Dic
12
El colapso del núcleo de las estrellas
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (2)
El vacío superconducto – La máquina de Higgs-Kibble
El vacío superconductor – La máquina de Higgs-Kibble II
Lo único que no resulta ser lo mismo cuando se mira a través a través del microscópico electrónico (o, en la jerca de la física teórica, cuando se realiza una transformación de escala) es la masa de la partícula. Esto se debe a que el alcance de la fuerza parece mayor a través de un microscopìo, por lo tanto, la masa de la partícula parece ser menor. Nótese que esta situación es la opuesta a la que se presenta en vida corriente donde un grano de arena parece mayor -¿más pesado, por lo tanto?- cuando se observa con un microscopio.
Granos de arena vistos al microscópico electrónico
Una consecuencia de todo esto es que en una teoría de Yang-Mills el termino de masa parece desaparecer se realiza una transformación de escala, lo que implica que a través del microscopio se recupera la invariancia gauge. Esto es lo que causa la dificultad con la que se enfrentó Veltman. ¿Se observar directamente el potencial vector de Yang-Mills? Parece que puede observa4rse en el mundo de las cosas grandes, no en el mundo de lo pequeño. Esto es una contradicción y es una raz´`on por la que ese esquema nunca ha podido funcionar adecuadamente.
En el mundo cuántico se pueden contemplar cosas más extrañas. Suelen surgir “cosas” ¿de la nada?
Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, = 1’62 × 10-33 cm, es la escala de longitud por debajo de la cual es espacio, tal tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler, o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que la longitud de Planck-Wheeler, es decir, 2’61 × 10-66 cm2) juega un papel clave en la entropía de un agujero negro.
Poco tiempo después resultó evidente que existían otras subpartículas en el interior del átomo. Cuando Becquerel descubrió la radiactividad, identificó como emanaciones constituidas por electrones algunas de las radiaciones emitidas por sustancias radiactivas. Pero también quedaron al descubierto otras emisiones. Los Curie en Francia y Ernest Rutherford en Inglaterra detectaron una emisión bastante menos penetrante que el flujo electrónico. Rutherford la llamó rayos alfa, y denominó rayos beta a la emisión de electrones.
Pero el trabajo de hoy se titula: El colapso del núcleo de las estrellas
En la imagen podemos contemplar lo que se clasifica NGC 3603, es un cúmulo abierto de estrellas en una vasta zona estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 años-luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.
NGC 3603 alberga miles de estrellas de todo tipo: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.
Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de la otra una vez cada 3,77 días, es la estrella más masiva conocida hasta en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Hay que decir que la máxima máxima de las estrellas está calculada en 120 masas solares, ya que, a partir de ahí, su propia radiación las destruiría.
Las estrellas super-masivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.
Las observaciones de SN 1987A, hechas en los últimos 20 por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas.
Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estudiando los remanentes de supernovas muy antiguas no se podían ver.
Arriba podemos contemplar observaciones realizadas en distintas fechas que nos muestran la evolución de los anillos de SN 1987 A
El clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20,000 . ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A.
Sher 25
Sher 25
Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.
El núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constiituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene la presión de degeneración del gas de neutrones compensa el empuje hacia adentro de la Gravedad. El proceso completo hasta que se la estrella de neutrones dura de un segundo.
Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.
Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.
Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alrededor de estas estrellas de neutrones y púlsares que se conviertan en un magnetar.
Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes ahora acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condicción. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnétares.
El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y tambien una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencias de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.
La densidad de estas estrellas es increíblemente grande, tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra, el monte . Los púlsares fueron descubiertos en 1970 y hasta solo se conocen unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los púlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nuestros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).
Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)
Por ahora se conoce que de cada diez supernovas una se convierte en magnetar, si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.
Cuando una estrella super-masiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.
Las estrellas mueren cuando dejan la Secuencia Principal, es decir, cuando no tienen material de fusión y quedan a merced de la fuerza de gravedad que hace comprimirse a la estrella más y más, en algunos casos, cuando son super-masivas, llegan a desaparecer de nuestra vista, y, su único destino es convertirse en temibles Agujeros Negros.
Lo que pueda quedar después de esa explosión supernova estará supeditado a la masa de la estrella
La explosión de una estrella gigante y super-masiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, nacerán nuevas estrellas y nuevos mundos.
Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.
El remanente estelar después de la explosión puede ser muy variado
Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!
¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?
Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.
Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).
Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.
emilio silvera
Oct
9
El Universo Asombroso
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
El Universo asombroso
Y pensar que nuestra Galaxia, la Vía Láctea, con todo el Grupo Local de galaxias, se mueve a 600 Km/s en relación a la radiación del fondo de microondas… ¡Es increíble! Ningún científico hasta el momento, podía tener en Mente tal estimación dada por el último estudio realizado. Estamos viviendo en una nave espacial que se mueve a una buena velocidad. El Sol se mueve dentro de la Galaxia a una velocidad media de 220 km/s y la Tierra le acompaña en el recorrido al igual que todo el Sistema Solar. El Sol tarda 250 millones de años en dar una vuelta alrededor de la Galaxia. Así que desde que “nació” ha realizado el recorrido unas 20 veces.
“La astronomía en rayos gamma estudia los objetos más energéticos del universo y, desde sus comienzos hace apenas medio siglo, ha lidiado con un problema grave, que consiste en determinar de precisa y fidedigna la región de donde procede la radiación que llega a los detectores de rayos gamma, lo que permite a su vez averiguar el mecanismo a través del que se produce.
Ahora, un grupo internacional liderado por astrónomos del Instituto de Astrofísica de Andalucía (IAA-CSIC) ha localizado, por primera vez sin la aplicación de modelos y con un grado de confianza superior al 99,7%, la región de la que surgió un destello en rayos gamma en el blazar AO 0235+164 y que permite conocer cómo se produjo.”
La sinfonía de los agujeros negros binarios ¿La oiremos algún día?
Puesto que la curvatura-espaciotemporal es lo mismo que la gravedad, estas ondulaciones de curvatura son realmente ondas de gravedad, u ondas gravitatorias. La Teoría de la Relatividad General de Einstein predice, de forma inequívoca, que tales ondas gravitatorias deben producirse siempre que dos agujeros negros orbiten uno en torno al otro.
Cuando se forma un par de agujeros negros binarios semejantes, cada agujero crea un pozo profundo (intensa curvatura espacio-temporal) en la superficie insertada y, a medida que los agujeros giran uno en torno al otro, los pozos en órbita producen ondulaciones de curvatura que se propagan hacia afuera a la velocidad de la luz. Las ondulaciones forman una espiral en el tejido del espacio-tiempo en torno al sistema binario, muy semejante a la estructura espiral del agua que procede de un aspersor de cesped que gira rápidamente. Los fragmentos de curvatura forman un conjunto de crestas y valles en espiral en el tejido espacio-temporal.
Sin temor a equivocarnos, podemos decir que, al día de la fecha, los agujeros negros siguen teniendo muchos secretos para la ciencia. ¿De qué clase de materia está hecha la singularidad
En las imágenes podemos contemplar galaxias que se fusionarán y, sus agujeros negros centrales se harán gigantes
¿Cómo un agujero negro y su disco de acreción puede dar lugar a dos chorros que apuntan en direcciones opuestas? De una forma sorprendentemente fácil, reconocieron Blandford, Rees y Lynden-Bell en la Universidad de Cambridge a mediados de los setenta. Hay cuatro formas posibles de producir chorros; cualquiera de ellas funcionaria, y, aquí, donde se explica el no versado en estos objetos cosmológicos, sólo explicaré el cuarto método por ser el más interesante:
El Agujero es atravesado por la línea de campo magnético. el agujero gira, arrastra líneas de campo que le rodean, haciendo que desvíen el plasma arriba y hacia abajo. Los chorros apuntan a lo largo del eje de giro del agujero y su dirección está así firmemente anclada a la rotación giroscópica del agujero. El método fue concebido por Blandford poco después de que recibiera el doctorado de física en Cambridge, junto con un estudiante graduado de Cambridge, Roman Znajek, y es por ello llamado el proceso Blandford-Znajet.
Luces del Sur sobre la Estación Concordia
Ahí estamos, como observadores del Espacio exterior y haciendo pruebas para vivir en el medio
Seguimos esperando ese mensaje que… ¡nunca llega!
Mientras que con nuestros ingenios telescópicos cada vez mayores y con mejor tecnología, capturamos las imágenes de galaxias muy lejanas.
Venus desde la Tierra
Nebulosa IC 4628 en la que el gas y el polvo interestelar hacen posible el nacimiento de nuevas estrellas, nuevos mundos y… ¿Quién sabe? Si Vida también en alguna de sus formas conocidas en nuestro planeta, o, conformada en diferentes formas en función de la gravedad y las condiciones de los planetas que pudieran estar orbitándo aquellas estrellas.
Lo cierto es que nuestra vecindad es tranquila y ninguna estrella vecina nos amenaza con una explosión supernova ni tiene dimensiones y masa que nos puedan preocupar si llegara el final de sus días. Bien resguardaditos en el interior del Brazo de Orión, en un Sistema solar relativamente apacible, el tercer planeta a partir del Sol, la Tierra, reluce en la secuencia principal enviando la luz y el calor necesarios para la vida a nuestro planeta que, situado en la zona habitable de la estrella, goza de una atmósfera ideal, de continentes de inmensa belleza y de mares y océanos que hace de nuestro mundo, la maravilla que es.
Todo eso que antes comento, ocurre en una Galaxia espiral situada en un pequeño grupo de poco más de una treintena de galaxias en la que, ella, junto a su compañera Andrómeda, comanda a toda la familia de las que son las hermanas mayores. Nuestro mundo, la Tierra, está situado a 30.000 años-luz del centro de la galaxia que, como hemos podido comprobar, es un lugar peligroso en el que habitan agujeros negros gigantes que emiten radiación y absorben materia, es decir, que no serían nada buenos como vecinos.
Aquí la tenemos, es nuestra casa ¡La Tierra! que, en el Sistema solar es un planeta más pero, con la suerte de haber caído en la zona habitable de la estrella que llamamos el Sol, en relación a la Galaxia Vía Láctea es un simple planeta como hay tantos, y, si la situamos en el contexto del Universo, es menos que un grano de arena de la playa de Punta Umbría en Huelva, ese lugar del que salió Colón para (re) descubrir América.
Lo cierto es que nos encontramos en un Universo inmenso y precioso. Esta composición cósmica equilibra muy bien la Nebulosa de la burbuja en la parte inferior izquierda con el cúmulo estelar abierto M52 por encima de ella y hacia la derecha. La pareja estaría desequilibrada en otras escalas, sin embargo. Incrustado en un complejo de polvo interestelar y gas y soplado por los vientos de una sola, gran estrella de tipo O, la Nebulosa de la Burbuja, también conocida como NGC 7635, se encuentra a sólo 10 años luz de ancho. Por otro lado, M52 es un cúmulo abierto rico de alrededor de mil estrellas. El cúmulo se encuentra a unos 25 años luz de diámetro. Visto hacia el límite norte de Casiopea, las estimaciones de distancia de la Nebulosa de la burbuja y el complejo de nubes asociadas son alrededor de 11.000 años luz, mientras que el cúmulo estelar M52 se encuentra cerca de 5.000 años luz de distancia.
Sí, desde la noche de los tiempos hemos mirado al cielo, buscando sus maravillas que siempre nos asombraron, primero al no poder entender cómo eran posible aquellos extrsaños fenómenos e increíbles objetos, y, más tarde, cuando pudimos comprender, al conocer las maravillas que podía realizar la Naturaleza valiéndose de fuerzas que, ni podemos imaginar.
Y, después de mucho pensar, llego a la conclusión de que, lo más asombroso del Universo es… ¡Que nosotros estemos aquí… Para poder describirlo!
emilio silvera
Ago
24
¿Dónde están las respuestas?
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
¡Son posibles tantas cosas!
Algunos quieren encontrar las respuestas en la religión (que si ha sido escogida voluntariamente… ¡bien está!). Pero, como todos sabemos, es cosa de fe. Creer en aquello que no podemos ver ni comprobar no es precisamente el camino de la ciencia que empieza por imaginar, después conjeturar, más tarde teorizar, se comprueba una y mil veces la teoría aceptada a medias y sólo cuando todo está amarrado y bien atado, todas esas fases pasan a la categoría de una ley o norma que se utiliza para continuar investigando en la buena dirección. Einstein solía decir: “La religión sin Ciencia es ciega.”
Otros han sido partidarios de la teoría del caos y argumentan que a medida que el nivel de complejidad de un sistema aumenta, entran en juego nuevos tipos de leyes. Entender el comportamiento de un electrón o un quark es una cosa; utilizar este conocimiento para comprender el comportamiento de un tornado es otra muy distinta. La mayoría está de acuerdo con este aspecto. Sin embargo, las opiniones divergen con respecto a si los fenómenos diversos y a veces inesperados que pueden darse en sistemas más complejos que las partículas individuales son realmente representativos del funcionamiento de los nuevos principios de la física, o si los principios implicados son algo derivado y están basados, aunque sea de un modo terriblemente complicado, en los principios físicos que gobiernan el ingente número de componentes elementales del universo.
“La teoría del todo o teoría unificada fue el sueño incumplido de Einstein. A este empeñó dedicó con pasión los últimos 30 años de su vida. No lo logró, y hoy continúa sin descubrirse. Consiste en una teoría definitiva, una ecuación única que dé respuesta a todas las preguntas fundamentales del Universo. Claro que, Einstein no sabía que las matemáticas para plasmar esa Teoría mágica… ¡No se habían inventado en su tiempo ni tampoco en el nuestro!
¿Se inventarán en el Futuro?
La “Teoría del Todo” debe explicar todas la fuerzas de la Naturaleza, y todas las características de la energía y la materia. Debe resolver la cuestión cosmológica, es decir, dar una explicación convincente al origen del Universo. Debe unificar la Relatividad y la Cuántica, algo hasta el Presente no conseguido. Y además, debe integrar otros universos en caso de que los haya. No parece tarea fácil. Ni siquiera se sabe si existe una teoría del todo en la Naturaleza. Y, en caso de que exista, si es accesible a nuestro entendimiento y a nuestras limitaciones tecnológicas para descubrirla.
Einstein se pasó los últimos treinta años de su vida en la búsqueda de esa teoría que nunca pudo encontrar. En los escaparates de la 5ª Avenida de Nueva York, exponían sus ecuaciones y la gente, sin entender lo que veían se arremolinaban ante el cristal para verlas.
“Permite calcular los números primos por debajo de un número dado. Por ejemplo, la ecuación de Riemann revela que hay 24 números primos entre 1 y 100. ¿Son los números primos los átomos de la aritmética? ¿Son los números más básicos e importantes en el corazón del mundo de la matemática? Pero sorprendentemente, a pesar de más de 2000 años de investigación, todavía no los entendemos”.
Ecuación de Euler-Lagrange
Esta ecuación se utiliza para analizar todo, desde la forma de una burbuja de jabón a la trayectoria de un cohete alrededor de un agujero negro. Con esta ecuación se puede analizar prácticamente todo. “Más que una ecuación, es una receta para generar una infinita variedad de posibles leyes de física”, comentó un gran matemático de una Universidad londinense. “A pesar de sus múltiples aplicaciones, la ecuación es “engañosamente corta y simple”, agregó otro.”
La belleza matemática se encuentra en la identidad de Euler, fórmula que hoy que el premio nobel de física Richard Feynman calificó como «la fórmula más notable de la matemática». ¿Pero qué es lo que hace tan destacable esta fórmula? Es bella por su extraordinaria sencillez y porque resulta ideal para aprender matemáticas, pues se podría decir que estas aparecen resumidas en la fórmula casi por completo.
El autor de la ecuación matemática más famosa es Leonhard Euler, de ahí que lleve su nombre: la identidad de Euler, llamada «identidad» porque en ella solo existen números. Aunque en la fórmula veamos letras, estas representan en realidad números. Pero no se trata de números cualesquiera, sino de los más famosos de las matemáticas: el número pi, el número e (precisamente así llamado también por Euler), el número i, la unidad y el cero. En esta identidad encontramos también los conceptos de suma, multiplicación, exponenciación e identidad y los cinco números fundamentales.
El número pi, es la relación constante entre la longitud de una circunferencia y su diámetro en geometría euclidiana. Esta identidad es considerada una belleza matemática por vincular distintas áreas de esa ciencia formal que parecen distintas y sin relación alguna a simple vista.
“El número áureo (también llamado número de oro) es un número irracional, representado por la letra griega φ (phi) o Φ (Phi) = 1,61803398874988….”
Él la resumía en una ecuación, que de hecho es el sumario de diez ecuaciones. Estas fórmulas cambiaron completamente cómo entendemos la naturaleza y evolución del Universo. Este nuevo punto de vista es que la idea de espacio-tiempo, el tejido básico de la realidad, es maleable.
La relatividad general ofreció una nueva visión de cómo funciona la gravedad. En vez de objetos masivos ejerciendo una atracción en otros objetos, estos distorsionan el espacio y tiempo alrededor de ellos. La ecuación de Einstein nos puede decir cómo nuestro universo ha cambiado con el tiempo, y ofrece un vistazo de los primeros momentos de la creación.
Casi todo el mundo está de acuerdo en que el hallazgo de la Gran Teoría Unificada (teoría del Todo), no significaría de modo alguno que la Psicología, la Biología, la Geología, la Química, y también la Física, hubieran resuelto todos sus problemas.
El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que esta planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas. Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.
La búsqueda de esa teoría final que nos diga cómo es el universo, el tiempo y el espacio, la materia y los elementos que la conforman, las fuerzas fundamentales que interaccionan, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que ha realizado durante los últimos décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado.
Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.
El Universo de lo muy grande y el de lo muy pequeño… ¡Es el mismo universo! Simplemente se trata de mirar en distintos ámbitos del saber, y, la importancia de las medidas… ¡también es relativia! Porque, ¿podríamos valorar la importancia de los electrones. La existencia de los fotones, o, simplemente la masa del protón? Si alguno de esos objetos fuese distinto, el Universo también lo sería.
La armoniosa combinación de la relatividad general y la mecánica cuántica es un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza.
Si la Teoría de cuerdas se pudiera verificar en el futuro, habríamos dado un gran paso en el conocimiento del Universo que, como sabemos, esconde grandes secretos que no sabemos desvelar, y, a veces, sabiéndolo, no podemos por falta de la energía que requiere tales comprobaciones. Se calcula que verificar la teoría de cuerdas requiere la energía de Planck, es decir, 1019 GeV. Una auténtica barbaridad de la que no podemos disponer.
Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.
Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo.
El espacio-tiempo es una estructura suave, al menos así lo sugiere un nuevo estudio, anotando una posible victoria para Einstein sobre los teóricos cuánticos que vinieron después de él.
Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impedía ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar.
Stephen Hawking quería que su lápida llevase inscrita la fórmula de la entropía de los agujeros negros, Se trata de una ecuación que desarrolló junto con el físico israelí Jacob Bekenstein en los años 70, y que representa un aspecto clave de sus hallazgos sobre los agujeros negros. Por lo tanto, la entropía de un agujero negro es directamente proporcional a su superficie.
La fórmula relaciona la llamada entropía de Bekenstein-Hawking (SBH) con la superficie del agujero negro en cuestión (A). En física, la entropía es una medida del desorden, o de cuánta información puede albergar un objeto o sistema. El resto de términos de la ecuación son constantes (k es la constante de Boltzmann, c la velocidad de la luz, ħ la constante de Planck reducida y G la constante de gravitación universal).
La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking (la de más arriba), que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble belleza y de logros y avances tecnológicos que ahora ni podemos imaginar.
Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.
Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.
El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino revelador de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.
El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividad general y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch que, según parece, nunca será un hecho y, el universo, tendrá una “muerte” térmica, es decir, cuando el alejamiento de las galaxias lo haga más grande, más oscuro y más frío. En el cero absoluto de los -273 ºC, ni los átomos se moverán.
Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.
Pero… ¿somos en verdad tan insignificantes
emilio silvera
Feb
24
¡Imaginación! ¡Sueños!
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (1)
El Universo es grande, para nosotros… ¡casi infinito! Está lleno de mundos, unos tendrán presente la vida y otros no pero, el que la tenga, creo que, como en la Tierra, estará basada en el Carbono que es, el elemento más idóneo para hacerla posible y, aunque no podamos negar cualquier otra posibilidad, esa es, amigos míos, la que lleva la mayor ventaja.
Con algunas características singulares de cada raza o especie, lo más probable es que sean similares a nosotros, y, no podemos descartas especies raras aquí desconocidas de formas de vida, las condiciones del planeta determinaran algunas características como la altura, el peso…
Uno de los supuestos implícitos en pro de la inevitabilidad de un Universo grande y frío es que cualquier vida es muy parecida a la nuestra. Los biólogos parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el Carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencia extraterrestre en el Universo se centran en formas de vida similares a nosotros que habiten en planetas y necesiten agua, atmósferas gaseosas y todo lo demás. Merece la pena abrir un poco nuestra imaginación para pensar a qué podría parecerse la vida si radicara en el espacio en lugar de radicar en un planeta. Las formas de vida diferentes a la nuestra y con otros metabolismos están también aquí con nosotros y pertenecen a minúsculos seres que, son necesarios en el ecosistema terrestre para que el conjunto funcione en una simbiosis general y efectiva.
Charles Lyell (1797-1875)
“El libro de Lyell convirtió el viaje de Darwin en un viaje a través del tiempo. Darwin empezó a leerlo casi inmediatamente, en su litera, mientras sufría el primero de los muchos mareos que le atormentarían durante los cinco años siguientes. El Beagle, un bergantín sólido y macizo, de 28 metros de largo por 7,5 de ancho, era en general confortable, pero su casco era redondeado y se balanceaba mucho. Darwin empezó a aplicar lo que él llamaba “la maravillosa superioridad de la manera de Lyell de abordar la geología” tan pronto como la expedición tocó tierra en las islas de Cabo Verde.”
¿Sabremos algún día, como son las cosas?
Los cosmólogos hablan y hablan y no pocas veces utilizan conceptos y parámetros que, sin haber sido comprobados, están ahí inamovibles como si de verdades como montañas se tratara. La Energía y la “Materia Oscura” son una buena muestra. Las colocan por todas partes y, aunque nadie sabe lo que es (ellos los primeros), es uno de los platos que más suelen degustar cuando hablan de la expansión acelerada del universo.
No siempre hablamos con propiedad
También hay simetría en las ondas gravitatorias
Siguiendo con el tema que nos ocupa, lo cierto es que, es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que preocupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?
El “Principio Copernicano”, invocado frecuentemente en la Cosmología moderna, insiste en la homogeneidad del Universo, negando cualquier primacía de posición o propiedades asociadas con la existencia humana. Si miramos por ahí, en cualquier sitio podremos leer:
“En cosmología física, el principio de Copérnico, llamado así en honor a Nicolás Copérnico, es un principio que postula que nuestro planeta -la Tierra- no ocupa ninguna posición central favorecida. Recientemente, el principio fue generalizado hacia el concepto relativista que enuncia: «los humanos no somos observadores privilegiados del universo»; en este , es equivalente al principio de mediocridad, con importantes implicaciones en la filosofía de las ciencias.”
Lo cierto es que, miremos hacia donde miremos y por muy lejos que esté el lugar que podamos observar, por lo general y exceptuando regiones locales en las que puedan hallarse objetos singulares, en todas partes existen las mismas cosas, funcionan las mismas leyes, podemos medir las mismas constantes y, Nebulosas, mundos, estrellas y galaxias con inmensos espacios vacíos entre ellas, es la tónica de un Universo en expansión que tratamos de conocer.
El princioio toma su nombre de la propuesta de Copérnico (ya anteriormente formulada por Aristarco) de desplazar a la Tierra de la posición central ocupada en el sistema de Tolomeo, aunque tal centralidad se debiese a la falta de paralaje estelar y no a una sobrevaloración de nuestra existencia en el planeta Tierra.
El paso siguiente lo dio Shapley hace un siglo, al mostrar que tampoco el Sol ocupa el centro de la Vía Láctea. Finalmente, el Universo “finito pero ilimitado” de Einstein niega la posibilidad de encontrar un centro en su volumen tridimensional, y afirma la equivalencia de posición de todos los puntos del espacio. No tiene sentido preguntar dónde estamos en el continuo expandirse de un Universo que contiene probablemente más de 100.000 millones de galaxias, y que vuelve a la insignificancia aun la majestuosa estructura de la Vía Láctea, nuestra ciudad cósmica.
Nuestra especie en el Universo ha evolucionado hasta comprender que no lo podemos saber todo
Sin embargo, a partir de la década de los años 30, se da una reacción interesante, que afirma, cada vez con argumentos más fuertes y detallados, que el Hombre está en un tiempo y un lugar atípicos y privilegiados en muchos respectos, que obligan a preguntarnos si nuestra existencia está ligada en un modo especial a características muy poco comunes en el Universo. Esta pregunta adquiere un significado especial al considerar las consecuencias previsibles (según las leyes físicas) de cualquier alteración en las condiciones iniciales del Universo. Con un eco de las palabras de Einstein: ¿tuvo Dios alguna alternativa al crear?. No solamente debemos dar razón de que el Universo exista, sino de que exista de tal manera y con tales propiedades que la vida inteligente puede desarrollarse en él. Tal es la razón de que se formule el Principio Antrópico, en que el Hombre (entendido en el sentido filosófico de “animal racional”, independientemente de su hábitat y su morfología corporal) aparece como condición determinante de que el Universo sea como es.
Las primeras sugerencias de una conexión entre vida inteligente y las propiedades del Universo en su momento actual aparecen en las relaciones adimensionales hechas notar por Eddington: la razón de intensidad entre fuerza electromagnética y fuerza gravitatoria entre dos electrones, entre la edad del Universo y el tiempo en que la luz cruza el diámetro clásico de un electrón, entre el radio del Universo observable y el tamaño de una partícula subatómica, nos da cifras del orden de 10 elevado a la potencia 40. El número de partículas nucleares en todo el cosmos se estima como el cuadrado de ese mismo número. ¿Son éstas coincidencias pueriles o esconden un significado profundo?. La hipótesis de los grandes números sugiere que el Hombre solamente puede existir en un lugar y momento determinado, cuando tales coincidencias se dan, aunque no se avanza una explicación de estas relaciones.”
Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida. La implicación de que el universo fue de alguna manera diseñado para hacer posible de la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, en la que la fe, no parece tener cabida.
Es decir, problema del ajuste fino significa que las las constantes fundamentales de un modelo físico para el universo deben ser ajustados de forma precisa para permitir la existencia de vida. Sobre estas constantes fundamentales no hay nada en la teoría que nos indique que deban tomar esos valores que toman. Podemos fijarlas de acuerdo con las observaciones, pero esto supone fijarlas de entre un rango de valores colosal. Esto da la impresión de cierta arbitrariedad y sugiere que el universo podría ser una realización improbable entre tal rango de valores. He ahí el problema.
El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la naturaleza y entraremos en el juego virtual de ¿qué hubiera pasado si…?
Es mucho lo que tenemos que desvelar y, el problema es que, formamos parte del misterio.
Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal o cual manera para ocurrir de esta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para nosotros y nos quitó de encima a unos terribles rivales?
Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual; sólo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto. Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza. ¿Quién sabe lo que pasará mañana?
Lo cierto es que estamos confinado en este pequeño mundo
Siempre estamos imaginando el futuro que vendrá. Los hombres tratan de diseñarlo pero, finalmente, será el Universo el que tome la última palabra de lo que deba ser. Por mucho que nosotros nos empeñemos, las estructuras del Universo nunca podrán ser cinceladas por nuestras manos ni por nuestros ingenios, sólo las inmensas fuerzas de la Naturaleza puede transformar las estrellas, las galaxias o los mundos… lo demás, por muy bello que pudiera ser, siempre será lo artificial.
Lo que ocurra en la naturaleza del universo está en el destino de la propia naturaleza del cosmos, de las leyes que la rigen y de las fuerzas que gobiernan sus mecanismo sometidos a principios y energías que, en la mayoría de los casos se pueden escapar a nuestro actual conocimiento.
Como tantas veces dijimos aquí: “El Futuro es incierto”. Nunca sabremos lo que podrá pasar mañana
Sólo conjeturas y teorías basadas en los conocimientos de hoy para predecir. Sin embarga está el Azar
Lo que le pueda ocurrir a nuestra civilización, además de estar supeditado al destino de nuestro planeta, de nuestro Sol y de nuestro Sistema solar y la Galaxia, también está en manos de los propios individuos que forman esa civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual de libre albedrío otorgado en ese plano político a quien no siempre lo merece. Todos sabemos de la imperfección humana y también, de sus ambiciones.
Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser si…, lo que, la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.
¿Os podéis imaginar el gran espectáculo que proporcionará esa fusión. No podemos ni imaginar los cambios que se producirán en estrellas y mundos… ¿Y Civilizaciones de seres inteligentes?
En unos tres mil años, si estuviéramos aquí, podríamos contemplar una escena similar entre Andrómeda y la Vía Láctea. Todos los estudios realizados al respecto, confirman que el final de ambas galaxias, será unirse de manera irremisible para formar una galaxia mucho mayor y distintas de lo que ahora son. ¿Si para entonces, la vida sigue por aquí, cómo se verá afectada?
Cuando el Sol agote todo su combustible nuclear -o cuando Andrómeda se acerque a la Vía Láctea-, estará acercándose el final de la Tierra como planeta que albergó la vida. Los cambios serán irreversibles, los océanos se evaporarán y sus aguas hirvientes comenzarán a llenar la atmósfera de gases. La Gigante roja engullirá a los planetas Mercurio, Venus y probablemente se quedará muy cerca de la Tierra calcinada y sin vida.
La Tierra, cuando el Sol se convierta en Gigante Roja, verá evaporarse sus océanos, la vida, tal como la conocemos desaparecerá. Los planetas Mercurio y Venus serán engullidos por la Gigante Roja y pasarán a a formar parte de su material. ¿Se recordarán las Civilizaciones que allí convivieron y lo que llegaron a lograr y descubrir?
Lo lógico es pensar que, para cuando eso suceda, habremos partido de éste planeta hacia otros mundos. La Humanidad se repartirá por un sin fin de planetas que serán los que proporcionen todo lo que puedan necesitar para un comienzo que, con los conocimientos adquiridos, no será tan duro como el primero que tuvieron que pasar nuestros ancestros.
Claro que, en las distancias tenemos un gran problema que debemos solventar
Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de hidrógeno, helio, carbono, etc, para que sus capas exteriores de materia exploten y salgan disparadas al espacio interestelar, mientras que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la gravedad, convirtiéndose en una Nebulosa planetaria que en su centro tendrá lo que queda de aquel Sol esplendoroso: ¡una estrella enana blanca! de enorme densidad y de reducido diámetro. Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.
Siempre hemos soñado con escapar de la Tierra. ¿Será intuición del futuro que nos espera?
Pero el problema no es tan fácil y se extiende a la totalidad del universo que, aunque mucho más tarde, también está abocado a la muerte térmica, el frío absoluto si se expande para siempre como un universo abierto y eterno, o el más horroroso de los infiernos, si estamos en un universo cerrado y finito en el que, un día, la fuerza de gravedad, detendrá la expansión de las galaxias que comenzarán a moverse de nuevo en sentido contrario, acercándose las unas a las otras de manera tal que el universo comenzará, con el paso del tiempo, a calentarse, hasta que finalmente, se junte toda la materia-energía del universo en una enorme bola de fuego de millones de grados de temperatura, el Big Crunch.
Un universo replegándose sobre sí mismo no parece probable
El irreversible final está entre los dos modelos que, de todas las formas que lo miremos, es negativo para la Humanidad (si es que para entonces aún existe). En tal situación, algunos ya están buscando la manera de escapar.
Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiuniverso, esto es, que existen infinidad de universos conectados los unos a los otros. Unos tienen constantes de la naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.
Este sistema de inflación auto-reproductora nos viene a decir que cuando el universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible. Cada burbuja será un nuevo universo, o mini-universo en los que reinarán escenarios diferentes o diferentes constantes y fuerzas.
“Kashlinsky y su equipo afirman que sus observaciones representan la primera pista de lo que hay más allá del horizonte cósmico. Al averiguarlo, podremos saber cómo se veía el universo inmediatamente después del Big Bang, o si nuestro universo es uno de muchos. Otros no están tan seguros. Una interpretación diferente dice que no tiene nada que ver con universos extraños sino el resultado de un defecto en una de las piedras angulares de la cosmología, la idea de que el universo debe verse igual en todas direcciones. O sea, si las observaciones resisten un escrutinio preciso.”
“Las estructuras más allá del “borde” del Universo observable, el cual están esencialmente confinados a una región con un radio de 14 mil millones de años luz, dado que sólo la luz dentro de esta distancia ha tenido tiempo de llegar hasta nosotros desde el Big Bang.
Algunos modelos han sido explorados y el resultado hallado es que en cada uno de esos mini-universos, puede haber muchas cosas diferentes; pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la naturaleza, pudiendo unos albergar la vida y otros no.
El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferencias en mini-universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los mini-universos como el nuestro? Existen, como para todos los problemas planteados, diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista. Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la gravedad-cosmos) y la mecánica cuántica de Planck (el cuanto-átomo), no será posible contestar a ciertas preguntas.
Cuando nos introducimos en el “universo” de la teoría de cuerdas, parece como si estuviéramos entrando en otro mundo fuera de este nuestro, allí, se pueden ver cosas asombrosas que no podemos observar en nuestro mundo y nuestra capacidad de apreciación se deja escapar esas once dimensiones en las que, apaciblemente pueden convivir sin estridencias, la mecánica cuántica con la relatividad general.
Aunque no todos la entiendan la teoría de cuerdas tiene un gancho tremendo. Te transporta a un mundo de 11 dimensiones, universos paralelos, y partículas formadas por cuerdecitas casi invisibles vibrando a diferentes frecuencias. Además, te dice que no se trata de analogías sino de la estructura más profunda de la realidad, y que ésta podría ser la teoría final que unificara por fin a toda la física. ¿No estaremos hablando de Filosofía?
¿Estará hecho el Universo de cuerdas vibrantes?
Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, sólo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10, 11 ó 26 dimensiones. Allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del universo y de las fuerzas que en él actúan.
Científicamente, la teoría del hiperespacio lleva los nombres de Teoría de Kaluza-Klein y supergravedad. Pero en su formulación más avanzada se denomina Teoría de Supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo: diez dimensiones. Así pues, trabajando en dimensiones más altas, esta teoría del hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas. Como el Santo Grial de la , la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida.
Un Universo de “cuerdas” y de “Agujeros de Gusano”
Es cierto, los mejores siempre han buscado el Santo Grial de la Física. Una Teoría que lo pueda explicar todo, la más completa que, mediante una sencilla ecuación, responda a los misterios del Universo. Claro que tal hazaña, no depende siquiera de la inteligencia del explorador que la busca, es más bien un problema de que las herramientas necesarias (matemáticas) para hallarla, aún no han sido inventadas.
Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al cosmos: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil. Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado. Sin embargo, la teoría del hiperespacio permite la posibilidad de explicar todas las fuerzas de la naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante. En esta teoría del hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo. De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del hiperespacio.
Antes mencionábamos los universos burbujas nacidos de la inflación y, normalmente, el contacto entre estos universos burbujas es imposible, pero analizando las ecuaciones de Einstein, los cosmólogos han demostrado que podría existir una madeja de agujeros de gusano, o tubos, que conectan estos universos paralelos.
Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el hiperespacio puede proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos, de la muerte de este universo cuando al final llegue el frío o el calor.
Esta nueva teoría de supercuerdas tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas. Podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de gusano que unan partes distantes de nuestro universo. Por desgracia, los resultados son desalentadores. La energía requerida excede con mucho cualquier cosa que pueda existir en nuestro planeta. De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos. Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Qué aún tardará mucho? Sí, pero el tiempo es inexorable, la debacle del frío o del fuego llegaría.
Línea de Universo
No existen dudas al respecto, la tarea es descomunal, imposible para nuestra civilización de hoy, ¿pero y la de mañana?, ¿no habrá vencido todas las barreras? Creo que el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, sólo necesita tiempo: Tiempo tenemos mucho por delante si las cosas no se tuercen para nuestra especie y la Naturaleza no se ensaña con nosotros de alguna manera. Y, si es así…
¿Sabremos aprovecharlo? Lo cierto es que nuestra osadía no tiene límites. No hemos podido solucionar -todavía- como llegar a esa primera fracción de tiempo que reside más alla del Tiempo de Planckc y estamos hablando de universos paralelos y otras cuestiones que estarán después de aquella primera que nos queda por resolver. Siempre ha sido así, sin terminar una cosa nos hemos pasado a otras y, por eso, precisamente, vamos algo embarullados y tenemos ese caos mental que no nos deja ver… ¡lo sencillo!
“En Cosmología, las condiciones “iniciales” raramente son absolutamente iniciales, pues nadie sabe como calcular el estado de la materia y el espacio-tiempo antes del Tiempo de Planck, que culminó alrededor de 10-43 de segundo Después del Comienzo del Tiempo.”
Es verdaderamente encomiable la pertinaz insistencia del ser humano por saber, y, en el ámbito de la Astronomía, desde los más remotos “tiempos” que podamos recordar o de los que tenemos alguna razón, nuestra especie ha estado interesada en saber, el origen de los objetos celestes, los mecanismos que rigen sus movimientos y las fuerzas que están presentes. También en el extremo opuesto, estamos buscando para ver si, finalmente, encontramos esos otros universos.
Si comparamos el Tiempo que la Humanidad (como hombre y mujeres verdaderos), lleva en éste mundo, en relación al Tiempo del Universo… ¡Es sólo el tiempo en el que ojo parpadea! Es mucho el camino que nos queda por andar… ¡Si no lo estropeamos nosotros mismos! ¡Ojo con la Inteligencia Artificial!
Claro que, nosotros, los Humanos, llevamos aquí el tiempo de un parpadeo del ojo si lo comparamos con el Tiempo del Universo. Sin embargo, nos hemos valido de todos los medios posibles para llegar al entendimiento de las cosas, incluso sabemos del pasado a través del descubrimiento de la vida media de los elementos y mediante algo que denominamos datación, como la del Carbono 14, podemos saber de la edad de muchos objetos que, de otra manera, sería imposible averiguar. La vida de los elementos es muy útil y, al mismo tiempo, nos habla de que todo en el Universo tiene un Tiempo marcado. Por ejemplo, la vida media del Uranio 238 sabemos que es de 4.000 millones de años, y, la del Rubidio tiene la matusalénica vida media de 47.000 millones de años, varias veces la edad que ahora tiene el Universo.
Sin embargo, seguimos sin saber qué fue lo que pasó antes del Tiempo de Planck y, si existen otros universos.
emilio silvera
Feb
23
¿La Naturaleza? ¡Simetría dentro de la Diversidad!
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (6)
Nuestro mundo (aunque en la Galaxia existan muchos parecidos), es un lugar privilegiado que conforma un Ecosistema superior en su conjunto formado por muchos ecosistemas locales aislados los unos de los otros y sin embargo, todos conexionados. La Diversidad de regiones diferentes que existen dentro del mismo planeta es asombrosa y, lo mismo nos podemos encontrar en un lugar como ese que vemos arriba, o en una isla paradisíaca, una selva, un desierto, o perdidos en un inmenso y embravecido océano, en la ventisca de nieve de inmensas montañas y, también, en grutas enormes en las profundidades del planeta.
Pero todos esos climas diferentes son el resultado de la diversidad y, en cada uno de esos lugares ocurren cosas y, la vida, aunque parezca imposible, está allí presente. Es la consecuencia de que el planeta Tierra esté situado en la zona habitable del Sol, ni demasiado cerca para que la vida perezca achicharrada, ni demasiado lejos para que resulte congelada por el frío.
Esto está presente en el planeta de la Vida (al menos el único que hasta el momento conocemos)
Aquí el agua discurre líquida y cantarina por multitud de lugares y hace posible que, entre el preciado líquido y los rayos del Sol que nos envían la luz y el calor necesarios para la fotosíntesis y la vida… ¡Podamos estar aquí!
Todos sabemos que la materia en nuestro Universo adopta muchas formas distintas: Galaxias de estrellas y mundos que, en alguna ocasión, pueden incluso tener seres vivos y algunos han podido evolucionar hasta adquirir la consciencia. Sin embargo, no me quería referir a eso que es bien sabido por todos, sino que, trato de pararme un poco sobre una curiosa propiedad que la materia tiene en algunas ocasiones y que, la Naturaleza se empeña en repetir una y otra vez: ¡La Simetría!
Las Galaxias espirales, la redondez de los mundos, las estrellas del cielo, los árboles y las montañas, los ríos y los océanos, las especies animales (incluida la nuestra) que, se repiten una y otra vez y, en general, salvando particularidades, todas repiten un patrón de simetría.
Es una maravilla que todo esto exista en nuestro mundo. Y, lo curioso del caso es que, cuando decimos mundo pensamos en algo muy grande ¡Es un Mundo! Sin embargo, si nos detenemos a pensar, podremos comprobar con asombro que, ese mundo “inmenso”, es sólo una mota de polvo en el contexto de la Galaxia, lo que nos lleva a recapacitar sobre lo grande y lo pequeño, ya que, todo es relativo y, al ver que en nuestro minúsculo mundo existen tantas cosas y suceden también infinidad de sucesos.
Recuerdo aquí aquel pensamiento de Paul Valery en el que nos decía:
Paul Valery
“El Universo está construido según un plan cuya profunda simetría está presente de algún modo en la estructura interna de nuestro intelecto.”
La Naturaleza está llena de simetrías
La simetría es una propiedad universal tanto en la vida corriente, como desde un punto de vista matemático desde el quehacer de la Física Teórica. En realidad, lo que observamos en la vida corriente es siempre lo repetitivo, lo simétrico, lo que se puede relacionar entre sí por tener algo común. Es siempre lo mismo dentro de una inmensa diversidad formada por grupos iguales.
En un sentido dinámico, la simetría podemos entenderla como lo que se repite, lo reiterativo, lo que tiende a ser igual. Es decir, los objetos que, por mantener la misma geometría, son representativos de otros objetos. En el Caos matemático encontramos concepción de la simetría en el mundo los fractales. Sin embargo, la simetría es mucho más. Hay distintas maneras de expresarla: “Conjunto de invariancias de un sistema”, podría ser una de ellas. Al aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado, la simetría es estudiada matemáticamente usando teoría de grupos. Algunas de las simetrías son directamente físicas. Algunos ejemplos son las reflexiones y las rotaciones en las moléculas y las translaciones en las redes cristalinas.
Aquí hay mucho más de lo que a simple vista parece
La sucesión de Fibonacci, la fórmula matemática que explica la Naturaleza. Los hindúes ya conocían su existencia y su relación con el mundo.
La suma de los dos números anteriores dará el siguiente
“El universo entero se puede explicar con las matemáticas”. Es cierto que los números están presentes en nuestro día a día, pero ver la Naturaleza a través de ellos resulta complicado. Sin embargo, el ejemplo más claro para entender esta afirmación es la sucesión de Fibonacci. Esta ecuación, muy sencilla en esencia, ha sido capaz de traspasar el firmamento y llegar al universo.
Los físicos teóricos también se guían en sus investigaciones por motivaciones estéticas tanto como racionales. Poincaré escribió: “Para hacer ciencia, es necesario algo más que la pura lógica”. Él identificó ese elemento adicional como la intuición, que supone “el sentido de la belleza matemática”. Heisenberg hablaba de “la simplicidad y belleza de los esquemas matemáticos que la Naturaleza nos presenta”.
Einstein y Poincaré
Figura dominante de la escuela alemana de álgebra, la matemática Emmy Noether sentó una de las piedras angulares de la física teórica moderna al demostrar la relación entre simetrías y cargas conservadas.Dichos teoremas relacionaban las simetrías de un sistema físico con sus leyes de conservación. Gracias a ellos, principios fundamentales como la conservación de la energía o el momento pasaron a entenderse como consecuencia de simetrías.Los teoremas de Noether fueron el resultado de sus investigaciones para aclarar ciertas cuestiones de la teoría de la relatividad general. Hoy, las simetrías constituyen una guía fundamental en la construcción de toda teoría física.
La simetría está presente por todas partes y, cada objeto, tiene la suya que siempre, está relacionada con la de otro de la misma especie. Hay simetrías que en física incluye todos los rasgos de un sistema físico que exhibe propiedades de la simetría – eso es, que bajo ciertas transformaciones, aspectos de esos sistemas son “incambiables”, de acuerdo a una observación particular. Una simetría de un sistema físico es un rasgo físico o matemático de un sistema que es preservado sobre cierto cambio.
En matemática, una transformación es un operador aplicado a una función tal que bajo esa transformación, ciertas operaciones sean simplificadas. En ejemplo, en la aritmética cuando se busca un algoritmo de números, el proceso de búsqueda es reducido a la suma de los algoritmos de cada factor.
Por ejemplo, veamos la invariancia de escala: En un recipiente con agua a punto de hervor, las burbujas de vapor, nucleadas en el fondo del recipiente, crecen, se liberan, y fluctúan hasta la superficie de donde se escapan para la atmósfera. A la temperatura de ebullición, el agua existe al mismo tiempo en dos fases distintas – líquido y gas – y a medida que las burbujas se forman las dos fases se separan en el espacio. Si cerramos el recipiente la temperatura de ebullición aumenta, como en una olla a presión. A medida que la presión aumenta, el sistema llega al punto crítico, donde las propiedades del líquido y del gas se vuelven idénticas. Por encima de esa temperatura, en el régimen supercrítico, dejan de existir dos fases distintas y existe apenas un fluido homogéneo.
Cerca del punto crítico, la materia fluctúa sin límites. Burbujas y gotas, unas tan pequeñas como unos cuantos átomos, otras tan grandes como el recipiente, aparecen y desaparecen, se unen y se separan. Exactamente en el punto crítico la escala de las mayores fluctuaciones divergen, pero el efecto de las fluctuaciones en escalas menores no es despreciable. La distribución de las fluctuaciones es invariable para transformaciones de escala.
De la figura se deduce que la teoría tiene una “simetría interna”: la figura no cambia cuando hacemos rotaciones en el plano definido por A y B. La invariancia es definida matemáticamente por transformaciones que dejan magnitudes sin cambio. Por ejemplo, la distancia entre dos puntos de un sólido que se mueve, pero no se deforma.
Simetrías locales y globales
Una simetría global es una simetría que sostiene todos los puntos en el tiempo-espacio bajo consideración, a diferencia de la simetría local que solo sostiene a un subconjunto de puntos.
YouTube
YouTube
En física, un lagrangiano es una función matemática a partir del cual se pueden derivar la evolución temporal, las leyes de conservación y otras propiedades importantes de un sistema físico, que son invariantes bajo ciertas transformaciones, cuando las transformaciones son realizadas en diferentes puntos del espacio-tiempo y están relacionadas linealmente – ellas tienen simetría global.
Por ejemplo, en toda teoría cuántica la fase global de una función de onda es arbitraria y no representa algo físico. Consecuentemente, la teoría es invariante bajo a cambio global de fases (Agregando una constante a la fase de todas las funciones de onda, en todos lados); esto es una simetría global. En la electrodinámica quántica, la teoría es también invariante bajo un cambio local de fase, es decir, que se puede alterar la fase de todas las funciones de onda tal que la alteración sea diferente en cada punto del espacio-tiempo. Esto es una simetría local.
También se habla de ruptura de simetrías temporales en la física de partículas.
Los físicos creen también que están en el camino correcto porque, de algún modo que no pueden explicar, tienen la convicción de que son correctas, y las ideas de simetría son esenciales para esa intuición. Se presiente que es correcto que ningún lugar del Universo es especial comparado con cualquier otro lugar del Universo, así que los físicos tienen la confianza de que la simetría de traslación debería estar las simetrías de las leyes de la Naturaleza. Se presiente que es correcto que ningún movimiento a velocidad constante es especial comparado con cualquier otro. De modo que los físicos tienen confianza en que la relatividad especial, al abrazar plenamente la simetría entre todos los observadores con velocidad constante, es una parte esencial de las leyes de la Naturaleza.
Se dice que esta ecuación de Euler es la más bella conocida. Aunque son muchas las ecuaciones que podríamos traer aquí y que son de todos conocidas y han quedado como símbolos en la historia de las matemáticas, la de Euler, es posible que por su elegancia y simplicidad, le pueda ganar a las demás en belleza. Ahí, en ese sencillo conjunto, los números más significativos de las matemáticas se abrazan: o, 1, e, π, y la unidad imaginaria i .
Si se fijan en la fórmula, en ella aparecen los 5 números más importantes en la historia de las matemáticas. El 0 y el 1 que, entre otras aportaciones a esta disciplina, son famosos por ser elementos neutros y, por lo tanto, indispensables en las operaciones de suma y producto; los números π y e, posiblemente, los dos irracionales más famosos (junto con φ, la razón aúrea) que existen (y que nos permiten hacer el chiste aquel de que la parte más irracional de nuestro cuerpo es el pi-e); y la unidad imaginaria, i, cuyo valor es
Dirac nos hablaba de ecuaciones bellas. La estética es, evidentemente, subjetiva, y la afirmación de que los físicos buscan la belleza en sus teorías tiene sentido sólo si podemos definir la belleza. Afortunadamente, esto se puede , en cierta medida, pues la estética científica está iluminada por el sol central de la simetría.
Pensamientos asombrosos
Las simetrías nos la muestran por todas partes
La simetría es un concepto venerable y en modo alguno inescrutable y no podemos negar que tiene muchas implicaciones en la Ciencia, en las Artes y sobre todo, ¡en la Naturaleza! que de manera constante nos habla de ella. Miremos donde miremos…¡allí está!
El físico chino-norteamericano Chen Ning Yang ganó el Nóbel de Física por su en el desarrollo de una teoría de campos basada en la simetría y, aún afirmaba: “No comprendemos todavía el alcance del concepto de simetría”. Es lógico pensar que, si la Naturaleza emplea la simetría en sus obras, la razón debe estar implicada con la eficacia de los sistemas simétricos.
En griego, la palabra simetría significa “la misma medida” (syn significa “juntos”, como en sinfonía, una unión de sonidos, y metrón, “medición”); así su etimología nos informa que la simetría supone la repetición de una cantidad medible. Pero la simetría los griegos, también significaba la “la debida proporción”, lo que implicaba que la repetición involucrada debía ser armoniosa y placentera, como de hecho, resultan ser en las imágenes que arriba contemplamos. Asi, la Naturaleza nos está indicando que una relación simétrica debe ser juzgada por un criterio estético superior.
Muchos de nosotros, la mayoría, conocimos la simetría en sus manifestaciones geométricas de aquellas primeras clases en la Escuela Elemental, más tarde en el arte y, finalmente, la pudimos percibir en la Naturaleza, en el Universo y en nosotros mismos que, de alguna manera, somos de ese Universo de simetría.
Los planetas son esféricos y, por ejemplo, tienen simetría de rotación. Lo que quiere indicar es que poseen una característica -en caso, su perfil circular- que permanece invariante en la transformación producida cuando la Natuiraleza los hace rotar. Las esferas pueden Hacerse rotar en cualquier eje y en cualquier grado sin que cambie su perfil, lo cual hace que sea más simétrica.
La clave de la belleza está en la simetría
La simetría por rotación se encuentra en los pétalos de una flor o en los tentáculos de una medusa: aunque sus cuerpos roten, permanecen iguales. La simetría bilateral que hace que los lados derecho e izquierdo sean iguales y se presenta en casi todos los animales, incluido nosotros. Pero es uniendo estos aspectos se obtienen figuras realmente armoniosas. Si se trata de desplazamiento y rotación en un mismo plano hablamos de una espiral, mientras que en el espacio sería una hélice, aunque ambas se encuentran por todas partes en la naturaleza.
Las simetrías se generan mediante las fuerzas que actúan sobre los cuerpos, descritas por leyes rigurosas e inequívocas, como una fórmula matemática y dependen de la existencia de fuerzas distintas que actúan en diversas direcciones. Si éstas permanecen en equilibrio, no hay preferencia alguna hacia arriba o abajo, a la derecha o a la izquierda, y los cuerpos tenderán a ser perfectamente esféricos, como suele ocurrir en el caso de virus y bacterias, las estrellas y los mundos… las galaxias. Además, cuando el aspecto no es el de una esfera perfecta, la Naturaleza hará todo lo posible para
acercarse a esta.
La simetría también están presentes en nuestros cerebros
¿Sería posible que la simetría material tuviera un paralelismo en la abstracción intelectual que son las leyes físicas? luego hace falta un esfuerzo mental considerable para pasar de lo material a lo intelectual, pero cuando se profundiza en ellla, la conexión aparece. En la naturaleza existen muchas cosas que nos pueden llevar a pensar en lo complejo que puede llegar a resultar entender cosas que, a primera vista, parecían sencillas.
Me explico:
Fijémonos, por ejemplo, en una Flor de Girasol y en las matemáticas que sus semillas conllevan. Forman una serie de números en la que cifra es la suma de las dos precedentes (por ejemplo 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233…) se denomina, en términos matemáticos, sucesión de Fibonacci, una ley que se cumple incluso en el mundo vegetal, como hemos podido comprobar en las semillas del girasol, dispuestas en espiral y que respetan ésta fórmula. La podemos ver por todas partes.
Lo mismo ocurre con otros ejemplares de la diversidad del mundo de las plantas
En el mundo inorgánico las leyes de la cristalización del agua congelada, determinadas por las fuerzas que actúan entre las moléculas, hacen que los cristales adopten formas que son infinitas y varían con respecto a un tema común: la estrella de seis puntas. Sin embargo, los planetas son esféricos porque han nacido en la primordial que rodeaba al Sol, atrayendo materia indiferentemente de todas partes.
Claro que, en la Naturaleza, nada ocurre porque sí, todo tiene su por qué, y, todo lo que en ella podemos contemplar posee una funcionalidad que está directamente relacionada con su mecánica, con el medio en el que habita, con lo que el Universo espera que haga en su medio y, para ello, dota a figura con aquellos “trajes” que mejor les permita realizar aquello para lo que están destinados.
Vamos a generalizar un paso más el concepto de simetría, planteándonos si es posible que una ley física se cumpla en cualquier lugar. ¿En cualquier lugar… de dónde?, ¿de nuestra ciudad?, ¿de nuestro planeta? No: del universo. Una ley que fuera válida en cualquier lugar del universo sería una ley simétrica respecto al espacio. Se cumpliría dondequiera que se hiciese un experimento para comprobarla.
Fíjense que nuestra idea de simetría se va haciendo más compleja y más profunda. no nos detenemos en ver si la forma material de un objeto es simétrica, ni de si la escritura de una fórmula matemática es simétrica. Ahora nos preguntamos si una ley física es válida en todo el Universo.
La otra simetría interesante para una ley física es la que se refiere al tiempo. Cierta ley física se cumple ; ¿antes también?, ¿se cumplirá pasado algún tiempo? Una ley que fuera cierta en cualquier instante de la historia del universo sería una ley simétrica respecto al tiempo.
Lo que nos preguntamos es: ¿son simétricas o no las leyes de la física?
Hasta donde alcanzan nuestras medidas, las leyes físicas (y, por tanto, la interacción gravitatoria) sí son simétricas respecto al espacio y respecto al tiempo. En cualquier lugar y momento temporal del universo, la Naturaleza se comporta igual que aquí y ahora en lo que se refiere a estas leyes.
Esta simetría es un arma muy poderosa para investigar hacia el pasado y hacia el futuro, ya que nos permite suponer (y, en la medida en que confiemos en la seguridad de la simetría,conocer) locales donde jamás podremos llegar por la distancia espacial y temporal que nos separa de muchas partes del universo. Así, por ejemplo, gracias a esta simetría, podemos calcular que el Sol lleva 5.000 millones de años produciendo energía y que le quedan, probablemente, otros 5.000 millones hasta que consuma toda su masa. Esto lo podemos aventurar suponiendo que en ese enorme tramo de 5.000 + 5.000 = 10.000 millones de años las leyes físicas que determinan los procesos mediante los cuales el Sol consume su propia masa como combustible (las reacciones nucleares que le permiten producir energía), fueron, son y serán las mismas aquí en el Brazo de orión donde nos encontramos como en los arrabales de la Galaxia Andrómeda donde luce una estrella como nuestro Sol que, también envía luz y calor a sus planetas circundantes, y, por muy lejos que podamos mirar, siempre veremos lo mismo.
Por tanto, en cierto modo, la simetría se vuelve tan importante o más que la propia ley física.
La regularidad de las formas de la Naturaleza se refleja incluso en la cultura humana, que desde siempre intenta inspirarse en el mundo natural conformar su propio mundo. Existen hélices en las escaleras de palacios, castillos y minaretes y en las decoraciones de esculturas y columnas. Las espirales abundan en los vasos, en los bajorrelieves, en los cuadros, en las esculturas en los collares egipcios, griegos, celtas, precolombinos e hindúes e, incluso, en los tatuajes con los que los maoríes neozelandeses se decoran el rostro.
¿Tenía en mente Leonardo la proporción áurea a la hora de realizar su obra maestra? Afirmarlo resultaría aventurado. Menos polémico es aseverar que el genio florentino concedía gran importancia a la relación entre la estética y la matemática. Dejaremos la cuestión en el aire por el momento, no sin antes mencionar que Leonardo realizó las ilustraciones de una obra de contenido estrictamente matemático, escrita por su buen amigo Luca Pacioli, llamada “De divina proportione”, es decir, “La divina proporción”.
Fuente de esta imagren y texto: Fernando Corbalán
La búsqueda de la perfección geométrica y de las propiedades matemáticas pueden ser una guía importante en el estudio científico del mundo. Paul Dirac, una de los padres de la moderna mecánica cuántica, solía decir que “si una teoría es bella desde el punto de vista matemático, muy probablemente es también verdadera”.
A todo esto, no debemos olvidar que todo, sin excepción, en nuestro Universo, está sometido a la Entropía que nos trae el paso inexorable de eso que llamamos “Tiempo”, y que, convierte perfectas simetrías de joven belleza, en deteriorados objetos o entidades que, nos viene a recordar que nada es perpetuo, que todo pasa y se transforma. Claro que, de alguna manera, todo vuelve a resurgir.
La belleza que atrae, rara vez coincide con la belleza que enamora
Un dolor que llevo dentro de mí es el no poder contemplar la verdadera belleza que estándo presente en los seres vivos inteligentes, en la mayoría de los casos, se nos queda oculta a nuestra percepción, toda vez que esa clase de belleza, que no podemos ver pero sí percibir, sólo la podemos captar con el trato y la convivencia y, verdaderamente, tengo que admitir que, algunas bellezas que he tenido la suerte de poder “ver con los ojos del espíritu”, llegan a ser segadoras, deslumbrantes, su explendor es muy superior al de la estrella más brillante del cielo, y, seguramente (estoy seguro) como a muchos de ustedes les pasa, tengo la suerte de tenerla junto a mí desde hace muchos años. y, si pienso en ello en profundidad y detenimiento, no tengo más tremedio que concluir que es ese brillo y esplendor el que me da la fuerza para seguir cada dia en la dura lucha que nos ha participar.
¡Sí que es importante la Belleza! Dirac tenía toda la razón. Y, no digamos las Simetrías que indican con el dedo de la Naturaleza el camino a seguir a muchos físicos que quieren desvelar sus secretos.
emilio silvera