martes, 26 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Es tan grande el Universo! No, no estamos sólos

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 agujeros negros binarios ¿La oirémos algún día?

 

Archivo:BBH gravitational lensing of gw150914.webmLIGO: el detector que ha registrado 6 veces las ondas gravitacionales  predichas por Einstein - BBC News Mundo

“Simulación por computador del agujero negro binario detectado por LIGO, tal como se vería por un observador. Las estrellas en el fondo parecen rotar y moverse debido al enorme lente gravitacional generado mientras se distorsiona el espacio-tiempo alrededor del sistema.”

Según nos cuentan sí se ha podido oír (por fin) la sinfonía.

 

De otro mundo: 27 objetos espaciales muy extraños [fotos] - CNET en EspañolLos 10 megaobjetos más raros de nuestro Universo - Marcelo PedraDescubren que la galaxia más luminosa del universo se "alimenta" de cuerpos  celestes más pequeñosDetectan en el espacio 4 objetos con forma de anillo que emiten señales de  radio | Ciencia - La República

Detectan unos extraños objetos nunca antes vistos en el espacio –  InsurgentePress5 de las cosas más extrañas del universoEstudio de las Biomoléculas: Importancia de las BiomoléculasBIOMOLÉCULAS

 

Maravillas sin fin, extraños objetos que nos llevan a imaginar lo que podrían ser. Una figura que parece ser el ojo que nos vigila, o, moléculas y sustancias necesarias para la vida y mucho más podemos encontrar en nuestro Universo.

 

Pensar que estamos solos en el Universo “infinito”, es demasiado pretencioso y no creo que seamos “la especie elegida” ni nada parecido. En cientos de miles de mundos como el nuestro y parecidos, estarán presentes las más diversas criaturas que, en algunos casos tendrán entendimiento y en otros, como pasa en la Tierra, simplemente serán seres vivos vegetativos sin ninguna clase de conciencia, o, con una conciencia limitada.

Humano y chimpancé comparten el 99% del ADN - EcoDiario.es

La vida inteligente es algo extraño que aún no hemos sabido explicar. El chimpancé tiene el 98% de nuestra estructura genética, y, sin embargo, mientras nosotros hablamos de mecánica cuántica ellos siguen en la copa de los árboles, Según nos dicen los científicos, ambas especies (la humana y la chimpanée) tienen un ancestro común que no era ni Homo ni Pan, de él surgieron las dos ramos que divergieron cada cual a un destino diferente.

Poco esfuerzo mental tendriamos que hacer para vernos en ellos reflejados

Una característica sorprendente de nuestro retrato reconstruido del antepasado primitivo es su carácter moderno. Si este organismo lo encontráramos hoy, seguramente no delataría su inmensa antigüedad, excepto por sus secuencias de DNA. Tuvo que estar precedido, necesariamente, por formas más rudimentarias, estadios intermedios en la génesis de sistemas estructurales, metabólicos, energéticos y genéticos complejos que son compartidos por todos los seres vivos de hoy en día. Por desgracia, tales formas no han dejado descendientes igualmente primitivos que permitan su caracterización. carencia complica mucho el problema del origen de la vida.

La Tierra primitiva tuvo continentes y condiciones para la vida muy pronto  - AxxónReal Circulo de Labradores | 17 de enero, conferencia 'La Tierra primitiva  y el origen de la vida'

Aquella “bola” candente ae fue enfriando y en los océanos que se formaron se crearon aminoácidos

“Hace más de seis décadas, dos científicos realizaron un experimento con el que demostraron que los aminoácidos, aquellas moléculas indispensables para las proteínas, pueden formarse de manera espontánea simulando las condiciones primitivas de la Tierra. Con ello cobró mayor fuerza la teoría del origen heterotrófico de la vida en nuestro planeta.”

La formación de la Tierra | CK-12 Foundation

El comienzo y la formación de nuestro planeta fue violento. En sus primeros días, la Tierra tenía un calor abrasador y no tenía una atmósfera o agua. Si al comienzo se originó vida, ésta fue extinguida por las terribles condiciones. Los fósciles dee formas de vida más antiguos han sido datados en 3.850 millones de años

Características de la tierra primitiva

La Tierra nació hace unos 4.550 millones de años. Se condensó, junto con los otros planetas del sistema solar, en un disco de gas y polvo que giraba alrededor de una joven estrella que iba a convertirse en nuestro Sol. Fenómenos de violencia extrema,  incompatible con el mantenimiento de ningún de vida, rodearon este nacimiento. Durante al menos quinientos millones de años, cometas y asteroides sacudieron la Tierra en formación, con lo que la hicieron incapaz de albergar vida durante todo este tiempo. Algunos impactos pudieron haber sido incluso suficientemente violentos como para producir la pérdida de toda agua terrestre por vaporización, después de lo cual los océanos se habrían vuelto a llenar con agua aportada por cometas. Según esta versión de  los acontecimientos, los océanos actuales de remontarían a la última oleada de bombardeo cometario intenso, que los expertos creen que tuvo lugar hace unos cuatro mil millones de años. Existen señales de que había vida en la Tierra poco después de que dichos cataclismos llegaran a su fin.

El tiempo inexorable no deja de transcurrir, el Universo dinámico hace que todo lo que contiene, sobre todo la materia, evolucione desde formas simples a complejas y, en algunos lugares que han logrado tener las para ello, puede estar presente la vida. Nosotros, seres evolucionados a partir de la matería inerte creada en las estrellas, hemos logrado saber algunas cosas y no dejamos de hacernos preguntas como aquella de: ¿Habrá otros mundos? ¿Estarán, como la Tierra, llenos de vida? Bueno, lo de los mundos sí hemos sido capaces de saberlo y estarán muy cerca del millar los mundos que hemos descubierto. Sin embargo, la vida, sólo la hemos podido encontrar aquí en nuestra casa, en la Tierra.

No dejamos de mandar ingenios espaciales a mundos cercanos, como Marte, para tratar de saber. Nos embarga una ilusión, una esperanza, y…, al mismo tiempo, un temor: ¿Estaremos sólos? Y, si no lo estamos, ¿cómo serán esos otros mundos y que criaturas lo habitan? ¿Si alguna vez llegamos allí, seremos tan destructivos como lo hemos sido aquí en la Tierra? ¿Le querremos quitar lo que ellos tienen? ¡Esperémos que no! Y, sobre todo, en ese primer , ¿Sabremos comportarnos y respetar sus derechos?

Crítica de la película Avatar

Seres parecidos a nosotros que tenían un profundo sentido de respeto hacia la Naturaleza

Cuando pude ver la película Avatar, quedé fascinado por el mundo que allí quedaba escenificado y las criaturas que lo poblaban, y, sobre todo, era sobrecogedor el alto grado espiritual que tenían de la Naturaleza con la que se sentían en comunidad, formaban una simbiosis perfecta que nosotros, los humanos, nunca podremos alcanzar. Cuando miramos la Naturaleza nos llama la atención la cascada y el bello paisaje pero… ¡No pensamos más allá! ¡Que botarates podemos llegar a ser!

Hemos sabido recrear historias de esos mundos presentidos y de sus habitantes. En ellas, han quedado reflejados los instintos humanos, tantos los buenos como los malos y, mientras que unos querían preservar aquella Naturaleza, otros, sin embargo, querían destriuirla apoderarse de sus preciados tesoros. ¡La condición Humana! ¿Estamos acaso destinados al desacuerdo que nos lleve a la destrucción, o, por el contrario, es precisamente esa condición la que nos llevará lejos?

La secuela de 'Avatar' pretende revolucionar el cine 3D

La belleza que se describe en el mundo llamado “Pandora” también está aquí pero, ¡no sabemos cuidarla!

Fascinantes criaturas de exóticas bellezas nos podrían estar esperando, en un futuro lejano, en esos mundos soñados que tantas veces hemos podido imaginar. Es difícil saber qué comportamiento tendremos con ellos si eso llega a sucecder, sin embargo, el ejemplo que nos deja la película a la que pertene la imagen de arriba, no es muy alentador ni dice mucho en de nuestra especie que, irrumpimos por la fuerza en un planeta extraño y, violando todas las reglas, pasamos por encima de los derechos de otros para conseguir nuestros objetivos. ¿La Civilización que ocupa el planeta? ¿Qué importa? Si hay que destruirla, ¡adelante!

La película Avatar tendrá su propio parque temático

La fuerza bruta que siempre acompañó a la falta de inteligencia, es la única salida para seres  de cuya racionalidad podríamos dudar,  sin el menor temor a equivocarnos. Destruir nunca será el camino más conveniente. Creo que sería aconsejable guiarse por ese principio de la física, la causalidad. Si respetamos seremos respetados. Sobre todo, no podemos llegar a nuevos lugares pretendiendo imponer nuestras costumbres y nuestras reglas. En esos otros lugares donde posiblemente  existan seres que tienen su propia de vivir, se impone, sobre todo, que supeditemos nuestro comportamiento a su propias reglas a su propio mundo. Los extraños allí seremos nosotros. Ellos,  los seres de la hisotira, a diferencia de nuestra Civilización Terrestre, sí han sabido convivir con su entorno, han creado una especie de simbiosis que une a todos los seres de aquel fascionante mundo, sean seres racionales o plantas, hasta el punto de poder comunicarse entre ellos en un alto grado de compenetración que va mucho más allá de lo físico.

En esos otros Mundos pueden estar presentes seres maravillosos que han optado por otras maneras de vivir, más cercana y conectados con la Naturaleza a la que respetan y comprenden al ser conscientes de que ellos mismos, forman de ella que es algo que, los humanos no han acabado de comprender y, se comportan como si la Tierra fuera un simple instrumento a su servicio, sin ser conscientes que tal comportamiento, los puede llevar a la extinción de la especie.

Las montañas, los árboles, los ríos y el viento, todo bañado por la luz y el calor de esa estrella que nos alumbra, forman un todo que mantiene el equilibrio que hace posible la vida. Si alguno de esos parámetros se viera alterado seriamente… ¡Mal nos iría! Y, sin embargo, algunos se empeñan en no ver lo evidente.

Avatar 2 a paso firme – Radio Unica La PlataLa película Avatar 2 muestra un primer vistazo a través de su arte  conceptual - HobbyConsolas Entretenimiento

Si algún día conseguimos llegar a otros mundos y en ellos encontramos a criaturas vivas más o mneos evolucionadas, lo conveniente sería respetarlos y, dentro de lo posible, aprender de ellos procurando alterar lo menos posible lo que allí nos encontremos y, si tienen algo que nosotros necesitamos, hacer un intercambio justo olvidándonos de la fuerza bruta que conlleva la destrucción irreparable.

La historia que nos cuentan en esa maravillosa película, , desde el principio nos pone a favor de los habitantes de aquel Mundo agredido y de sus habitantes, hasta tal punto es así que muchos de los terrestres que visitan aquél planeta, no dudan, en dar sus propias vidas por preservar aquel entorno, para nosotros de fantasía y que para aquellos seres tan especiales que han sido capaces de convivir con su mundo y “hablar” con él, demostrando de alguna manera que, son mucho mñás civilizados que nosotros. Cuando ví aquella película… ¡Qué envidia me dieron!

5 COSAS de la PELÍCULA AVATAR que en realidad EXISTEN | Curiosidades |  Noticias Curiosas | Curiosidades del MundoJames Cameron: Avatar será una serie familiar

Utilizar lo que la Naturaleza les ofrecía sin dañar, no coger más de lo estrictamente necesario para vivir, respetando las otras formas de vida del planeta y dejando que el ritmo de la Naturalerza sea el que desarrolle las cosas, sin agredir el entorno y dejando que cada cosa ocupe su lugar sin tratar de violentar, de alguna manera, su desarrollo natural.

Si el caso llega, tendremos que aprender a mirar más allá de la superficie, a entender los mensajes que nos envían la mirada de esos nuevos y exóticos seres y, sobre todo, tratar de comprender su mundo, sus maneras para poder respetarlas y hacernos acreedores, nosotros también, a su respeto.

   ¡Quién pudiera ser uno de los afortunados que, en el futuro, visitarán algunos de esos Mundos!

Nos quedan muchos muros por derribar, muchas puertas que abrir para las que aún no poseemos las llaven, y, sobre todo, para que cuando eso llegue y sea una realidad (esperemos que así sea), lo más importante: ¡Que hayamos podido evolucionar hasta ese deseado estadio de sabiduría que ahora no tenemos! De todas las maneras, no me gustaría que ese primer encuentro se produjera aquí en la Tierra. Es preferible que los visitantes seamos nosotros y, como antes digo, espero que para entonces, la Humanidad sea otra.

Claro que, también podríamos toparnos con civilizaciones mucho más avanzadas que la nuestra y, en ese caso… ¡La desventaja sería nuestra! Siempre hemos oído decir que no debemos hacer a otros lo que no queremos que nos hagan a nosotros y, si respetamos esa máxima… ¡Todo podrá ir mejor! El presente es el que tenemos y no sabemos lo que nos depara el futuro pero, una cosa es bien cierta: ¡No dejamos de avanzar! Cada día que pasa damos un paso hacia ese futuro que presentimos y estamos más cerca de saber… ¡Si realmente, como pensamos, estamos miuy bien acompañados en este inmenso Universo nuestro! Y, digo en éste universo nuestro porque, en realidad, pienso que tampoco es, el único Universo.

emilio silvera

El polvo de estrellas más antiguo del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso, General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

polvo-estrellas
                 Se trata del objeto más distante y más joven descubierto por el Observatorio Europeo Austral.

Un equipo internacional de astrónomos, liderado por Nicolas Laporte, de la University College de Londres (Reino Unido), ha utilizado el telescopio Atacama Large Millimeter/submillimeter Array (ALMA) para observar el objeto A2744_YD4: la galaxia más pequeña y remota jamás vista por ALMA. Lo curioso es que esta joven galaxia contiene una abundancia de polvo de estrellas antiguo formado por las muertes de una generación anterior de estrellas; esto es, por la muerte de las primeras supernovas del universo, lo que significa que podremos avanzar un poco más en el conocimiento sobre cómo se formaron las primeras estrellas y galaxias del universo.

 

Atacama Large Millimeter Array - Wikipedia, la enciclopedia libre

 

Este vetusto polvo estelar encontrado en la galaxia A2744_YD4 procede así de cuando el universo solo tenía el 4% de su edad actual, apenas 600 millones de años de edad, justo en la etapa de formación de las primeras estrellas y las primeras galaxias.

 

 Galaxia monstruosa” forma estrellas mil veces más rápido que la Vía Láctea  | Telemundo

“La detección de tanto polvo estelar indica que esta galaxia estuvo poblada por las primeras supernovas”, explica Laporte.

El telescopio, situado en Chile y controlado por el Observatorio Europeo Austral (ESO) ha sido empleado junto con otros instrumentos de la ESO como el X-Shooter, del Very Large Telescope (VLT), un conjunto de telescopios situados en Cerro Paranal (Chile) y que conforman el observatorio astronómico más avanzado del mundo.

Noticias

 

Curvatura del Espacio-Tiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Los elefantes 'hablan' a pisadas - The New York TimesLas moscas ven el mundo como en MatrixLas neuronas = Células nerviosas - Instituto Médico DermatológicoEjercita tu mente a través del cálculo mentalPor qué sólo los seres humanos pueden hablar (y no tiene que ver con la  inteligencia) - BBC News Mundo
En realidad ¿qué sabemos de otras especies? Nuestra imposibilidad de comunicarnos con ellas nos aleja de saber en qué mundo viven, y, aunque en algunas hemos detectado inteligencia y hasta sentimientos, lo cierto es que viven en otro mundo muy alejado del nuestro. Siempre será un gran secreto el que la Naturaleza nos escogiera a nosotros como especie dominante.
Recordando el pasado y agradeciendo entre líneas las lágrimas y las  lecciones aprendidas — Steemit
Frases de vivir el presente para aprender a disfrutar cada momento -  Innatia.comMundos Fantásticos Fotos, Retratos, Imágenes Y Fotografía De Archivo Libres  De Derecho. Image 70717495.
Recordamos el Pasado, vivimos el Presente e imaginamos el Futuro. El Pasado nos sirve para saber lo que pasó, para no repetir errores y aprender de los aciertos, en el Presente, el Tiempo dinámico que tenemos para realizar nuestros sueños y que no debemos dejar escapar, y, el Futuro, ese Tiempo que está por venir, en el  que nunca podremos  estar, sólo podemos imaginarlo.

Así representan algunos como sería el camino para burlar la velocidad de la luz y desplazarnos por el espacio-tiempo a distancias inmensas mucho más rápido y recorriendo espacios más cortos. Es el famoso agujero de gusano o el doblar el espacio trayendo hacia tí el lugar que deseas visitar.

La noción de espacio-tiempo, ¿Es una ilusión? (VIDEO) | SophimaniaEspacio-tiempo curvo y los secretos del Universo : Blog de Emilio Silvera V.El experimento: la paradoja del espacio-tiempoEl tiempo y el espacio(filosofia)

Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el nombre de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

Los modelos de universo que pudieran ser, en función de la Densidad Crítica (Ω) sería plano, abierto o cerrado. La Materia tiene la palabra. Los cosmólogos llaman Omega Negro a la materia del Universo.

Soy omega: La semilla del caos - NaukasLa formación de nuestro universo: ¿herencia o entorno? | Sociedad | EL PAÍS

La curvatura del espacio–tiempo es la propiedad del espacio–tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividadgeneral de Einstein, nos explica y demuestra que el espacio–tiempo está íntimamente relacionado con la distribución de materia en el universo, y nos dice que el espacio se curva en presencia de masas considerables como planetas, estrellas o galaxias (entre otros).

En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180°. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es, en esencia, lo que ocurre en relatividad general.

Los Modelos Cosmológicos son variados y todos, sin excepción, nos hablan de una clase de universo que está conformado en función de la materia que en él pueda existir, es decir, eso que los cosmólogos llaman el Omega negro. La Materia determinará en qué universo estamos.

En los modelos cosmológicos más sencillos basados en los modelos de Friedmann, la curvatura de espacio–tiempo está relacionada simplemente con la densidad media de la materia, y se describe por una función matemática denominada métrica de Robertson–Walker. Si un universo tiene una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espacio–tiempo está curvado sobre sí mismo, como la superficie de una esfera; la suma de los ángulos de un triángulo que se dibuje sobre la esfera es entonces mayor que 180°. Dicho universo sería infinito y se expandiría para siempre, es el universo abierto. Un universo de Einstein–de Sitter tiene densidad crítica exacta y es, por consiguiente, espacialmente plano (euclideo) infinito en el espacio y en el tiempo.

                        Métricas de Friedman-Robertson-Walke

La geometría del espacio-tiempo en estos modelos de universos está descrita por la métrica de Robertson-Walker y es, en los ejemplos precedentes, curvado negativamente, curvado positivamente y plano, respectivamente (Alexander AlexandrovichFriedmann). Y, las tres epresentaciones gráficas de los espacios que dan lugar a los tres posibles formas de universo antes referida en función de la densidad crítica que hará un universo plano, un universo abierto o un universo curvo y cerrado.

Hemos mencionado antes la relatividad del tiempo que para el mismo suceso será distinto en función de quién sea el que cronometre; por ejemplo, el tiempo transcurre más despacio para el astronauta que en nave espacial viaja a velocidades próximas a c, la velocidad de la luz. Según la teoría de la relatividadespecial de Einstein, en el caso antes señalado, el tiempo del astronauta viajero avanza más lentamente en un factor que denotamos con la ecuación , cuando lo mide un sistema de referencia que viaja a una velocidad v relativa al otro sistema de referencia; c es la velocidad de la luz. Este principio ha sido verificado de muchas maneras; por ejemplo, comparando las vidas medias de los muones rápidos, que aumentan con la velocidad de las partículas en una cantidad predicha en este factor de la anterior ecuación.

gemelos en el tiempo

“El tiempo en esta teoría deja de ser absoluto como se proponía en la mecánica clásica. O sea, el tiempo para todos los observadores del fenómeno deja de ser el mismo. Si tenemos un observador inmóvil haciendo una medición del tiempo de un acontecimiento y otro que se mueva a velocidades relativistas, los dos relojes no tendrán la misma medición de tiempo.

Mediante la transformación de Lorentz nuevamente llegamos a comprobar esto. Se coloca un reloj ligado al sistema S y otro al S’, lo que nos indica que {\displaystyle x=0}{\displaystyle x=0}. Se tiene las transformaciones y sus inversas en términos de la diferencia de coordenadas:

{\displaystyle \Delta t=\gamma \left(\Delta t'+{\frac {v\Delta x'}{c^{2}}}\right)}
{\displaystyle \Delta x=\gamma (\Delta x'+v\Delta t')\,}
Si despejamos las primeras ecuaciones obtenemos
{\displaystyle \Delta t'=\gamma \Delta t\qquad (\,} para sucesos que satisfagan {\displaystyle \Delta x=0)\,}
De lo que obtenemos que los eventos que se realicen en el sistema en movimiento S’ serán más largos que los del S. La relación entre ambos es esa \gamma . Este fenómeno se lo conoce como dilación del tiempo.”
Gráfico que explica la contracción de Lorentz.

Un ejemplo sencillo de la dilatación del tiempo es la conocida paradoja de los gemelos. Uno viaja al espacio y el otro lo espera en la Tierra. El primero hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa. Cuando baja de la nave espacial, tiene 8’6 años más que cuando partió de la Tierra. Sin embargo, el segundo gemelo que esperó en el planeta Tierra, al regreso de su hermano, era ya un  anciano jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero. Parece mentira que la velocidad con la que podamos movernos nos puedan jugar estas malas pasadas.

Otra curiosidad de la relatividad especial es la que expresó Einstein (en relación a la materia.energía) mediante su famosa fórmula de E = mc2, que nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.

Durante diez dias del mes de enero de 1999 astrofísicos italianos y estadounidenses efectuaron un experimento que llamaron Boomerang. El experimento consistió en el lanzamiento de un globo con instrumentos que realizó el mapa mas detallado y preciso del fondo de radiación de microondas (CMB) obtenido hasta el momento. Su conclusión: el universo no posee curvatura positiva o negativa, es plano.

Densidad Crítica : Blog de Emilio Silvera V.

La densidad crítica está referida a la densidad media de materia requerida para que la gravedad detenga la expansión de nuestro universo. Así que si la densidad es baja se expandirá para siempre, mientras que una densidad muy alta colapsará finalmente. Si tiene exactamente la densidad crítica ideal, de alrededor de 10-29 g/cm3, es descrito por el modelo al que antes nos referimos conocido como de Einstein–de Sitter, que se encuentra en la línea divisoria de estos dos extremos. La densidad media de materia que puede ser observada directamente en nuestro universo representa sólo el 20% del valor crítico. Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico. Las teorías de universo inflacionario predicen que la densidad presente debería ser muy aproximada a la densidad crítica; estas teorías requieren la existencia de materia oscura.

 Los cosmólogos y astrofísicos, en sus obervaciones, notaron que las galaxias se alejaban las unas de las otras a mayor velocidad de la que correspondería en función de la materia que se puede ver en el Universo, había algo que las hacía correr más de la cuenta, así que, el primero en poner nombre all fenómeno que se ha dado en llamar  “materia oscura” fue el astrofísico suizo Fritz Zwicky, del Instituto Tecnológico de California (Caltech) en 1933. Con su invento (intuición), dejó zanjado el tema que traía de cabeza a todos los cosmólogos del mundo, encantados con que al fín, las cuentas cuadraran.

“El astrónomo Fritz Zwicky (1898 – 1974) de origen suizo, pero pasando casi toda su vida en Pasadena, USA, publicó en 1936 un trabajo sobre el cúmulo de galaxias en Coma, que contiene unas 1000 galaxias. Él determinó las luminosidades de las galaxias, y aplicando una relación conocida entre luminosidad y masa,”

Mencionamos ya la importancia que tiene para diseñar un modelo satisfactorio del universo, conocer el valor de la masa total de materia que existe en el espacio. El valor de la expansión o de la contracción del universo depende de su contenido de materia. Si la masa resulta mayor que cierta cantidad, denominada densidad crítica, las fuerzas gravitatorias primero amortiguarán y luego detendrán eventualmente la expansión. El universo se comprimirá en sí mismo hasta alcanzar un estado compacto y reiniciará, tal vez, un nuevo ciclo de expansión. En cambio, si el universo tiene una masa menor que ese valor, se expandirá para siempre. Y, en todo esto, mucho tendrá que decir “la materia oscura” que al parecer está oculta en alguna parte.

El  símbolo Ω (parámetro de densidad) lo utilizan los cosmólogos para hablar de la densidad del universo.

Ω =r /rcritindicando que el universo está muy próximo a la densidad crítica o Ω =1. La densidad crítica calculada es

ρc,0 = 9,47 x 10-27 kg/m3

 

Tenemos así que para Ω>1 tenemos que el universo se contraería en un futuro Big Crunch, para Ω<1 e universo debería expandirse indefinidamente (Big Rip) y para Ω=1 el universo se debería expandir pero deteniéndose su expansión asintóticamente.

Fondo Cósmico de MicroondasLas ondas gravitacionales primigenias resultaron ser polvo. | Criptogramas

Además Las observaciones del fondo de microondas como las WMAP dan unas observaciones que coinciden con lo cabría esperar si la densidad total del universo fuera igual a la densidad crítica.

Conforme a lo antes dicho, la densidad media de materia está referida al hecho de distribuir de manera uniforme toda la materia contenida en las galaxias a lo largo de todo el universo. Aunque las estrellas y los planetas son más densos que el agua (alrededor de 1 g/cm3), la densidad media cosmológica es extremadamente baja, como se dijo antes, unos 10-29 g/cm3, o 10-5 átomos/cm3, ya que el universo está formado casi exclusivamente de espacios vacíos, virtualmente vacíos, entre las galaxias. La densidad media es la que determinará si el universo se expandirá o no para siempre.

No dejamos de enviar ingenios al espacio para tratar de medir la Densidad Crítica y poder saber en qué clase de universo nos encontramos: Plano, cerrado o abierto.

En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

Se reproduce la curvatura del espacio-tiempo dentro de un chip -  PUBLICACIONES DYNA

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. En la imagen se quiere representar tal efecto.

En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se forma alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.

El universo en el hombre | ArchivoRevista Ideele

Esta fuerza es la responsable de tener cohexionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra, cuya gravedad tira de nosotros para que así sea.

Un sistema solar en el que los planetas aparecen cohexionados alrededor del cuerpo mayor, la estrella. Todos permanecen unidos gracias a la fuerza de Gravedad que actúa y los sitúa a las adecuadas distancias en función de la masa de cada uno de los cuerpos planetarios.

No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable.

El universo en el hombre | ArchivoRevista IdeeleDescubren un “puente” de ondas de radio entre cúmulos de galaxias |  National GeographicLos universos paralelos más probables también son inalcanzablesLa vía láctea: Grupos y cúmulos de galaxias

No pocas veces hemos querido utilizar la fuerza electromagnética para crear escudos a nuestro alrededor, o, también de las naves viajeras, para evitar peligros exteriores o ataques. Es cierto que, habiéndole obtenido muchas aplicaciones a esta fuerza, aún nos queda mucho por investigar y descubrir para obtener su pleno rendimiento.

La gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

Relación de indeterminación de Heisenberg - Wikipedia, la enciclopedia libreEl Principio de IncertidumbrePrincipio de Incertidumbre de Heisenberg - YouTube

Para saber dónde se encuentra una partícula hay que iluminarla. Pero no se puede utilizar cualquier tipo de luz: hay que usar luz cuya longitud de onda sea por lo menos, inferior a la partícula que se desea iluminar. Pero sucede que cuanto más corta es la longitud de onda, más elevada es la frecuencia, de modo que esa luz transporta una muy elevada energía. Al incidir sobre la partícula ésta resulta fuertemente afectada.
El científico puede finalmente averiguar donde esta la partícula, pero a cambio de perder toda información acerca de su velocidad. Y a la inversa, si consigue calcular la velocidad, debe renunciar a conocer su posición exacta.

emite3.gif (3517 bytes)EL FÍSICO LOCO: Cuerpo Negro. Ley de Wien. Ley de Stefan-Boltzmann

La superficie de un cuerpo negro es un caso límite, en el que toda la energía incidente desde el exterior es absorbida, y toda la energía incidente desde el interior es emitida. No existe en la naturaleza un cuerpo negro, incluso el negro de humo refleja el 1% de la energía incidente.

Se denomina cuerpo negro a aquel cuerpo ideal que es capaz de absorber o emitir toda la radiación que sobre él incide. Las superficies del Sol y la Tierra se comportan aproximadamente como cuerpos negros.

Teoría cuántica | Radiación del cuerpo negro - YouTube

La radiación del cuerpo negro

La teoría cuántica es un ejemplo de talento que debemos al físico alemán Max Planck (1.858 – 1.947) que, en el año 1.900 para explicar la emisión de radiación de cuerpo negro de cuerpos calientes, dijo que la energía se emite en cuantos, cada uno de los cuales tiene una energía igual a hv, donde h es la constante de Planck (E = hv o ħ = h/2π) y v es la frecuencia de la radiación. Esta teoría condujo a la teoría moderna de la interacción entre materia y radiación conocida como mecánica cuántica, que generaliza y reemplaza a la mecánica clásica y a la teoría electromagnética de Maxwell.  En la teoría cuántica no relativista se supone que las partículas no son creadas ni destruidas, que se mueven despacio con respecto a la velocidad de la luz y que tienen una masa que no cambia con la velocidad. Estas suposiciones se aplican a los fenómenos atómicos y moleculares y a algunos aspectos de la física nuclear. La teoría cuántica relativista se aplica a partículas que viajan cerca de la velocidad de la luz, como por ejemplo, el fotón.

Los objetos radiactivos que nos rodean, entre ellos las bananas

                                           La radiación está presente en todos los objetos y cuerpos

Por haberlo mencionado antes me veo obligado a explicar brevemente el significado de “cuerpo negro”, que está referido a un cuerpo hipotético que absorbe toda la radiación que incide sobre él. Tiene, por tanto, una absortancia y una emisividad de 1. Mientras que un auténtico cuerpo negro es un concepto imaginario, un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.

La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la distribución de energía sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumento de temperaturas (ley de desplazamiento de Wien).

Existen en el Universo configuraciones de fuerzas y energías que aún no podemos comprender. La vastedad de un Universo que tiene un radio de 13.700 millones de años, nos debe hacer pensar que, en esos espacios inmensos existen infinidad de cosas y se producen multitud de fenómenos que escapan a nuestro entendimiento. Son fuerzas descomunales que, como las que puedan emitir agujeros negrosgigantes, estrellas de neutrones magnetars y explosiones de estrellas masivas en supernovas que, estando situadas a miles de millones de años luz de nuestro ámbito local, nos imposibilita para la observación y el estudio a fondo y sin fisuras, y, a pesar de los buenos instrumentos que tenemos hoy, siguen siendo insuficientes para poder “ver” todo lo que ahí fuera sucede.

¡El Universo! Todo lo que existe.

emilio silvera

Conociendo el Universo, los primeros momentos

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como nos dice la filosofía, nada es como se ve a primera vista, todo depende bajo el punto de vista desde en el que miremos las cosas.

Nuestro lugar en el Universo…¿cuál será? : Blog de Emilio Silvera V.Consultoría de Transformación Organizacional I Olivia

“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es importante comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.”

Douglas Adams

En principio, antrópico | Cuentos CuánticosConjeturas sobre el principio antrópico – El barril de Newton

¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en donde las constantes son diferentes y la vida no puede existir?

Constantes universales : Blog de Emilio Silvera V.physica4x4 | Física para la clase de media por Luis López Jordán

En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno número 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno.

2019 es el Año Internacional de la Tabla Periódica | La Prensa Panamá

Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica (que vemos y detectamos) del universo. Hay más elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales.

“Los elementos transuránicos (conocidos también como elementos transuránidos) son elementos químicos con número atómico mayor a 92 con, el número atómico del elemento uranio. El nombre de trans-uránidos significa “más allá del uranio”.

Estos elementos son artificiales, no se encuentran en la Naturaleza y son:

Lista de los elementos transuránicos

 

Una enana blanca para estudiar la constante de estructura fina ...Ciencias Planetarias y Astrobiología : La constante de estructura ...

“La constante de estructura fina de Sommerfeld (símbolo α) es la constante física fundamental que caracteriza la fuerza de la interacción electromagnética. Es una cantidad sin dimensiones, por lo que su valor numérico es independiente del sistema de unidades usado.

La expresión que la define y el valor recomendado por CODATA 2002 es:

 

{\displaystyle \alpha ={\frac {e^{2}}{\hbar c\ 4\pi \epsilon _{0}}}=7,297\,352\,568\times 10^{-3}={\frac {1}{137,035\,999\,11}}.}

“La constante de estructura fina puede tomarse como el cuadrado del cociente de la carga elemental con la carga de Planck.”

 

{\displaystyle \alpha =\left({\frac {e}{q_{P}}}\right)^{2}}

 

 

“En la teoría de electrodinámica cuántica, la constante de estructura fina juega el rol de una constante de acoplamiento, representando la fuerza de la interacción entre electrones y fotones. Su valor no puede predecirse por la teoría, y debe insertarse uno basado en resultados experimentales. De hecho, es uno de los veinte «parámetros externos» en el modelo estándar de física de partículas.”

Y si solo puede haber vida en nuestra región de Universo?Qué condiciones debe tener un planeta para albergar vida? - VIXExiste vida en otros planetas? - Monografias.comEl Universo y la Mente : Blog de Emilio Silvera V.

Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. Estas no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes).  Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El número puro y adimensional, 137!!

Densidad Crítica : Blog de Emilio Silvera V.

Las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y continuar así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano.  El primero de estos modelos es el universo abierto que será invadido por el frío absoluto, y el segundo modelo es el del universo cerrado que termina en una bola de fuego descomunal.

Super Universo - Explorando os Enigmas do SuperuniversoANTARES - Módulo 8 - Unidad 1 - Programa de Nuevas Tecnologías - MEC

Todo dependerá de cual sea el valor de la densidad de materia.

Algunos números que definen nuestro universo:

  • El número de fotones por protón
  • La razón entre densidades de materia oscura y luminosa
  • La anisotropía de la expansión
  • La falta de homogeneidad del Universo
  • La constante cosmológica
  • La desviación de la expansión respecto al valor “crítico”

universos

·Se ha estimado la densidad media del universo a partir de las observaciones astronómicas, y la suma de la masa de las estrellas más las nubes de gas nos da sólo un 1 % de la densidad crítica. Sin embargo la observación del equilibrio de las estrellas girando alrededor de una galaxia y de galaxias girando unas alrededor de otras en cúmulos galácticos hace que se sospeche de la existencia de una gran cantidad de materia oscura que colabore al equilibrio gravitatorio. Aún así la suma total de materia sería de un 10 % de la necesaria para alcanzar la densidad crítica. A pesar de estos cálculos se piensa que la densidad del universo debe ser muy cercana a la densidad crítica debido a que si fuera tan solo una billonésima parte mayor no habría llegado nunca a haber las distancia que existe actualmente entre galaxias y ya se habría contraído, mientras que si fuera inferior la distancia entre galaxias sería mucho mayor a la actual.”
Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica (que vemos y detectamos) del universo. Hay más elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales.
General : Blog de Emilio Silvera V.
“El universo observable actual parece tener un espacio-tiempo geométricamente plano, conteniendo una densidad masa-energía equivalente a 9,9 × 1030 gramos por centímetro cúbico. Los constituyentes primarios parecen consistir en un 73 % de energía oscura, 23 % de materia oscura fría y un 4 % de átomos.”
Según nos dicen
Densidad Crítica : Blog de Emilio Silvera V.

De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la predicción válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.

Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la formación de estrellas y planetas… y ¡vida!

No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que marca la “Densidad Crítica”

Telescopio Gemini Sur captura una bellísima nebulosa planetaria ...

Sólo en el modelo de universo que se expande cerca de la divisoria crítica, se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la ideal (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.

Big Crunch - LA EVOLUCION DEL UNIVERSO

El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).

Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página anterior que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo.

El Universo y… ¿nosotros? : Blog de Emilio Silvera V.

Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de condiciones de partida especiales.

WMAP 7 | Francis (th)E mule Science's NewsEl blog de Antares: diciembre 2013

Podemos concretar de manera muy exacta con resultados fiables de los últimos análisis de los datos enviados por WMAP. Estos resultados muestran un espectro de fluctuaciones gaussiano y (aproximadamente) invariante frente a escala que coincide con las predicciones de los modelos inflacionarios más generales.

Materia y Energía oscuras | ME GUSTA LA FÍSICA

      Sólo dejan el 4% para la materia que vemos, la Bariónica

El universo estaría compuesto de un 4 por 100 de materia bariónica, un 23 por 100 de materia oscura no bariónica y un 73 por 100 de energía oscura. Además, los datos dan una edad para el universo que está en 13’7 ± 0’2 ×109 años, y un tiempo de 379 ± 8×103 años para el instante en que se liberó la radiación cósmica de fondo. Otro resultado importante es que las primeras estrellas se formaron sólo 200 millones de años después del Big Bang, mucho antes de lo que se pensaba hasta ahora. Todavía no se han hecho públicos los resultados del análisis de una segunda serie de datos, pese a que su aparición estaba prevista para estas fechas.

emilio silvera

De estrella masiva a Agujero Negro

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Teoría de la Relatividad General de Einstein deja claro que los objetos como las estrellas y los mundos generan una fuerza de Gravedad que está en consonancia con las masas que poseen.

Por ejemplo:

 

Para que un cohete salga de la Tierra hacia el espacio exterior necesita correr a más de 11 kilómetros por segundo, en la Luna necesitaría menos velocidad y en Júpiter muchísima más para escapar de la gravitación que cada uno de esos cuerpos genera.ç

 

Una estrella masiva, pongamos de 150 masas solares, cuando llega al final de su “vida” por haber agotado su combustible nuclear de fusión, explota como supernova y lanza sus capas exteriores al Espacio Interestelar.

 

 La masa restante (que es la mayor parte), queda a merced de la fuerza de gravedad que la comprime más y más hasta que se convierte en una Singularidad rodeada por un horizonte de sucesos, lo que produce el nacimiento de un Agujero Negro.

 

Lo curioso del caso es que de aquella estrella original la luz se puede escapar, lo que quiere decir que su velocidad de escape es menor que c (c es la velocidad de la luz en el vacío, que suponen 299.792.458 metros/segundos, es decir, redondeando 300.000 kilómetros por segundo).

Si la estrella original tenía más masa que la que ha producido el agujero negro, ¿cómo podemos explicar que el agujero negro genere más fuerza de gravedad que la estrella y no deje que la luz escape de sus dominios?

La explicación está en que la materia que se comprime más y más se convierte en un punto llamado Singularidad de densidad y energías “infinitas”, lo que nos lleva a la situación de que la materia primigenia que formaba la estrella ha sufrido un cambio de fase y ha pasado a otro estado de la materia, que podríamos denominar: “Sopa de Quarks y Gluones” que son las partículas que conforman la materia y que debido a esa transformación ha pasado a un Estado que genera mucha más fuerza de gravedad que la materia ordinaria Bariónica que conformaba la estrella.

Salvo mejor parecer.

emilio silvera