publicó un artículo con el que sembró la semilla de la mecánica cuántica, lo cierto es que fueron muchos (los “agricultores” que cuidaron la planta. Incluso Einstein (que no creía mucho en ello, puso su granito de arena.
Así las coas, el otro pilar es la mecánica cuántica que, en un primer momento, vislumbro Max Planck y posteriormente fue desarrollada por Heisemberg, Schrödinger, el mismo Einstein, Dirac, Niels Bohr, Feynman y muchos otros. Esta disciplina nos ofrece un marco teórico para comprender el Universo en su escala mínima: Partículas, átomos, moléculas y así hasta llegar a las interacciones fundamentales con la materia, el conjunto del que está formado el universo. Llegó un día en el que, al descubrir cómo era ese “mundo” misterioso lleno de fantáticos objetos.
Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del Universo, de los mecanismos que lo rigen, de la materia y de la energía que está presente y, ¿por qué no? de la vida inteligente que en él ha llegado a evolucionar. En las estrellas se crean los elementos esenciales para la vida. Esos elementos esenciales para la vida están elaborandose en los hornos nucleares de las estrellas. Allí, mediante transiciones de fases a muy altas temperaturas, se hace posible la fusión que se produce venciendo la barrera de Coulomb, y a partir del simple Hidrógeno, hacer aparecer materia más compleja que más tarde, mediante procesos físico-químicos-biológicos, hacen posible el surgir de lavida bajo ciertas circunstancias y condiciones especiales de planetas y de la estrellas que teniendo las condiciones similares al Sol y la Tierra, lo hace inevitable.
La Piel de Zorra, el Unicornio, y el Arbol de Navidad. ¡Cuántas maravillas! Ahí germinan moléculas esenciales para la Vida.
Pero está claro, como digo, que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares y mundos, la Tierra primigenia en particular, en cuyo medio ígneo, procesos dinámicos dieron lugar a la formación de las estructuras y de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.
La vida en la tierra surgió hace unos 3.500 millones de años. Se inició así un proceso evolutivo de animales y plantas del que tenemos pocos datos, pues las primeras formas de vida eran microscópicas y luego animales y plantas blandos (algas, gusanos) que no dejan restos fósiles.
Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico. Partiendo de un Caos inicial se han ido acumulando los procesos necesarios para llegar a un orden que, es digno del asombro que nos producen los signos de vida que podemos contemplar por todas partes y, desde luego, tampoco podemos dejar de maravillarnos de que la Naturaleza, valiéndose de mil artimañas, haya podido conseguir la presencia de vida consciente en un mundo, y, muy probablemente, en muchos mundos de muchas galaxias en todo el Universo.
Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.
Microcristales de arcilla
Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc.; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas. ¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?
Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.
Según decía en trabajos anteriores, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones.
La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).
El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.
Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.
Los átomos se juntan para formar moléculas
Los átomos se unen formando moléculas para compartir electrones y completar su última capa. De esta forma, se quedarán ligados entre sí por un enlace químico, y la separación entre los átomos enlazados viene fijada por el equilibrio entre las fuerzas de atracción y repulsión entre dichos átomos.
El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.
Ya son muchas decenas de moléculas encontradas en las nubes interestelares
Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.
Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.
Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones. Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.
Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.
Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.
Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales s, p, d, f, g, h. Este pequeño número nos proporciona una gran diversidad.
La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también negan-tropía.
En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas iso-electrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.
La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.
El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor. Si tengo que ser sincero, mi convicción está centrada en que, cualquier forma de vida que podamos encontrar en el Universo, estarán conformadas como las que tenemos y existieron en la Tierra, en el Carbono. Otro elemento no podría dar, tanto…¿juego?
Pero, si hablamos del Universo que es lo que todo lo abarca, en el que están presentes la materia y el espaciotiempo, las fuerzas fundamentales que todo lo rige y las constantes universales que hace que nuestro universo sea de la manera que lo podemos contemplar y, sobre todo, que la vida esté presente en él. Si la carga del electrón, la masa del protón, o, la velocidad de la luz, variaran tan sólo una diezmilésima… ¡La Vida no sería posible!
En la imagen podemos contemplar lo que se clasifica NGC 3603, es un cúmulo abierto de estrellas en una vasta región estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 -luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.
NGC 3603 alberga miles de estrellas de todo: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.
Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de otra una vez cada 3,77 días, es la estrella más masiva conocida en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Se estima que la masa máxima de una estrella es de unas 120 masas solares, siendo más masiva, su propia radiación las destruiría.
Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.
Las observaciones de SN 1987A, hechas en los últimos 20 por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas. Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estudiando los remanentes de supernovas muy antiguas no se podían ver.
Sher 25
También el clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20.000 años (se estima). ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A que más arriba hemos podido contemplar.
Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.
El núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene la presión de degeneración del gas de neutrones compensa el empuje hacia adentro de la Gravedad. El proceso completo hasta que se la estrella de neutrones dura de un segundo.
Este pulsar pertenece a la Nebulosa del cangrejo, fue captado por el Hubble (parte roja visible) y por el Chandra (parte Azul rayos X) Créditos: NASA
Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.
Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alrededor de estas estrellas de neutrones y púlsares que se conviertan en magnétares.
Representación artística de un Magnetar, se puede apreciar el enorme campo magnético (líneas rojas) y la radiación alrededor del mismo (manchas alrededor de la esfera). Créditos: NASA. También se le llama “Magnetoestrella” esta es una variedad de pulsar con un descomunal campo magnético, su principal característica es la expulsión de rayos X y rayos Gamma en enormes cantidades por periodos cortos (equivalentes a la velocidad de la luz).
Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condición. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnétares.
El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y tambien una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencías de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.
La densidad de estas estrellas es increíblemente grande, tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra, el monte . Los púlsares fueron descubiertos en 1970 y hasta solo se conocen unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los púlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nuestros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).
Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)
Por ahora se conoce que de cada diez supernovas una se convierte en magnetar, si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.
Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.
La explosión de una estrella gigante y supermasiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, nacerán nuevas estrellas y nuevos mundos.
Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.
El remanente estelar después de la explosión puede ser muy variado
Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!
¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?
Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.
Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).
Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.
Bueno, después de todo lo dicho anteriormente, me parece oportuno que sepamos algo más:
El Sol tiene más del 99% de toda la masa del sistema solar, y, cada segundo fusiona cientos de miles de toneladas de hidrógeno en Helio, y, una parte de esa energía es eyectada al Espacio en forma de luz y calor, y, nuestro planeta, recibe una ínfima parte que es suficiente para la fotosíntesis de las plantas, y, sobre todo, mantener la vida en los distitntos ecosistemas.
Emilio Silvera
Feb
10
El Universo Asombroso
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (9)
En la distancia “infinita” el Hubble sólo ha podido captar una imagen parcial de lo que allí está presente. Vemos un inmenso agujero negro que ocupa el centro galáctico y el inmenso espacio de 150.000 años-luz de diámetro cuajado de estrellas azuladas.
La lejanía nos impide contemplar los detalles y no son visibles la infinidad de objetos que ahí se encuentran y pueblan las regiones inconmensurables de la Galaxia: Nebulosas, quásares, radiogalaxias, miles de millones de planetas, estrellas de neutrones y enanas blancas en el centro de las nebulosas planetarias… ¡Un sin fin de maravillas!, que perdidas en la distancia se esconden a nuestros ojos que sólo están posibilitados para contemplar lo cercano.
Un viaje en tren en el ferrocarril transiberiano a Novosibirsk dio lugar a esta impresionante vista a lo largo del borde del Sol registró durante el eclipse total de sol de un mes de agosto de hace algunos años. La imagen es una composición de dos imágenes tomadas en momentos especiales en la secuencia del eclipse, que corresponde al principio y el final de la fase total del mismo. Perlas brillantes alrededor de la silueta oscura de la Luna son los rayos de la luz del sol brillando a través de valles lunares en el borde del disco lunar. Pero la vista compuesta también captura las prominencias solares, la estructura del bucle de plasma caliente suspendidos en campos magnéticos, que se extiende más allá del borde del Sol. Algunos le llaman el collar de diamantes.
La inusual forma de la galaxia Rueda de Carro es probablemente debido a una colisión con una de las galaxias más pequeñas en la parte inferior izquierda de varios cientos de millones de años atrás con la que finalmente terminará fusionándose. Esta extraña galaxia con forma atípica, al ser descubierta por Fritz Zwicky en 1941, éste dijo que era una de las estructuras más complicadas que, al menos de momento, no tenían explicación. Desde entonces, han sido muchas las conjeturas que los astrónomos han formulado de la imagen pero… ¿Dónde esta la verdad? Nadie lo sabe.
Esta imagen de astronomía de la NASA de nuestra Galaxia la Vía Láctea fue tomada en Chile, es absolutamente impresionante. Hay lugares privilegiados de nuestro planeta desde los que se pueden contemplar el Universo de otra manera más cercana, más hermosa y, Chile, es uno de ellos.
Hermosas Nebulosas moleculares gigantes creadoras de estrellas y de mundos
Los importantes descubrimientos de los últimas décadas han transformado la imagen que la Humanidad tenía del Universo. El Cosmos ha dejado de ser un lugar desconocido y tranquilo, atravesado por estrellas relucientes que junto a nebulosas y planetas se mueven en una procesión majestuosa. Hoy hemos llegado a saber de los cientos de miles de millones de galaxias que lo pueblan, de la existencia de objetos exóticos y lugares plagados de sorpresas. Extraños y fascinantes Quásares iluminan los rincones más lejanos del Universo.
Concepción artística de cómo el nuevo quásar se vería de cerca. El cuásar muy caliente muy luminoso en el centro de la imagen es muy brillante en longitudes de onda ultravioleta y la luz del quásar está ionizando el gas circundante, produciendo el color rojo, que es el color característico del hidrógeno ionizado. En el fondo, se pueden ver tenues galaxias compactas que acaban de nacer, estas contienen las estrellas calientes que también están ionizando su entorno, pero mucho menos eficazmente ya que son mucho menos luminosas. Información sobre la imagen: Observatorio Gemini/AURA por Lynette Cook. El descubrimiento salió a la luz a partir de datos de un estudio del cielo en curso que se está realizando en el Telescopio Infrarrojo del Reino Unido (UKIRT) y de observaciones de seguimiento de confirmación con el telescopio Gemini Norte, ambos en Mauna Kea, en Hawái.
Las grandes estructuras del Universo
Las galaxias masivas recorren los abismos siderales unidas por la fuerza de Gravedad y formando cúmulos enormes. Explosiones de inimaginables energías tienen lugar por todos los rincones del universo que se ven invadidos por la radiación gamma que ionizan los materiales de las nebulosas cercanas.
Estas explosiones, en la mayoría de los casos tienen un origen desconocido y son captadas por nuestros ingenios espaciales para el estudio por los expertos que quieren saber de dónde parten y qué las producen. Púlsares que como faros cósmicos girán a velocidades increíbles.
Imagen más aclaratoria del PSR 1913+16
“El primer púlsar binario conocido, PSR 1913+16, fue descubierto en 1974. Consiste en un púlsar que tiene 17 pulsaciones por segundo, en una órbita altamente excéntrica con un período de 7,75 horas alrededor de una segunda estrella de neutrones en la que no se han observado pulsaciones. Cada estrella tiene unas 1,4 masas solares, próxima al límite de Chandrasekhar, y el período orbital se está acortando gradualmente debido a la pérdida de energía a través de radiación gravitacional. Cuando se fusionan dos púlsares se producen fenómenos energéticos de gran intensidad y, finalmente, lo que puede resultar es, un agujero negro. Objetos tan extraños que nunca podrían haber sido imaginados por las mentes científicas. De hecho, cuando Einstein publicó la segunda parte de su teoría de la relatividad, los expertos vieron que, de sus ecuaciones, se podía deducir la existencia de los Agujeros Negros y, el autor se negaba a creer que monstruos semejantes pudieran existir pero, ahí están.”
Un grupo de astrónomos ha definido el lugar en el universo en el que todos nosotros vivimos. Lo ha bautizado Laniakea y parece imposible no sentir vértigo tras conocer su magnitud. Miremos al Sol, la estrella que da calor a eso que llamamos casa. Parece un astro muy rimbombante, pero en realidad es sólo una más de las 100.000 billones (100.000.000.000.000.000) de estrellas que existen en Laniakea, un supercúmulo de galaxias que tardaríamos en recorrer 500 millones de años
“Imagen que define los límites y las redes de conexión entre galaxias de Laniakea, el supercúmulo que incluye la Vía Láctea. Estos expertos han bautizado al supercúmulo con el nombre de Laniakea, que significa “cielo inmenso” en hawaiano.”
El Universo es mucho más grande de lo que podemos imaginar. Sí, hablamos de las distancias que nos separan de los objetos que nuestros telescopios han podido captar en el ancho Cosmos pero, aunque sepamos pronunciar las cifras de esas distancias, aunque para describirlas hallamos inventado las unidades especiales de Unidad Astronómica, Año-Luz, Parsec, Giga parsec… y otras, lo cierto es que, nuestras mentes, no pueden ubicar esas distancias en una imagen real que pueda ser asimilada como, por ejemplo, asimilamos las distancias que recorremos en nuestro pequeño mundo. El Universo es mucho más grande de lo que podemos imaginar. Sí, hablamos de las distancias que nos separan de los objetos que nuestros telescopios han podido captar en el ancho Cosmos pero, aunque sepamos pronunciar las cifras de esas distancias, aunque para describirlas hallamos inventado las unidades especiales de Unidad Astronómica, Año-Luz, Parsec, Giga parsec… y otras, lo cierto es que, nuestras mentes, no pueden ubicar esas distancias en una imagen real que pueda ser asimilada como, por ejemplo, asimilamos las distancias que recorremos en nuestro pequeño mundo.
Hoy podemos contemplar las distintas regiones del Universo y lo que es aún mucho más impresionante: Los Astrónomos han podido llegar a la conclusión de que el Universo (dicen haber encontrado las pruebas), hizo su aparición mediante una inmensa explosión que, de manera abrupta, en un acto de creación repentino, surgió a partir de una singularidad que poseía densidades y energías infinitas. Para que es ya un hecho evidente que el lugar del nacimiento de nuestra especie (como el de otras muchas en nuestro mismo planeta y en otros mundos -probablemente-), tiene su origen en las estrellas que, en sus hornos nucleares, crearon los materiales de los que estamos hechos.
Si pudiéramos coger una Gran Nave super-lumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnétares creando inmensos campos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de sucesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas.
Nuestro universo es igual en todas partes. Las leyes que rigen en todo el Universo son las mismas. La materia que puebla el Universo, Gases estelares, polvo cósmico, Galaxias con cientos de miles de millones de estrellas y sistemas planetarios, también es iguales en cualquier confín del Universo. Todo el Universo, por lo tanto, está plagado de Agujeros Negros y de estrella de neutrones. En realidad, con el transcurso del tiempo, el número de estos objetos masivos estelares irá en aumento, ya que, cada vez que explota una estrella supermasiva, nace un nuevo agujero negro o una estrella de neutrones, transformándose así en un objeto distinto del que fue en su origen.
Se puede bajar gratis de Internet
Poco a poco fuimos aumentando nuestros conocimientos y, a medida que el universo se expande, también nuestras mentes lo hacen y acumulan los conocimientos que el estudio y la observación, unidos al experimento y la experiencia les va proporcionando. Acumulados a través de miles de años, el hombre de las distintas civilizaciones desde los Sumerios, babilonios, persas, egipcios, chinos, hindúes, griegos… y tantas otras antes que nosotros fueron logrando para que ahora nosotros, sepamos un poco más del lugar en el que nos encontramos y, posiblemente, al lugar hacia el que nos dirigimos.
El Universo se ha ensanchado más y más a medida que lo hemos podido ir descubriendo
Esta es la imagen que de un púlsar tenemos pero… ¿Qué son las galaxias y de cuántas maneras se pueden conformar? Con los modernos telescopios y que ven más y también mucho más lejos, hemos llegado a poder captar imágenes de galaxias de increíble y extraña belleza.
La Galaxia espiral que acoge a nuestro Sol y a las estrellas visibles a simple vista durante la noche; es escrita con G mayúscula para distinguirla de las demás galaxias. Su disco es visible a simple vista como una débil banda alrededor del cielo, la Vía Láctea; de ahí que a la propia Galaxia se la denomine con frecuencia Vía Láctea.
El Universo está plagado de maravillas que nos resultan exóticas y que los científicos estudian para saber de su origen, de cómo se pudieron formar y de las energías que emiten que no pueden ser comparables a nada que conozcamos aquí en nuestro planeta. En el espacio interestelar se producen los acontecimientos más increíbles que imaginar podamos y allí están presentes los objetos más extraños.
Un pulsar es una fuente de radio desde la que recibimos señales altamente regulares. Han sido catalogados más de 1000 púlsares desde que se descubrió el primero en 1.967. Como antes dije, son estrellas de neutrones que están en rápida rotación y cuyo diámetro ronda 20-30 Km. Están altamente magnetizadas (alrededor de 108 tesla), con el eje magnético inclinado con respecto al eje de rotación. La emisión de radio se cree que surge por la aceleración de partículas cargadas por encima de los polos magnéticos. A medida que rota la estrella, un haz de ondas de radio barre la Tierra, siendo entonces observado el pulso, de forma similar a la luz de un faro. Los períodos de los pulsos son típicamente de 1 s, pero varían desde los 1’56 ms (púlsares de milisegundo) hasta los 4’35. Los periodos de los pulsos se alargan gradualmente a medida que las estrellas de neutrones pierden energía rotacional, aunque unos pocos púlsares jóvenes son propensos a súbitas perturbaciones conocidas como ráfagas.
Animación que representa a la viuda negra pulsar y su joven compañera estelar. Crédito: Centro de Vuelo Espacial Goddard de la NASA/Cruz de Wilde. Se han descubierto algunos púlsares binarios.
Las medidas precisas de tiempos en los púlsares han revelado la existencia de púlsares binarios, y un pulsar, PSR1257+12, se ha demostrado que está acompañado por objetos de masa planetaria. Han sido detectados destellos ópticos procedentes de unos pocos púlsares, notablemente los púlsares del Cangrejo y Vela.
La mayoría de los púlsares se piensa que se crean en explosiones de supernova por el colapso del núcleo de una estrella supergigantes ( Como en el caso de los agujeros negros pero en estrellas menos masivas ), aunque en la actualidad hay considerables evidencias de que al menos algunos de ellos se originan a partir de enanas blancas que han colapsado en estrella de neutrones después de una acreción de masa de una estrella compañera, formando lo que se conoce como pulsar reciclada.
La gran mayoría de púlsares conocidos se encuentran en la Vía Láctea y están concentrados en el plano galáctico. Se estima que hay unos 100.000 púlsares en la Galaxia. Las observaciones de la dispersión interestelar y del efecto Faraday en los púlsares suministran información sobre la distribución de electrones libres y de los campos magnéticos de la Vía Láctea.
Hasta donde podemos saber, estos objetos y otros más exóticos aún, están presentes en todas las galaxias del Universo que, como tantas veces se ha dicho aquí, son universos en miniatura en los que podemos encontrar todo aquello de lo que está conformado el Cosmos. La materia y las fuerzas fundamentales, el espacio-tiempo, las constantes universales y… ¡La vida!
emilio silvera