viernes, 24 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Sí, siempre nos gustó hablar del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Estrellas Masivas I: ¿Quién dijo que la masa no era importante?Estudian estrellas masivas con ayuda de infrarrojos

“El estudio de las estrellas masivas con técnicas de interferometría infrarroja abrió una nueva área de estudio de estos objetos”

El Universo siempre nos sobrepasó. Cuando llegamos a tener consciencia de su grandeza empezamos a descubrir algunos de sus secretos y de cómo se comportaba la Naturaleza para construir mundos y estrellas, del inmenso trabajo que las estrellas estaban realizando para convertir la Materia más sencilla (el Hidrógeno), en otros elementos más complejos y pesados a través de la fusión nuclear y de las explosiones de  Supernovas que mediante mecanismos imposibles de imaginar, transformaban las estrellas en objetos de exóticas características como las enanas blancas en el centro de las Nebulosas planetarias, las estrellas de Neutrones, púlsares y magnetares y, si la estrella era muy masiva, su final sería convertirse en agujero negro.
Evolución De Las Estrellas: Origen, Nacimiento, Evolución Y Muerte
De todos esos mecanismos y de muchos más, hemos podido saber a base de observar y experimentar, siguiendo el método científico que nos lleva hacia la realidad de las cosas, sin importar, cuán lejos estén en la escala de los extremos -lo infinitesimal del átomo y mucho más allá, o, la lejanía de miles de millones de años-luz de las galaxias situadas en el universo profundo-. De todo eso, han surgido cientos de miles de planetas que orbitan estrellas formando sistemas planetarias y, en no pocos de ellos, la vida estará presente.

 

El pensamiento “generalizado” hoy en día en la mayoría de los astrónomos, astrofísicos y demás científicos afines a la ciencia del Universo, es que, pueden existir miles de planetas habitados dentro de nuestra propia Galaxia, la Vía Láctea. Ahora sabemos que el Universo no conoce límite alguno ni en el Espacio ni en el Tiempo que, según todos los indicios, ha estado expandiéndose durante 13.700 millones de años que, es un período de tiempo más que suficiente para que las estrellas que han existido desde entonces, tuvieran el tiempo necesario para producir todos los elementos que conocemos y que hicieron posible el surgir de la vida aquí en la Tierra y…probablemente, en “otras Tierras” que en la Galaxia Vía Láctea estén, y, de la misma manera, en los miles de millones de galaxias que pueblan el vasto universo que hemos llegado a conocer.

Más allá de la meta-galaxia, a la que pertenecen todos los sistemas galácticos que conocemos, tienen, necesariamente, que existir otros mundos que, como el nuestro, estén habitados por seres de toda índole y pelaje, inteligentes también. La meta-galaxia consta de hiper-galaxias, es decir, de grupos de sistemas galácticos. Nuestro sistema galáctico cuenta con dos “satélites”: la Gran Nebulosa de Magallanes, distante 38.000 Parsec de nosotros y la Pequeña Nebulosa de Magallanes, a 36.000 Parsecs. La Nebulosa de Andrómeda es un sistema compuesto por cinco galaxias. Por lo general existen “puentes” de estrellas entre galaxias que constituyen un grupo. Se podría decir que que los grupos de galaxias estarían unidos por hilos de estrellas de manera tal que, muchas veces, nos cuesta trabajo asegurar a qué galaxia pertenece una estrella determinada.

http://apod.nasa.gov/apod/image/1108/NGC7331_crawford900c.jpg

Tengo la suerte de que, Ken Crawford (Rancho Del Sol Obs.), me envíe regularmente imágenes que obtiene en su Observatorio, y, en esta ocasión, recibí la imagen de la gran y bella galaxia espiral NGC 7331 que es a menudo vendida como una análoga a nuestra Vía Láctea. Está situada a 50 millones de años luz de distancia en la norteña constelación de Pegaso. En la imagen podemos vislumbrar otras galaxias que achican su imagen debido a que sus distancias están mucho más alejadas de nosotros.

Gravitationell-lins-4

El cúmulo de galaxia Abell 1.689 situado a 2 mil millones de años-luz de nosotros en la constelación de Virgo. Crédito: NASA / ESA

Coma Berenices (constelación) - EcuRed

La Constelación de Virgo cuenta con más de 3.000 galaxias, la Cabellera de Berenice con más de 10.000. Las super-galaxias tienen un diámetro de 30 o 40 mega-parsecs. No conocemos el número exacto de super-galaxias cuyos conjuntos constituyen las mega-galaxias. Y, sin embargo, la meta-galaxia es sólo una pequeña fracción del “universo infinito” de un universo que, para nuestro tiempo, se podría decir que existe desde la eternidad y que existirá también eternamente (aunque sabemos que no es así), al menos nos lo puede parecer.

Nuestro Universo está cuajado de maravillas como ésta. La Galaxia de la rueda de la carreta (también conocido bajo el nombre de ESO 350-40) es una galaxia lenticular o anular situada a cerca de 500 millones de años luz de distancia en la constelación del escultor en el hemisferio meridional. Es rodeada de un anillo de 150 000 años de luz de diámetro, compuesto de estrellas jóvenes y brillantes. Esta galaxia era una galaxia idéntica a la Vía láctea antes de que sufriera una colisión frontal con una galaxia vecina.

galaxia cal

 

Crédito imagen: ESA / Hubble & NASA 


Está situada a unos 500 millones de años luz de distancia en la constelación de Escultor, la curiosa y espectacular forma  que tiene es fruto una violenta colisión galáctica, dejándole una forma parecida a una rueda de carro.

Una galaxia más pequeña pasó a través de ella y produjo ondas de choque que barrieron el gas y el polvo. El anillo más externo de la galaxia, que es 1,5 veces el tamaño de nuestra Vía Láctea, marca el borde de la onda de choque. Para apreciarla mejor podemos verla también en diferentes longitudes de onda:

galaxy

Créditos imagen: Chandra, Galex, Hubble y Spitzer.

Cuando galaxia vecina atravesó la Galaxia Cartwheel, la fuerza de la colisión causó una onda de choque poderosa sobre la galaxia, como una piedra echada en las tranquilas aguas de un estanque. Desplazándose a gran velocidad, este onda de choque barrió el gas y el polvo, creando así un halo alrededor de la parte central de la galaxia quedada indemne. Esto explica la nube azul alrededor del centro, la parte más brillante que forma como un collar de “perlas” que, en realidad, son estrellas radiando con furia en el ultravioleta de más energía.

Observando la imagen con su collar de perlas azulado compuesto por brillantes y radiantes estrellas, nos hablan de una ingente producción de elementos complejos que, en el futuro, pasarán a formar parte de mundos nuevos y, en ellos, con el tiempo, surgirá también la vida nueva de vaya usted a saber qué criaturas.

La NASA descubre un planeta del tamaño de la Tierra que podría albergar vida

 

El Universo es tan inmenso que, encontrar algo en él, es como aquella aguja del pajar que perdimos. Es como encontrar una aguja en un pajar universal. Investigadores de la NASA han localizado un planeta del tamaño de la Tierra que podría ser habitable. Nombrado Kepler-186f, el planeta está a 490 años-luz de distancia. Pero en la búsqueda de mundos similares al nuestro, nada ha estado tan cerca.

El fin del telescopio espacial Kepler y su legado | portalastronomico.com

“Este es el primer definitivo planeta con tamaño similar a la Tierra que ha sido hallado en una zona habitable alrededor de otra estrella”, dijo Elisa Quintana, del Instituto de Búsqueda de Inteligencia Extraterrestre (SETI, por sus siglas en inglés) de la NASA. “Encontrar ese tipo de planetas es un objetivo primordial del telescopio espacial Kepler”.

astronomersa

 

Zona de la galaxia estudiada por el telescopio espacial Kepler

 

En aquella primera rueda de prensa del equipo del telescopio espacial Kepler dentro de las jornadas dedicadas a mostrar los resultados de unas de las misiones más prolíficas y apasionantes de los últimos años dentro de la exploración espacial, se dijo que eran muchos los  datos por analizar, quizás los más interesantes, pero el dato que dieron en aquel mismo momento… ¡resultó demoledor! … basándose en análisis estadísticos de todas las observaciones del telescopio (que abarcan casi 4 años de datos), se estimó que una de cada cinco estrellas parecidas a nuestro Sol tienen al menos un planeta del tamaño de la Tierra con una temperatura en superficie permisiva con la vida.

El telescopio Kepler halla un serio aspirante a gemelo del planeta TierraKepler, el telescopio de la NASA que ha detectado más exoplanetas

El telescopio Kepler, de la Nasa, revela en zona habitable un planeta del  tamaño de la Tierra – Actualidad AeroespacialLa NASA anuncia que el telescopio Kepler dejará de funcionar - Ciencia

El Universo, amigos míos,  es una maravilla, y, cualquier objeto que podamos mirar nos podrá llevar al más alto grado de estaxis. A mí me pasó con la luna Titán que vista a contraluz por la nave Cassini en órbita alrededor de Saturno. La atmósfera dispersa la luz del Sol mostrando un anillo completo mientras se filtra por las capas más altas. En este pequeño mundo de ríos de metano y atmósfera imposible, se han puesto altas esperanzas de que, en un futuro, pudiera surgir allí la vida. Es similar a nuestra Tierra de hace algunos millones de años.

 

Desde la superficie de Titán podríamos tomar ésta instantánea de Saturno. ¿Quién sabe las maravillas que nos esperan cuando, de verdad, podamos dominar los viajes espaciales? Lo cierto es que aquel pequeño reportaje (3 de septiembre) del planeta Saturno y el repaso a sus “lunas” más importantes, sobre todo Titán, es una simple muestra de lo poco que sabemos de nuestro propio Sistema solar en el que, tenemos muchas maravillas por descubrir y muchas sorpresas reservadas.

El cúmulo de galaxias MACS J0717 localizado a 5400 millones de años luz, en una imagen lograda combinando datos ópticos del Hubble y en rayos-x del Chandra, muestra a cuatro cúmulos colisionando. Si hemos podido llegar hasta aquí, una voz en nuestra mente pregunta: ¿Hasta dónde podremos llegar?

La galaxia NGC 55, fotografiada por el observatorio de La Silla utilizando el Wide Field Imager del telescopio de 2.2 metros MPG/ESO. ¿Cuántos mundos estarán ahí presentes? y, ¿tendrá alguno presencia de vida?

Arp 261, un par de galaxias localizadas a 70 millones de años luz, fotografiadas por el instrumento FORS2 del VLT en Cerro Paranal. La riqueza de la imagen nos puede llevar (mediante un estudio profundo) a saber lo mucho que en ella está presente, estrellas surgidas de inmensas nubes de gas interestelar, mundos nuevos llenos e promesas futuras y, otros, más viejos que, pudieran tener los vestigios de Civilizaciones perdidas.

http://chandra.harvard.edu/photo/2009/medusa/medusa.jpg

NGC 4194, la Galaxia Medusa, el resultado de la colisión entre dos galaxias, mostrada con datos ópticos del Telescopio Hubble y datos en rayos-x del Telescopio Chandra. La imagen nos habla de vestigios que están en el universo y nos cuentan dramáticas historias de galaxias que dejaron de existir para convertirse en otra nueva que, conteniendo materiales más complejos que aquellas primarias, hacen posible el surgir de estrellas cuyos materiales son más sofisticados que el simple hidrógeno, y, de esas estrellas descendientes de algunas generaciones anteriores…qué materiales podrán salir?

ESA - Primavera en el polo sur de Marte

European Space Agency

Hemos podido admirar, la región de Rupes Tenuis fotografiada por la Mars Express de la ESA, mostrando gran cantidad de nieve sobre el polo marciano. Marte, el planeta hermano, nos tiene que dar muchas sorpresas y, a no tardar mucho (menos de 30 años), podremos por fín cobrar la apuesta del café que hice con algunos amigos sobre si había o no alguna clase de vida en aquel mundo.

Grupo Galáctico Hickson 90 | Imagen astronomía diaria – Observatorio |  MENADEL PSICOLOGÍA Clínica y Transpersonal Tradicional (Pneumatología)

El trío de galaxias Hickson 90, un grupo compacto localizado en la constelación de Piscis Austrinus a 100 millones de años luz del Sol. Fotografiado por el Telescopio Espacial Hubble. Viendo objetos como los de arriba, podríamos preguntarnos: ¿Cuándo dejará de sorprendernos el Universo? ¡Es tanta su riqueza!

Tycho's Supernova Remnant

La supernova de Tycho, localizada en Cassiopeia y mostrada en una imagen tomada en rayos-x por el telescopio Chandra y en luz infrarroja por el telescopio Spitzer. No por haberla visto muchas veces deja de sorprendernos, esa masa inmensa que, como remanente de los restos de una estrella masiva, nos muestra los filamentos de plasma que crean campos magnéticos a su alrededor sin importar el tiempo transcurrido desde el suceso. En dicha explosión se produjeron miles de toneladas de oro y platino que regaron el espacio interestelar para formar parte, más tarde, de algún mundo perdido.

La siempre fascinante Eta Carinae está escondida detrás de una de las nebulosas más grandes y brillantes del cielo en una imagen tomada desde La Silla utilizando el ESO/MPG de 2.2 metros.

La fascinante historia de 'Eta Carinae', la estrella que explotó en 1838 y  se convirtió en la segunda más brillante de la galaxia

Expulsa material para no morir por su propia radiación

Aquí contemplamos parte de la Nebulosa, la estrella, una de las más grandes conocidas (unas 100 masas solares) parece que está a punto de explotar, y, sus consecuencias, podrían ser impredecibles.

M101

La galaxia espiral M 101, localizada a 22 millones de años luz, en una imagen compuesta por datos del telescopio Chandra, el telescopio Hubble y el telescopio Spitzer. La bella y enorme galaxia está cuajada de estrellas nuevas y otras que no lo son tanto. El conjunto parece una luminaria de feria, la radiación que se expande por toda la galaxia no parece que sea un lugar muy segurio. Prefiero nuestra Vía Láctea.

Unusual spiral NGC 4921 in the Coma Galaxy Cluster | ESA/Hubble

Credit:

NASA, ESA and K. Cook (Lawrence Livermore National Laboratory, USA)

Atípica y extraña Galaxia. Una nueva imagen del Telescopio Espacial Hubble revela finos detalles de la galaxia espiral NGC 4921 y los objetos circundantes de fondo. La diversidad en el Universo es la norma y, por mucho que podamos pensar en objetos extraños que puedan existir, ahí estarán.

Una imagen que combina luz visible y rayos-x muestra la actividad del agujero negro super-masivo en la galaxia Centaurus A. Los Agujeros Negros que pueden contener miles y millones de masas solares, son tan peligrosos que, nada de lo que deambule por sus alrededores estará seguro. Se engulle toda la materia que caiga en su radio de acción, su fuerza de gravedad es descomunal y, por mucho que queramos correr, nos atrapará. Ya sabéis, ni la luz es capaz de burlar su fuerza de atracción.

NGC 604

¡Increíble región de formación estelar! NGC 604, una zona formación estelar en la galaxia M 33. Imagen capturada en alta resolución por el telescopio espacial de rayos-x Chandra. No podéis ni imaginar la enorme cantidad de estrellas jóvenes y masivas que están ahí presentes, sus emisiones de radiación ultravioleta producen fuertes vientos solares que dibujan las formas de las nubes circundantes formando arabescas figuras de gas ionizado por el ultravioleta que tiñe de azul toda la región.

La variedad está servida, el prolífico Universo nos suministra de toda clase de objetos activos que, mediante transiciones de fase, pasen a convertirse en otros objetos distintos de lo que en un principio fueron. Nada permanece, todo se transforma. Es es la regla de oro que impone un Universo dinámico transformador  de materia en el espacio-tiempo infinito que nunca podremos dominar, y, si nos permite seguir en este maravilloso Sistema de Galaxias y mundos, podremos, en el futuro, conocer a nuestros hermanos inteligentes y, si las cosas salen como deberían salir, formaremos una Federación de mundos en la que, por fin, impere la igualdad para todos dentro de un clima de mutuo respeto y en el que, la sabiduría adquirida a través de muchas civilizaciones que fueron, nos habrá dado, ese algo del que ahora carecemos:

Somos los humanos extraterrestres del futuro?

Racionalidad y Temple, Sabiduría para poder discernir sobre lo que verdaderamente tiene valor y aquello que sólo es el falso brillo de la gloria y el poder que sólo puede traer destrucción y mal para muchos que, por fin, desaparecerá y nunca más estará presente en los confines del Universo. ¡Bonito sueño que, desgraciadamente, nunca podrá ser una realidad!

Esperemos que, observando el Universo y mirando dentro de nuestras Mentes, podamos llegar a comprender que, nuestro destino, no depende de nosotros pero sí, podremos mejorarlo si nuestro comportamiento contribuye a que las cosas sean mejores… ¡Para todos!

emilio silvera

El Universo Asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « fotones

 »

                                                             También esto forma parte del Universo

Y pensar que nuestra Galaxia, la Vía Láctea con todo el Grupo Local de galaxias, se mueve a 600 Km/s en relación a la radiación del fondo de microondas… ¡Es increíble! Ningún científico hasta el momento, podía tener en mente tal estimación dada por el último estudio realizado. Estamos viviendo en una nave espacial que se mueve a una buena velocidad. El Sol se mueve dentro de la Galaxia a una velocidad media de 220 km/s y la Tierra le acompaña en el recorrido al iguakl que todo el Sistema Solar. El Sol tarda 250 millones de años en dar una vuelta alrededor de la Galaxia. Así que desde que “nació” ha realizado el recorrido unas 20 veces.

 

Astronomía de rayos gamma - Wikipedia, la enciclopedia libre

 

“La astronomía en rayos gamma estudia los objetos más energéticos del universo y, desde sus comienzos hace apenas medio siglo, ha lidiado con un problema grave, que consiste en determinar de precisa y fidedigna la región de donde procede la radiación que llega a los detectores de rayos gamma, lo que permite a su vez averiguar el mecanismo a través del que se produce. Ahora, un grupo internacional liderado por astrónomos del Instituto de Astrofísica de Andalucía (IAA-CSIC) ha localizado, por primera vez sin la aplicación de modelos y con un grado de confianza superior al 99,7%, la región de la que surgió un destello en rayos gamma en el blázar AO 0235+164 y que permite conocer cómo se produjo.”

 

 

Detectadas nuevas ondas gravitacionales resultantes del choque entre dos agujeros  negros masivos | National Geographic

                            La sinfonía de los agujeros negros binarios  ¿La oirémos algún día?


Puesto que la curvatura-espaciotemporal es lo mismo que la gravedad, estas ondulaciones de curvatura son realmente ondas de gravedad, u ondas gravitatorias. La Teoría de la Relatividad General de Einstein predice, de forma inequívoca, que tales ondas gravitatorias deben producirse siempre que dos agujeros negros orbiten uno en torno al otro.

         Posible sistema binario de Agujeros Negros

Cuando se forma un par de agujeros negros binarios semejantes, cada agujero crea un pozo profundo (intensa curvatura espacio-temporal) en la superficie insertada y, a medida que los agujeros giran uno en torno al otro, los pozos en órbita producen ondulaciones de curvatura que se propagan hacia afuera a la velocidad de la luz. Las ondulaciones forman una espiral en el tejido del espacio-tiempo en torno al sistema binario, muy semejante a la estructura espiral del agua que procede de un aspersor de cesped que gira rápidamente. Los fragmentos de curvatura forman un conjunto de crestas y valles en espiral en el tejido espacio-temporal.

Sin temor a equivocarnos, podemos decir que, al día de la fecha, los agujeros negros siguen teniendo muchos secretos para la ciencia.

En las imágenes podemos contemplar galaxias que se fusionarán y, sus agujeros negros  centrales se harán gigantes después de cientos o miles de años “bailando” el uno alrededor del otro hasta consumar el “casamiento” y unificarse en otro mayor.

¿Cómo un agujero negro y su disco dar lugar a dos chorros que apuntan en direcciones opuestas? De una forma sorprendentemente fácil, reconocieron Blandford, Rees y Lynden-Bell en la Universidad de Cambridge a mediados de los setenta. Hay cuatro formas posibles de producir chorros; cualquiera de ellas funcionaria, y, aquí, donde se explica el no versado en estos objetos cosmológicos, sólo explicaré el cuarto método por ser el más interesante:

El Agujero es atravesado por la línea de campo magnético. el agujero gira, arrastra líneas de campo que le rodean, haciendo que desvíen el plasma arriba y hacia abajo. Los chorros apuntan a lo largo del eje de giro del agujero y su dirección está así firmemente anclada a la rotación giroscópica del agujero. El método fue concebido por Blandford poco después de que recibiera el doctorado de física en Cambridge, junto con un estudiante graduado de Cambridge, Roman Znajek, y es por ello llamado el proceso Blandford-Znajet.

Ahí estamos, como observadores del Espacio exterior y haciendo pruebas para vivir en el medio. De todas las maneras y según todos los indicios (si no la prorrogan), la Estación Espacial Internacional tiene sus días contados. Ya se está trabajando en la sustituta que, estará situada en la órbita de la Luna con la idea de, más tarde, construir allí la primera base espacial con miras a viajes más largos.

                  Seguimos esperando ese mensaje que… ¡nunca llega!

See Explanation.  Clicking on the picture will download
the highest resolution version available.

Mientras que con nuestros ingenios telescópicos cada vez mayores y con mejor tecnología, capturamos las imágenes de galaxias muy lejanas.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

                                                                       Venus desde la Tierra

See Explanation.  Clicking on the picture will download
the highest resolution version available. 

Nebulosa IC 4628 en la que el gas y el polvo interestelar hacen posible el nacimiento de nuevas estrellas, nuevos mundos y… ¿Quién sabe? Si Vida también en alguna de sus formas conocidas en nuestro planeta, o, conformada en diferentes formas en función de la gravedad y las condiciones de los planetas que pudieran estar orbitándo aquellas estrellas.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

Lo cierto es que nuestra vecindad es tranquila y ninguna estrella vecina nos amenaza con una explosión supernova ni tiene dimensiones y masa que nos puedan preocupar si llegara el final de sus días. Bien resguardaditos en el interior del Brazo de Orión, en un Sistema solar relativamente apacible, el tercer planeta a partir del Sol, la Tierra,  reluce en la secuencia principal enviando la luz y el calor necesarios para la vida a nuestro planeta que, situado en la zona habitable de la estrella, goza de una atmósfera ideal, de continentes de inmensa belleza y de mares y océanos que hace de nuestro mundo, la maravilla que es.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

Todo eso que antes comento, ocurre en una Galaxia espiral situada en un pequeño grupo de poco más de una treintena de galaxias en la que, ella, junto a su compañera Andrómeda, comanda a toda la familia de las que son las hermanas mayores. Nuestro mundo, la Tierra, está situado a 30.000 años-luz del centro de la galaxia que, como hemos podido comprobar, es un lugar peligroso en el que habitan agujeros negros gigantes que emiten radiación y absorben materia, es decir, que no serían nada buenos como vecinos.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

Aquí la tenemos, es nuestra casa ¡La Tierra! que, en el Sistema solar es un planeta más pero, con la suerte de haber caído en la zona habitable de la estrella que llamamos el Sol, en relación a la Galaxia Vía Láctea es un simple planeta como hay tantos, y, si la situamos en el contexto del Universo, es menos que un grano de arena de la playa de Punta Umbría en Huelva, ese lugar del que salió Colón para (re) descubrir América.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

Lo cierto es que nos encontramos en un Universo inmenso y precioso. Esta composición cósmica equilibra muy bien la Nebulosa de la burbuja en la parte inferior izquierda con el cúmulo estelar abierto M52 por encima de ella y hacia la derecha. La pareja estaría desequilibrada en otras escalas, sin embargo. Incrustado en un complejo de polvo interestelar y gas y soplado por los vientos de una sola, gran estrella de tipo O, la Nebulosa de la Burbuja, también conocida como NGC 7635, se encuentra a sólo 10 años luz de ancho. Por otro lado, M52 es un cúmulo abierto rico de alrededor de mil estrellas. El cúmulo se encuentra a unos 25 años luz de diámetro. Visto hacia el límite norte de Casiopea, las estimaciones de distancia de la Nebulosa de la burbuja y el complejo de nubes asociadas son alrededor de 11.000 años luz, mientras que el cúmulo estelar M52 se encuentra cerca de 5.000 años luz de distancia.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

Sí, desde la noche de los tiempos hemos mirado al cielo, buscando sus maravillas que siempre nos asombraron, primero al no poder entender cómo eran posible aquellos extraños fenómenos e increíbles objetos, y, más tarde, cuando pudimos comprender, al conocer las maravillas que podía realizar la Naturaleza valiéndose de fuerzas que, ni podemos imaginar.

Y, después de mucho pensar, llego a la conclusión de que, lo más asombroso del Universo es… ¡Que nosotros estemos aquí… Para poder describirlo!

emilio silvera

El Universo, la Diversidad, la Belleza, la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La galaxia anular de Hoag (A1515+2146) es un anillo de materia con estrellas jóvenes y azuladas que rodea a una galaxia esferoidal central sin traza de ninguna barra que conecte ambas, aunque como tienen el mismo corrimiento al rojo, deben estar a la misma distancia y deben estar relacionados entre sí. Las teorías actuales de formación galáctica permiten la formación de una galaxia anular siempre y cuando tenga una barra central. Se ha propuesto en el caso del objeto de Hoag que dicha barra se ha disuelto. Hay muchas galaxias anulares con anillos polares como NGC 6028 (que sí tiene una barra central) y UGC 6614 (ver más abajo, aunque no son imágenes tan detalladas como la del Telescopio Espacial Hubble).

Las azuladas estrellas orbitan alrededor del núcleo central de la Galaxia como si de un carrusel cósmico se tratara. En esa imagen que vemos las estrellas jóvenes emiten radiación ultravioleta que ioniza el material circundante de las nebulosas de las que surgieron, allá en la lejanía y ocultos por la inmensa infinitud de mundos y otros exóticos objetos que en la imagen captada por el Hubble no podemos ver.

                          Remanente de Supernova

Imagen de la galaxia compacta azul con formación estelar IIZw71 y espectro de la región central con la identificación de las líneas de emisión de neón y argón.

Local Group.JPG

Enana Irregular de Sagitario (SagDIG).             Datos de observación

Existen Galaxias con bajo brillo superficial (LSB): Tipo de galaxia cuya densidad de estrellas es tan baja que es difícil detectarla frente al fondo del cielo. Se desconoce la proporción de galaxias con bajo brillo superficial en relación a las galaxias normales, pudiendo representar una parte significativa del universo. Muchas de estas débiles galaxias son enanas, situadas particularmente en cúmulos de galaxias; algunas son tan masivas como las grandes espirales, por ejemplo, Malin-1.

El Universo de Ayar y el Universo de Hoy : Blog de Emilio Silvera V.

Galaxia con envoltura: Galaxia espiral rodeada por débiles arcos o capas de estrellas, situados a ángulos rectos con respecto a su eje mayor.  Pueden observarse entre una y veinte capas casi concéntricas, aunque incompletas. Se disponen de manera que capas sucesivas puedan aparecer normalmente en lados opuestos de la galaxia. Alrededor del 10% de las elípticas brillantes presentan envolturas, la mayoría de ellas en regiones de baja intensidad o densidad de galaxias. No se conoce ninguna espiral con una estructura de capas de ese tipo. Podrían ser el resultado de una elíptica gigante que se come una compañera.

Esta burbuja, fotografiada y examinada conjuntamente por la NASA y la ESA, entre 2006 y 2010, parece flotar sin actividad, pero lo cierto es que vivió un pasado convulso. Dicha envoltura gaseosa se formó después de una explosión estelar. Se conoce por el nombre de SNR B0509-67.5 y tiene un diámetro de 23 años luz (cuatro veces la distancia que nos separa de la estrella más cercana: Próxima Centaury).

Galaxia anular polar - Wikipedia, la enciclopedia libre

Galaxia de anillo polar: Raro tipo de galaxia, casi siempre una galaxia lenticular, que tiene un anillo luminoso de estrellas, gas y polvo orbitando sobre los polos de su disco. Por tanto, los ejes de rotación del anillo y del disco forman casi un ángulo recto. Dicho sistema puede ser el resultado de una colisión, una captura de por maneras, o la unión de una galaxia rica en gas con la galaxia lenticular.

Hay un artículo muy interesante que propone analiza en detalle una galaxia con anillo polar y presenta una explicación bastante coherente y que a mí me parece bastante natural. Se trataría de galaxias tipo SBa(R) en la que los dos brazos espirales se han unido hasta confundirse en un anillo y el bulbo y la gran barra central han evolucionado hasta formar una galaxia de tipo S0 central. La explicación me gusta porque no alude a colisiones galácticas, para las que uno esperaría un resultado mucho menos simétrico, ni a dinámicas gravitatorias exóticas. Por supuesto, queda por clarificar por qué la conexión entre la barra central y el anillo se ha perdido.

Disco galáctico - Wikipedia, la enciclopedia libre

Hay Galaxias de disco: Tipo de galaxia cuya estructura principal es un delgado disco de estrellas con órbitas aproximadamente circulares alrededor de su centro, y cuya emisión de luz típicamente disminuye exponencialmente con el radio. El término se aplica a todos los tipos de galaxias que no sean elípticas, esferoidales enanas o algunas galaxias peculiares. El disco de las galaxias lenticulares contiene muy poco material interestelar, mientras que los discos de las galaxias espirales e irregulares contienen cantidades considerables de gas y polvo además de estrellas.

Galaxy NGC 3621 | Espacio y astronomía, Imágenes del universo, Telescopio  espacial hubble

                                                               La brillante galaxia NGC 3621

Galaxia de tipo tardío: Galaxia espiral o irregular. El nombre proviene de la posición convencional de estas galaxias en el diagrama diapasón de los tipos de galaxias. Por razones similares, una galaxia espiral Sc o Sd pueden ser denominadas espiral del tipo tardío, en contraposición a una espiral Sa o Sb de tipo temprano.

Descubren estrellas desbocadas en una galaxia monstruosa del universo  temprano

Galaxia de tipo temprano: Galaxia elíptica o lenticular: una sin brazos espirales. El hombre proviene de la posición de las galaxias en el diagrama diapasón de las formas de las galaxias. Por razones similares, una galaxia Sa podría ser referida como una espiral de tipo temprano, en contraposición a una espiral Sc o Sd de tipo tardío.

Enana Elíptica de Sagitario

Se podría continuar explicando lo que es una galaxia elíptica, enana, compacta azul, esferoidal enana, espiral (como la Vía Láctea), espiral enésima, espiral barrada, interaccionante, irregular, lenticular, peculiar, starburst, primordiales… etc, sin embargo, creo que ya se ha dejado constancia aquí de los datos necesarios para el que lector tenga una idea de lo que es una galaxia. Así que decido finalizar el apartado de galaxias, reflejando un cuadro del Grupo Local de galaxias en el que está situada la nuestra.

En todas estas galaxias que arriba podemos contemplar, existen estrellas binarias de cuyo estudio obtenemos datos fascinantes y podemos llegar a conocer mejor la dinámica del Universo. Ejemplo de una estrella binaria, donde dos cuerpos con masa similar orbitan alrededor de un centro de masa en órbitas elípticas.

Ejemplo de una estrella binaria, en donde dos cuerpos con una pequeña diferencia de masa orbitan alrededor de un centro de masa.

Binarias astrométricas: En este tipo de sistemas dobles sólo es visible un componente de la estrella. Se detectan que son binarias gracias al “tirón” gravitatorio ejercido por su compañera invisible. Esto produce un movimiento oscilatorio respecto al fondo de estrellas fijas que puede ser medido por técnicas de paralaje si está lo suficientemente cerca, ya que este tipo de cálculos se realiza en estrellas aproximadamente entre los 10 parsecs, a distancias menores el ángulo de paralaje no existe o es tan pequeño, que los cálculos no se pueden realizar. Como las binarias visuales, las astrométricas requieren prolongados períodos de observación.

Hemos creado modelos del origen del Universo que están muy extendidos al coincidir sus predicciones con la observación. Así de momento hemos aceptado que en su inicio el Universo era algo extremadamente denso y de infinita energía que, al explosionar, se expandió y de la radiación intensa se paso la era de las partículas y más tarde, al enfriarse paulatinamente, a la de la materia para que comenzara, millones de años más tarde, a formarse las primeras estrellas. Se liberaron los fotones y el Universo se hizo transparente, es decir, se hizo la luz.

Qué es la radiación de fondo de microondas? | Conexión causal

La Radiación del fondo de microondas ha venido a corroborar tal teoría del Big Bang.  la densidad y temperatura de la materia y la radiación en el Universo decrecieron continuamente a medida que el Universo se expandía. Esta expansión puede continuar para siempre o puede un día invertirse en un estado de contracción, volviendo a pasar por condiciones de densidad y temperaturas cada vez mayores hasta llegar al Big Crunch en un tiempo finito de nuestro futuro. Este escenario evolutivo tiene la característica clave de que las condiciones físicas en el pasado del Universo no eran las mismas que las actuales o las futuras. Hubo épocas en que la vida no podía existir porque había demasiado calor para los átomos; hubo épocas previas a las estrellas y habrá un tiempo en el que todas las estrellas hayan muerto. En este escenario hay un intervalo preferido de la historia cósmica durante el que es más probable que los observadores evolucionen por primera vez y hagan sus observaciones del Universo.

http://2.bp.blogspot.com/-PjrWdqTYdKw/Ts0cyDoemcI/AAAAAAAAHfI/TxAlPjfSv9M/s1600/alma_guisard_rec.jpg

Todo eso, si es que realmente fue así, también implicaba que hubo un comienzo para Universo, un tiempo pasado antes del cuál éste (el propio tiempo) no existía, pero no decía nada al respecto de el por qué o al dónde de este comienzo. Todo quedaba oculto en el más profundo de los misterios y, nadie ha podido llegar a ese tiempo que marca la frontera que está situada en esa fracción de segundo, más allá del tiempo de Planck, en el cual los cosmólogos, para tapar su ignorancia, han puesto una singularidad lo mismo que ahora han colocado la materia oscura para explicar la expansión.

Universo

El Universo estacionario sostiene que el Universo nunca tuvo un origen, sino que siempre existió de la misma manera como lo conocemos hoy.

El escenario alternativo creado por Bondi, Gold y Hoyle estaba motivado en parte por un deseo de evitar la necesidad de un principio (o un posible final) del Universo. Su otro objetivo era crear un escenario cosmológico que pareciera de promedio siempre el mismo, de modo que no hubiera instantes privilegiados en la historia cósmica.

El gráfico de abajo indica la velocidad de alejamiento de las galaxias en función de sus distancias. La pendiente de la recta de “La constante de Hubble

Horizontalmente: la medida de la distancia es proporcionada por la luminosidad de las galaxias más brillantes de diferentes grupos. Verticalmente: velocidades en Km. por segundo. Las diferentes curvas describen la relación velocidad distancia en función de la densidad supuesta del universo (en unidades de densidad crítica). Cuanto más denso es el universo, tanto más a la izquierda se sitúa la curva en el dibujo. La comparación con los puntos observados muestra que la densidad real es tres veces inferior a la densidad crítica. La cuirva más baja es la esperada en un universo estacionario.

Claro que dicho escenario, al principio parece imposible de conseguir. Después de todo, el Universo se está expandiendo. Está cambiando, de modo que, ¿cómo puede hacerse invariable? La visión de Hoyle era la de un río que fluye constantemente, siempre en movimiento pero siempre igual. Para que el universo presente la misma densidad media de materia y el mismo ritmo de expansión, independientemente de cuándo sea observado, la densidad debería ser constante.

Por qué se expande el Universo?El fluido oscuro del universo | El HuffPost

Estrella - Wikipedia, la enciclopedia libreAsí evolucionó el Universo durante 13.000 millones de años | Ciencia | EL  MUNDO

                       Una especie de “Sustancia Cósmica” que es la semilla de la materia

Él propuso que, en lugar de nacer en un instante pasado, la materia del universo se creaba continuamente a un ritmo que compensaba exactamente la tendencia a que la densidad sea diluida por la expansión. Este mecanismo de “creación continua” sólo tenía que ocurrir muy lentamente para conseguir una densidad constante; sólo se requería aproximadamente un átomo por metro cúbico cada diez mil millones de años y ningún experimento ni observación astronómica sería capaz de detectar un efecto tan pequeño.

2-teoría del estado estacionario - Explorando el conocimiento▷ ¿Que es la teoría del estado estacionario?

Teoria De Estado Estacionario by Marcus ColemanTeoria del Estado Estacionario - YouTube

Esta teoría del “estado estacionario” del Universo hacía predicciones muy precisas. El Universo parecía el mismo de promedio en todo momento. No había hitos especiales en la historia cósmica: Ningún “principio”,  ningún “final”, ningún momento en que empezaran a formarse las estrellas o en el que la vida se hiciera posible por primera vez en el Universo. Claro que, finalmente, esta teoría quedó descartada por una serie de observaciones iniciadas a mediados de la década de 1950 que mostraba en primer lugar que la población de galaxias que eran emisores profusos de radioondas variaba significativamente a medida que el Universo envejecía.

universo nasa 2010

La culminación de todo aquello llegó cuando en el año 1965 se descubrió la radiación térmica residual del comienzo caliente predicho por los modelos del Big Bang. Esta radiación de fondo de microondas no tenía lugar en el Universo en estado estacionario. Durante veinte años los astrónomos trataron de encontrar pruebas que dijeran si realmente el universo estaba realmente en el estado estacionario que propusieron Bondi, Gold y Hoyle.

Un sencillo argumento antrópico podría haber demostrado lo poco posible que sería ese estado de cosas. Si uno mide el ritmo de expansión del Universo, da un tiempo durante el que el Universo parece haber estado expandiéndose. En un Universo Big Bang éste es realmente el tiempo transcurrido desde que empezó la expansión: la edad del Universo. En la teoría del estado estacionario no hay principio y el ritmo de expansión es tan sólo el ritmo de expansión y nada más.

Foto: Dr. Naoki Yoshida, Nagoya University, Japón, vía Science-AAAS

La simulación por ordenador pone ante nuestros ojos la formación de aquellas primeras estrellas que, no comenzaron a brillar en la secuencia principal hasta pasados 400 millones de años después del comienzo del Tiempo.

Las primeras estrellas se formaron millones de años después del (supuesto) big bang. Eran enormes, pesadas, y muy calientes. Brillaron con furia, vivieron rápido y murieron jóvenes. Fueron las responsables de la creación de los primeros agujeros negros en el Universo y también, de la creación de los primeros elementos pesados y más complejos que el hidrógeno y el Helio.

En una teoría del Big Bang, el hecho de que la edad de expansión sea sólo ligeramente mayor que la edad de las estrellas es una situación natural. Las estrellas se formaron en nuestro pasado y por ello deberíamos esperar encontrarnos en la escena cósmica una vez formadas, dado que, los elementos necesarios para la vida, se forjaron en los hornos nucleares de las estrellas calientes que fusionaron aquella primera materia más simple en otras más complejas.

Estrellas de carbono - Cielos BorealesEstrellas de Carbono | Mundo Secreto Amino

Se necesita mucho tiempo para que las estrellas fabriquen Carbono a partir de gases inertes como el Hidrógeno y el Helio. Pero no basta con el tiempo. La reacción nuclear específica que se necesita para hacer Carbono es una reacción bastante improbable. Requiere que se junten tres núcleos de Helio para fusionarse en un único núcleo de Carbono. Los núcleos de Helio se llaman partículas alfa, y esta reacción clave para formar Carbono ha sido bautizada como el proceso “triple alfa”.

Diagrama del proceso triple-α

Precisamente fue Fred Hoyle el que descubrió todo aquel complejo proceso de fabricación de Carbono en las estrellas. Él se unió a un grupo de investigadores que estaban trabajando sobre la cuestión de la relativa abundancia de elementos en las superficies de las estrellas. En conjunto, estructuraron un exhaustivo estudio de los elementos que se acumulan en los núcleos estelares. En un denso trabajo que publicaron en Octubre de 1957 en Review of Modem Physics, bajo el título de “Síntesis de los elementos de las estrellas”, lograron explicar la abundancia de prácticamente todos los isótopos de los elementos desde el Hidrógeno hasta el Uranio.

Formación de elementos : Blog de Emilio Silvera V.

Descubrieron que las estrellas, en la medida que van gastando su combustible nuclear, transmutan el Hidrógeno en Helio; el Helio a Carbono y Oxígeno; y así sucesivamente, subiendo hasta llegar hasta los más pesados de la Tabla Periódica. En las explosiones de las supernovas se crean mucho de los elementos más pesados, incluidos el platino, el oro y el uranio. El trabajo que fue un inmenso logro científico, no sólo explicó la síntesis de todos los elementos más allá del Hidrógeno, sino que predijo su formación exactamente en las mismas proporciones que ocurrían en el Universo. Pero quedó por explicar la cuestión del Hidrógeno: Cómo se genera el combustible inicial de las estrellas.

Así, en las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético Big Bang donde se formaron los elementos más simples: El Hidrógeno (que nunca hemos podido llegar a saber cómo se formó), Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos  simples ¿en el big bang? y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas.  Abajo un gráfico de la Necleosíntesis estelar.

Estaba explicando el proceso triple alfa que es el proceso por el cual tres núcleos de helio  (partículas alfa) se transforman en un núcleo  de carbono. Esta reacción nuclear de fusión sólo ocurre a velocidades apreciables a temperaturas por encima de 100 000 000 kelvin y en núcleos estelares con una gran abundancia de helio. Por tanto, este proceso sólo es posible en las estrllas más viejas, donde el helio producido por las cadenas protónprotón y el ciclo CNO se ha acumulado en el núcleo. Cuando todo el hidrógeno presente se ha consumido, el núcleo se colapsa hasta que se alcanzan las temperaturas necesarias para iniciar la fusión de helio.

4He + 4He ↔ 8Be

Diagrama del proceso triple-α

8Be + 4He ↔ 12C

Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio.

Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y hacia el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado hacia afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.

Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la forma de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caído en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.

Hablar del Universo, algo tan grande que se escapa a nuestra comprensión, nos llevaría tanto tiempo que finalizar el trabajo sería casi imposible, así que, habiendo dado una sencilla vuelta por algunos de los sucesos y objetos que en él están presentes, aquí lo dejamos. Sin embargo, de todo estos sucesos se derivan objetos múltiples de diversidad muy rica que adorna y embellece todo el espacio interestelar con la inmensa cantidad de objetos que lo adornan a lo largo de millones y millones de año luz de espacio.

Un rico abanico de Nebulosas que se configuran en función de la masa inicial de la estrella que las formó al eyectar material al final de sus vidas. Estrellas masivas supergigantes que, comparadas con nuestro Sol son enormes objetos que lo contienen más de cien veces y consumen hidrógeno a velocidad de vértigo como si quisiera convertirse en agujero negro en el menor tiempo posible. Diversidad de mundos, explosiones supernovas, sistemas planetarios, cúmulos y supercúmulos de galaxias…

                                                                         Crédito  NASA/ESA

que se fusionan por la fuerza de la gravedad que hace que se atraigan las unas hacia las otras como vemos en el conocido “aglomerado de galáxias Quinteto Stefan“, de cuya imagen podemos deducir de manera fácil las transiciones de fase que se producen en esta clase de fusiones de grandes galaxias, de donde surgen miles de millones de estrellas nuevas, se destruyen y nacen nuevos mundos y, finalmente, el complejo nuevo creado se convierte en una galaxia mayor, supergigante.

Explosiones de estrellas que finalizan sus vidas convirtiéndose en estrellas de neutrones o púlsares. Los Púlsares son fuentes de ondas de radio que vibran con periodos regulares. Se detectan mediante radiotelescopios.  Los estudios indican que un púlsar es una estrella de neutrones pequeña que gira a gran velocidad. El más conocido está en la nebulosa de Cangrejo.  Su densidad es tan grande que, en ellos, la materia de la medida de una bola de bolígrafo tiene una masa de cerca de 100.000 toneladas. Emiten una gran cantidad de energía.  El campo magnético, muy intenso, se concentra en un espacio reducido. Esto lo acelera y lo hace emitir un haz de radiaciones que aquí recibimos como ondas de radio.

Las pulsares fueron descubiertas en 1967 por Anthony Hewish y Jocelyn Bell en el observatorio de radio astronomía en Cambridge. Se conocen más de 300, pero sólo dos, la Pulsar del Cangrejo, y la Pulsar de la Vela, emiten pulsos visibles detectables. Se sabe que estas dos también emiten pulsos de rayos gamma, y una, la del Cangrejo, también emite pulsos de rayos-X.

“El 16 de marzo de 2013 se cumplió medio siglo del descubrimiento de que los cuásares eran objetos extragalácticos muy brillantes y a enormes distancias de nosotros. Este descubrimiento fue consecuencia del desarrollo pionero de la Radioastronomía y del estudio cuidadoso de los espectros ópticos de unas misteriosas “fuentes casi-estelares”. En la actualidad sabemos que el proceso que genera un cuásar es un agujero negro súper-masivo en el centro de una galaxia.”

La medida de sus desplazamientos al rojo espectroscópico,  indicaban que estaban a grandes distancias de la Tierra. El primer cuásar estudiado, 3C 273 está a 1.500 millones de años luz de la Tierra y se han descubierto cuásares a 12.000 millones de años luz de la Tierra, es decir, cuásares que son casi tan viejos como el mismo universo.

Y, pasados los diez mil primeros millones de años, cuando las estrellas habían crwado los materiales necesarios para que eso fuese posible, surgieron los primeros indicios de la presencia de vida en el Universo, Se asentaron en mundos como la Tierra y, en moléculas que se juntaron para formar células vivas surgidas de un protoplasma primordial… ¡Dio comienzo la aventura de la vida que, tantos secretos esconde y que tratamos de desvelar!

Muchas veces hemos oído hablar de la datación del Carbono y, el sistema de datación radiométrica más conocido es el proporcionado por el 14C, o Carbono 14, un isótopo raro de Carbono que se produce en natural por acción de los rayos cósmicos y antropogénicamente por bombas nucleares. Se desintegra en Nitrogeno (14N) con una vida media de 5.730 años. Como el Carbono 14 es tan poco común (menos de uno de mil átomos de Carbono) y su vida media es tan corta, la datación con radio carbono queda limitada a los últimos cien mil años, aproximadamente.

Las trazas de vida primitiva han sido borradas por la geología, el fluir de las aguas, los UV y por la propia evolución de la vida, los cambios…del Oxígeno, de la atmósfera, etc.

En los materiales más antiguos simplemente no queda suficiente 14C que pueda medirse con precisión. Por consiguiente, el 14C proporciona una herramienta de datación valiosa para egiptólogos o para paleontólogos interesados en Mamuts lanudos, pero no sirve para desentrañar la historia profunda de la Tierra que sus secretos muy bien guardados en lo más profundo de los tiempos.

Cratón de Pilbara | Amigos de los Dinosaurios y la PaleontologíaBlog de Emilio Silvera V.

Cómo pudo surgir la Vida? ¡Es todo tan complejo! : Blog de Emilio Silvera V.Blog de Emilio Silvera V.

                                                                  El grupo Warrawoona

En el Cinturón de Pilgangoora el Grupo Coonterunah de 3.517 millones de años y las granulitas de Carlindi (3.484-3.468 millones de años son la razón fundamental del Grupo Warrawoona bajo un desajuste de erosión, aportando así pruebas de la antigua corteza continental . La Cúpula del Polo Norte (NPD) se encuentra a 10 kilómetros del Grupo Warrawoona.

Son células que se agrupan en colonias formando rocas sedimentarias. Estas rocas se encuentran en mares cálidos y son el resultado de la unión de seres unicelulares, cianobacterias. Las rocas se forman muy lentamente, capa sobre capa y una capa se muere se deposita el carbonato de calcio de sus paredes sobre la capa anterior.

ROCAS SEDIMENTARIAS by Paola Patti - issuuEntre amigos: Sedimentos y estratos

En el Grupo Warrawoona (3.400-3.500 millones de años) se encontraron estructuras sedimentarias que se identificaron como producidas por la actividad de organismos por William Schopf. Debido a identificación, se consideraron esos restos como la huella de vida más antigua de la que se tiene constancia. Son poco comunes (sólo se han encontrado, además de en Warrawoona, en el Supergrupo Pongola , de 2.700-2.500 millones de años, y en el Grupo de Bulawayan de Rhodesia, de 2.800 millones de años), por lo que no se puede estar seguro de que los organismos que los formaran fueran fotosintéticos y tampoco se pueden sacar conclusiones claras acerca de los ambientes en que se formaron.

Parque nacional de Yellowstone - Wikipedia, la enciclopedia libreThe Ultimate Yellowstone National Park Travel Guide | Outside Online

Yellowstone National Park | Plan Your Trip to Yellowstone10 Things You May Not Know About Yellowstone National Park - HISTORY

                                                                  En el Parque de Yellowstone

Ciertas bacterias no fotosintéticas forman estructuras similares a estromatolitos en fuentes termales de Yellowstone, por lo que existe la posibilidad de que bacterias similares formaran las estructuras estromatolíticas arcaicas.

Estos restos de Warrawoona incluyen microfósiles filamentosos y cocoides muy parecidos a cianobacterias, lo que ha inducido a pensar en la existencia de organismos fotosintéticos aeróbicos.

Son muchas las teorías científicas que, a lo largo de la historia han tratado de explicar el origen de la vida en la Tierra. Ya Aristóteles (384 – 322 aC), en la antigua Grecia, propuso una hipótesis: que la vida surgió por generación espontánea. Esta idea sería rebatida por los experimentos científicos de Louis Pasteur (1822 – 1895). Ahora sabemos que de donde no hay nada puede surgir, sabemos que los elementos se crearon en las estrellas que, en explosiones supernovas son expandidos por todo el universo. Sabemos que esos elementos depositados en mundos bien situados en las zonas habitables de sus estrellas, pueden llegar a constituirse en estructuras complejas de las que pueden surgir, formas de vida poco evolucionadas que, con el tiempo, se transforman en complejas y, en algunos casos, en miles de millones de años de evolución, pasando por fases que las hace ser una vez una cosa y más tarde otra… ¡Pueden llegar hasta la consciencia de Ser!

           Sí, muchas son las cosas que no sabemos

Son muchas las cosas que no sabemos y, palabras que empleamos de manera cotidiana de cosas que sabemos para que sirven, como por ejemplo la energía, no sabríamos explicar lo que es. Tampoco sabemos a ciencia cierta y en toda su extensión lo que la materia es, y, si nos referimos al Tiempo… ¿Qué es el Tiempo? ¿Existe en realidad o es una simple ilusión de la mente?

Mientras continuamos tratando se desvelar todos esos secretos, disfrutemos del El Universo,  de su rica Diversidad, de la Belleza que nos ofrece por todas part y, desde luego…,  ¡de la Vida! Que no hemos llegado a comprender.

emilio silvera

Espacio-tiempo curvo y los secretos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

 

La densidad de energía-momento en la teoría de la relatividad se representa por cuadritensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein.

 

Relatividad [Geometria del Espacio tiempo} - YouTubeLa Geometría del espacio-tiempo | abcienciadeLa teoría de la Relatividad y la geometría del espacio-tiempo - ppt  descargarAdán y Eva y el cono de luz pasado - Teancum

En teoría de la relatividad, el Cono de Luz es un modelo tridimensional de la dispersión cuadridimensional de la luz en el espacio-tiempo de Minkowski, esto es, de curvatura nula

 

Astrofísica y Física: Teoría de Einstein del espacio-tiempo curvadoDibujo20130828 black holes and holography - nature com - La Ciencia de la  Mula FrancisCómo influye la gravedad en el espacio-tiempo? - Gravedad

 

Esa aparente sencilla ecuación de Einstein nos habla de la geometría del espacio y, si tenemos que hacer justicia al gran pensador, habrá que reconocer que con su teoría de la Relatividad General nació la moderna cosmología. Sus ecuaciones no sólo nos habló de agujeros negros, también nos dice cómo funciona la Naturaleza, como es el Universo, las implicaciones que surgen de la presencia de materia en el espacio…

 

 

curvatura del espacio-tiempo by sandra tovar

 

 

Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la misma manera, en presencia de masa se distorsiona el espacio-tiempo. Estamos en un Universo dinámico en el que nada está quieto, todo se mueve, todo es energía. Las cosas se transforman y todo cambia. Lo que ayer fue un objeto brillante y luminoso, mañana pudiera ser un objeto oscuro y denso con una fuerza de atracción irresistible.

 

SEDA / LIADA - RedLIADA - Cursos LIADA - Cielo del Mes - Fenómenos  Astronómicos - RELEA

 Una estrella fugitiva

“Zeta Ophiuchi es una estrella azul de tipo espectral O9V situada a 458 años luz del sistema solar. Sin embargo, debido a nubes de polvo interestelar, una de las cuales es iluminada por ella formando una nebulosa de emisión catalogada como S27, tiene una apariencia rojiza, ya que la luz azul es absorbida por estas. De hecho, si no fuera por las nubes, Zeta Ophiuchi sería una de las estrellas más luminosas del cielo. Intrínsecamente 68 000 veces más luminosa que el Sol, es una de las estrellas más calientes, con una temperatura de 32 500 K. Con una masa 20 veces la masa solar, su edad se calcula en 4 millones de años, y se piensa que está en la mitad de su vida —compárese con los 4600 millones de años de edad que tiene el Sol—. Como la mayor parte de las estrellas luminosas, pierde masa por medio de un fuerte viento estelar que sopla a unos 1600 km/s. Dentro de unos pocos millones de años, explotará como una brillante supernova.”

 

Neutron Stars Linked to Celestial Runaway | Science

 

“Zeta Ophiuchi es una de las estrellas conocidas como estrellas fugitivas, expulsadas de un sistema estelar por la explosión de la estrella acompañante. En este caso, el remanente de su antigua compañera es la estrella de neutrones PSR J1932+1059, cuya explosión se produjo aproximadamente hace un millón de años. Al moverse a gran velocidad a través del espacio, está provocando mediante su viento estelar una onda de choque —al comprimir el gas y el polvo existentes en el medio interestelar—, sólo visible en el infrarrojo.”

 

Espacio-Tiempo Curvo de la Gravedad Cuántica | Textos Científicos

 

Donde es la masa invariante de la partícula, es la velocidad relativa de la partícula, G es la constante gravitacional, M la masa que crea el campo gravitatorio, r es el radio del campo gravitatorio donde se encuentra el observador de la partícula y c es la velocidad de la luz en el vacío.

 

Reseña: "Espacio-tiempo cuántico" de Arturo Quirantes - La Ciencia de la  Mula Francis

 

La teoría cuántica de campos en espacio-tiempo curvo es una extensión de la teoría cuántica de campos estándar en la que se contempla la posibilidad de que el espacio-tiempo por el cual se propaga el campo no sea necesariamente plano (descrito por la métrica de Minkouski).  Una predicción genérica de esta teoría es que pueden generarse partículas debido a campos gravitacionales dependientes del tiempo, o a la presencia de horizontes.

La teoría cuántica de campos en espacio-tiempo curvo puede considerarse como una primera aproximación de gravedad cuántica. El paso siguiente consiste en una gravedad semiclásica, en la que se tendrían en cuenta las correcciones cuánticas, debidas a la presencia de materia, sobre el espacio-tiempo.

File:3D coordinate system.svg

En un espacio euclideo convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundida o altura. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos la gravedad, la teoría de la relatividad  nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes “secciones espaciales” de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimensional.

From left to right: Einstein, Lorentz, Ehrenfest, Eddington, De Sitter. |  Personas

                 Einstein, Lorentz, Ehrenfest, Eddington,,,

En las teorías actuales no existe una razón clara para que el de dimensiones espaciales sean tres. Aunque existen ciertas instuiciones sobre ello: Ehrenfest (aquel gran físico nunca reconocido) señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo).

Es cierto que en nuestro mundo tridimensional y mental existen cosas misteriosas. A veces me pregunto que importancia puede tener un nombre. “¿Qué hay en un nombre? Lo que llamamos rosa,  con cualquier otro nombre ¿tendría el mismo dulce aroma?” (Shakespeare, Romeo y Julieta).  La rosa da sustento a muchos otros tópicos literarios: se marchita como símbolo de la fugacidad del tiempo y lo efímero de la vida humana; y provoca la prisa de la doncella para recogerla mientras pueda. Por otro lado, le advierte de que hay que tener cuidado: no hay rosa sin espinas.

Mi amada brilla cual estrella,

Su bello rostro refleja el resplandor de su Alma,

¿Cómo podría yo estar sin ella?

Si en su ausencia desaparece mi calma.

También el mundo de la poesía es un tanto misterioso y dicen, que… “Los poetas hablan consigo mismo en voz baja y el mundo les oye por casualidad.” Tópicos ascéticos, metafísicos o existenciales: Quiénes somos, de dónde venimos, a dónde vamos, las llamadas preguntas trascendentales, propias de la cosmología, la antropología y la metafísica. Los poetas siempre han buscado un mundo irreal y han idealizado el enaltecido mucho más allá de este mundo.

Como siempre me pasa, me desvío del tema que en este trabajo nos ocupa: El espacio-tiempo.

Elaboran un plan para detectar los agujeros de gusano en el espacio-tiempo  - RTLa teoría del " espacio-tiempo " ~ El Rincón de la Ciencia y la TecnologíaEl experimento: la paradoja del espacio-tiempo

Nuestra imaginación no ha podido inhibirse y, desbocada, elucubra con el Tiempo y busca caminos que lo puedan acortar para ir lejos, muy lejos del mundo, allá donde habitan otras estrellas

Estamos inmersos en el espacio-tiempo curvo y tetradimensional de nuestro Universo. Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar.

La materia tiene memoria : Blog de Emilio Silvera V.LÍNEA DEL TIEMPO SOBRE EL ORIGEN DEL UNIVERSO by David Libreros

“Representación de la línea de universo de una partícula. Como no es posible reproducir un espacio-tiempo de cuatro dimensiones, en la figura se representa solo la proyección sobre 2 dimensiones espaciales y una temporal.”

El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

La introducción por parte de Minkouski de la idea espaciotemporal resultó tan importante es porque permitió a Einstein utilizar la idea de geometría espaciotemporal para formular su teoría de la relatividad general que describe la Gravedad que se genera en presencia de grandes masas y cómo ésta curva el espacio y distorsiona el tiempo.

La NASA distorsiona el tiempo y el espacio en un agujero negro – eju.tv

                             La NASA distorsiona el tiempo y el espacio en un agujero negro

En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. Hemos llegado a comprender que es la materia, la que determina la geometría del espacio-tiempo.

En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano y Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.

El máximo exponente conocido del espacio-tiempo curvo, se podría decir que se da en la formación de los agujeros negros, donde la masa queda comprimida a tal densidad que se conforma en una singularidad, ese objeto de energía y densidad “infinitsas” en el que, el espacio y el tiempo desaparecen de nuestra vista y parece que entran en “otro mund” para nosotros desconocidos.

http://1.bp.blogspot.com/-TWYy8GMEeBI/TiKZMOfnoQI/AAAAAAAAOgo/HeVDOup_eC0/s1600/deformacion-espacio-tiempo.jpg

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

Mecánica cuántica - Wikipedia, la enciclopedia libreLa ecuación más bonita. – Vasos Comunicantes

Qué es la teoría de la relatividad especial? - Ambientum1 - Curso de Relatividad General - YouTube

Cómo está constituido el núcleo de los átomos? - Foro NuclearLos próximos ordenadores cuánticos necesitarán sólo un átomo | Tecnología -  ComputerHoy.com

Qué es el genoma?Reducen el genoma humano a 19.000 genes

El Universo podría estar plagado de «nubes» de pequeños agujeros negros  indetectablesAgujeros negros para principiantes - EXPANSIONTV

Nuevo estudio apoya la Constante Cosmológica de EinsteinPhotoelectric Effect

Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…

Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad– debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.

Gravedad cuántica, pesando lo muy pequeño (Tercera parte) - NaukasQue es la Gravedad Cuántica de Bucles? - CuriosaMente 129 - YouTube

Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender  que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fín, podremos tener una teoría cuántica de la gravedad.

Obstinados navegantes en océanos de incertidumbre: RECAPITULANDO SOBRE  AGUJEROS NEGROS

Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidad que podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.

 

 “Esta pretende ser la imagen de un extraño objeto masivo, un quásar  que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).”

Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.

Event Horizon Telescope recibió el Premio a la Innovación en Física  Fundamental - Enciclopedia UniversoAnimation Of One The Most Powerful Objects In Known Rocket GIF - LowGif

Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.

Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el Cosmos. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.

                                      Supernova 1987 A

El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.

La gravedad salvó al universo del colapso tras el Big BangEl lado oscuro del Universo | ctxt.es

Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espacio-tiempo y dibujar la geometría del universo.

Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- Imagen tomada por la NASA

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.

1 - Curso de Relatividad General - YouTubeExplicación de la teoría de la relatividad general de Einstein - VIX

Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividad general y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo. Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos npo han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negros descubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.

File:Apjlab0ec7f3 EHT-image-of-M87-black-hole.jpg

Imágenes de M87 realizadas por Event Horizon Telescope el 11 de abril de 2017 anteriores a su presentación de 2019

Se pudo captar un agujero negro real que refleja la imagen

Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercewr aspecto en la distorsi´pon espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrtededor del horizonte del agujero. Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.

Por qué el tiempo pasa más despacio cerca de un agujero negro? Caso  «Interstellar» – Ciencia de SofáEspacio-tiempo curvo y los secretos del Universo : Blog de Emilio Silvera V.

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividad general deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.

Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.

Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta  la extenuación:

“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado”  Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.

 

El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.

File:Cassini-science-br.jpg

Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debidad resulta engañosa poreque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.

¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recien llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!

emilio silvera

Venus el planeta imposible

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

FINANCIAL TIMES

Los astrónomos descubren indicios de vida en Venus

Retrieving from kaltura
VÍDEO | Venus contiene fosfina, un gas asociado con la vida.
Vida en Venus: qué es la fosfina, la sustancia tóxica y con mal olor que  encontraron en las nubes del planeta - BBC News Mundo
 Moléculas de fosdina

Han encontrado fosfina, una molécula que informa de la existencia de actividad biológica, en las nubes del planeta más cercano a la Tierra.

Los astrónomos han encontrado posibles señales de vida en la atmósfera superior del planeta Venus, el más cercano a la Tierra. Utilizando dos potentes telescopios, un equipo internacional de científicos ha detectado rastros de fosfina -una molécula que indicaría actividad biológica- en las nubes relativamente frías situadas a 60 kilómetros por encima de la superficie del planeta.

La dieta pesco-mediterránea con ayuno intermitente le hace bien al corazón

Algunos astrobiólogos llevan décadas especulando sobre la posibilidad de que las nubes de Venus contengan microbios aéreos, pero la idea ha recibido menos atención que la búsqueda de vida en otras partes del sistema solar, sobre todo en Marte o en las lunas de Júpiter y Saturno que contienen océanos debajo de sus superficies heladas. El equipo de astrónomos británicos, estadounidenses y japoneses publicó el descubrimiento de fosfina en la revista Nature Astronomy.

“Este fue un experimento que llevamos a cabo por pura curiosidad”, explica la profesora Jane Greaves de la Universidad de Cardiff, que ha liderado el proyecto. “Pensé que podríamos descartar escenarios extremos, como las nubes llenas de organismos. Cuando tuvimos los primeros indicios de fosfina en el espectro de Venus, fue una gran sorpresa”, sostiene.

Telescopio James Clerk Maxwell - Wikipedia, la enciclopedia libreDetectan en Venus fosfina, un gas que en la Tierra producen los seres vivos  - Fundación Descubre

El equipo utilizó por primera vez un espectrómetro del telescopio James Clerk Maxwell situado en Hawai para analizar la química de la atmósfera venusiana. Los resultados fueron confirmados por el observatorio ALMA en Chile.

Los científicos que no han participado en el proyecto han respondido con un entusiasmo contenido. LauraMcKemmish, de la Universidad de Nueva Gales del Sur, aseguró que “esta investigación marca el comienzo de una nueva era en la búsqueda de vida extraterrestre”.

“Debemos ser cautelosos porque los científicos aún no saben cómo explicar la abundancia observada de la molécula de fosfina en las condiciones de las nubes de Venus sin vida”, puntualizó.

Por qué debemos volver a Venus? - Ambientum PortalDESCUBREN POSIBLES SEÑALES DE VIDA EN PLANETA VENUS - Sentido Común

             Por la viciada  atmósfera del planeta el hallazgo ha causado una gran sorpresa

El equipo evaluó formas no biológicas que podrían haber generado fosfina en la atmósfera de Venus y descubrió que ningún fenómeno -erupciones volcánicas, relámpagos o reacciones fotoquímicas que involucran minerales de la superficie del planeta- podría haber producido hasta un 0,01% de los niveles detectados de fosfina.

En la Tierra algunas bacterias anaeróbicas producen cantidades importantes de fosfina, una molécula donde los tres átomos de hidrógeno están ligados a un átomo central de fósforo. También se genera de forma artificial en procesos industriales.

Cualquier microbio de Venus sería diferente a los de la Tierra. Venus tiene la superficie más caliente de cualquier planeta en el sistema solar, con temperaturas medias de más de 400º C. A sesenta kilómetros por encima de la superficie, donde se encontró la fosfina, la temperatura es de 30º, aunque el aire es tremendamente ácido. Los microbios podrían haber crecido dentro de las gotas líquidas en las nubes de Venus.