Ago
24
Conociendo el Universo, los primeros momentos
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (1)
“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es importante comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.”
Douglas Adams
¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en donde las constantes son diferentes y la vida no puede existir?
En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno número 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno.
Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica (que vemos y detectamos) del universo. Hay más elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales.
“Los elementos transuránicos (conocidos también como elementos transuránidos) son elementos químicos con número atómico mayor a 92 con, el número atómico del elemento uranio. El nombre de trans-uránidos significa “más allá del uranio”.
Estos elementos son artificiales, no se encuentran en la Naturaleza y son:
Lista de los elementos transuránicos
- 93 neptunio Np
- 94 plutonio Pu
- 95 americio Am
- 96 curio Cm
- 97 berkelio Bk
- 98 californio Cf
- 99 einstenio Es
- 100 fermio Fm
- 101 mendelevio Md
- 102 nobelio No
- 103 lawrencio Lr
- elementos transactínidos
- 104 rutherfordio Rf
- 105 dubnio Db
- 106 seaborgio Sg
- 107 bohrio Bh
- 108 hassio Hs
- 109 meitnerio Mt
- 110 darmstadtio Ds
- 111 roentgenio Rg
- 112 copernicio Cn
- 113 nihonio Nh
- 114 flerovio Fl
- 115 moscovio Mc
- 116 livermorio Lv
- 117 teneso Ts
- 118 oganesón Og
“La constante de estructura fina de Sommerfeld (símbolo α) es la constante física fundamental que caracteriza la fuerza de la interacción electromagnética. Es una cantidad sin dimensiones, por lo que su valor numérico es independiente del sistema de unidades usado.
La expresión que la define y el valor recomendado por CODATA 2002 es:
“La constante de estructura fina puede tomarse como el cuadrado del cociente de la carga elemental con la carga de Planck.”
“En la teoría de electrodinámica cuántica, la constante de estructura fina juega el rol de una constante de acoplamiento, representando la fuerza de la interacción entre electrones y fotones. Su valor no puede predecirse por la teoría, y debe insertarse uno basado en resultados experimentales. De hecho, es uno de los veinte «parámetros externos» en el modelo estándar de física de partículas.”
Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. Estas no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes). Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El número puro y adimensional, 137!!
Las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y continuar así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano. El primero de estos modelos es el universo abierto que será invadido por el frío absoluto, y el segundo modelo es el del universo cerrado que termina en una bola de fuego descomunal.
Todo dependerá de cual sea el valor de la densidad de materia.
Algunos números que definen nuestro universo:
- El número de fotones por protón
- La razón entre densidades de materia oscura y luminosa
- La anisotropía de la expansión
- La falta de homogeneidad del Universo
- La constante cosmológica
- La desviación de la expansión respecto al valor “crítico”
·Se ha estimado la densidad media del universo a partir de las observaciones astronómicas, y la suma de la masa de las estrellas más las nubes de gas nos da sólo un 1 % de la densidad crítica. Sin embargo la observación del equilibrio de las estrellas girando alrededor de una galaxia y de galaxias girando unas alrededor de otras en cúmulos galácticos hace que se sospeche de la existencia de una gran cantidad de materia oscura que colabore al equilibrio gravitatorio. Aún así la suma total de materia sería de un 10 % de la necesaria para alcanzar la densidad crítica. A pesar de estos cálculos se piensa que la densidad del universo debe ser muy cercana a la densidad crítica debido a que si fuera tan solo una billonésima parte mayor no habría llegado nunca a haber las distancia que existe actualmente entre galaxias y ya se habría contraído, mientras que si fuera inferior la distancia entre galaxias sería mucho mayor a la actual.”Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica (que vemos y detectamos) del universo. Hay más elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales.
“El universo observable actual parece tener un espacio-tiempo geométricamente plano, conteniendo una densidad masa-energía equivalente a 9,9 × 10−30 gramos por centímetro cúbico. Los constituyentes primarios parecen consistir en un 73 % de energía oscura, 23 % de materia oscura fría y un 4 % de átomos.”Según nos dicen
De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la predicción válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.
Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la formación de estrellas y planetas… y ¡vida!
No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que marca la “Densidad Crítica”
Sólo en el modelo de universo que se expande cerca de la divisoria crítica, se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la ideal (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.
El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).
Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página anterior que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo.
Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de condiciones de partida especiales.
Podemos concretar de manera muy exacta con resultados fiables de los últimos análisis de los datos enviados por WMAP. Estos resultados muestran un espectro de fluctuaciones gaussiano y (aproximadamente) invariante frente a escala que coincide con las predicciones de los modelos inflacionarios más generales.
Sólo dejan el 4% para la materia que vemos, la Bariónica
El universo estaría compuesto de un 4 por 100 de materia bariónica, un 23 por 100 de materia oscura no bariónica y un 73 por 100 de energía oscura. Además, los datos dan una edad para el universo que está en 13’7 ± 0’2 ×109 años, y un tiempo de 379 ± 8×103 años para el instante en que se liberó la radiación cósmica de fondo. Otro resultado importante es que las primeras estrellas se formaron sólo 200 millones de años después del Big Bang, mucho antes de lo que se pensaba hasta ahora. Todavía no se han hecho públicos los resultados del análisis de una segunda serie de datos, pese a que su aparición estaba prevista para estas fechas.
emilio silvera
Ago
13
De estrella masiva a Agujero Negro
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
La Teoría de la Relatividad General de Einstein deja claro que los objetos como las estrellas y los mundos generan una fuerza de Gravedad que está en consonancia con las masas que poseen.
Por ejemplo:
Para que un cohete salga de la Tierra hacia el espacio exterior necesita correr a más de 11 kilómetros por segundo, en la Luna necesitaría menos velocidad y en Júpiter muchísima más para escapar de la gravitación que cada uno de esos cuerpos genera.ç
Una estrella masiva, pongamos de 150 masas solares, cuando llega al final de su “vida” por haber agotado su combustible nuclear de fusión, explota como supernova y lanza sus capas exteriores al Espacio Interestelar.
La masa restante (que es la mayor parte), queda a merced de la fuerza de gravedad que la comprime más y más hasta que se convierte en una Singularidad rodeada por un horizonte de sucesos, lo que produce el nacimiento de un Agujero Negro.
Lo curioso del caso es que de aquella estrella original la luz se puede escapar, lo que quiere decir que su velocidad de escape es menor que c (c es la velocidad de la luz en el vacío, que suponen 299.792.458 metros/segundos, es decir, redondeando 300.000 kilómetros por segundo).
Si la estrella original tenía más masa que la que ha producido el agujero negro, ¿cómo podemos explicar que el agujero negro genere más fuerza de gravedad que la estrella y no deje que la luz escape de sus dominios?
La explicación está en que la materia que se comprime más y más se convierte en un punto llamado Singularidad de densidad y energías “infinitas”, lo que nos lleva a la situación de que la materia primigenia que formaba la estrella ha sufrido un cambio de fase y ha pasado a otro estado de la materia, que podríamos denominar: “Sopa de Quarks y Gluones” que son las partículas que conforman la materia y que debido a esa transformación ha pasado a un Estado que genera mucha más fuerza de gravedad que la materia ordinaria Bariónica que conformaba la estrella.
Salvo mejor parecer.
emilio silvera
Jul
16
¡Las estrellas! Mucho más que puntitos brillantes.
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (4)
Es cierto que cuando vemos las cosas con cierta asiduidad y de forma permanente, esa cotidianidad nos hace perder la perspectiva y no pensamos en lo que realmente esas cosas pueden ser y, con las estrellas nos ocurre algo similar, ya que son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminoso que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.
Si la estrella tiene más de 120 masas solares, su propia radiación la podría destruir, y, se defiende expulsando gases que relaje la tensión
Estrellas masivas que expulsan gases, ya que, cuando la masa es muy grande, su propia radiación las puede destruir y, de esta manera, descongestionan la tensión y evitan un final anticipado. Arriba teneis una estrella supermasiva que ha expulsado gases formando una nebulosa para evitar su muerte, Eta Carinae ha hecho lo mismo. Estas son estrellas que estám congestionadas y, sólo la expulsión de material la puede aliviar y conseguir que siga brillando como estrella evitando explotar como supernova.
Se calcula que la masa máxima de una estrella es de unas 120 masas solares, por encima de la cual sería destruida por su propia radiación. La masa mínima es de 0,08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno, y se convertirían en enanas marrones.
De la misma forma que al calentar una pieza de metal cambia de color, al principio rojo, luego amarillo hasta llegar al blanco, el color de una estrella varia según su temperatura superficial. Las estrellas más frías son las rojas, y las mas calientes las azules. Estos colores suelen percibirse a simple vista, como por ejemplo Antares (la estrella principal de Scorpius) que es de color rojo, o Rigel (en Orion) de color azul. En astronomía se utiliza la escala Kelvin para indicar temperaturas, donde el cero absoluto es -273 grados Celsius.
El diagrama de Hertzsprung-Russell (arriba) proporcionó a los astrónomos un registro congelado de la evolución de las estrerllas, el equivalente astrofísico del registro fósil que los geólogos estudian en los estratos rocosos. Presumiblemente, las estrellas evolucinan de algún modo, pasan la mayor parte de su tiempo en la serie principal (la mayoría de las estrellas en la actualidad, en el brevísimo tiempo que tenemos para observar, se encuentran allí), pero empiezan y terminan su vida en alguna otra parte, entre las ramas o en el mantillo. Por supuesto, no podemos esperar para ver que esto sucede, pues el tiempo de vida, aún de estrellas de vida corta, se mide en millones de años. Hallar la respuesta exigirá conocer la física del funcionamiento estelar.
El progreso en física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como la Barrera de Coulomb, y por un tiempo frustró los esfuerzos de los físicos teóricos para comprender cómo la fusión nuclear podía producir energía en las estrellas.
La barrera de Coulomb, denominado a partir de la ley de Coulomb, nombrada así del físico Charles-Augustin de Coulomb (1736–1806), es la barrera de energía debida a la interacción electrostática que el núcleo atómico debe superar para experimentar una reacción nuclear. Esta barrera de energía es proporcionada por la energía potencial electrostática:
donde:
- k es la constante de Coulomb = 8.9876×109 N m² C−2
- ε0 es la permeabilidad en el vacío
- q1, q2 son las cargas de las partículas que interactúan
- r es el radio de interacción.
Un valor positivo de U es debido a una fuerza de repulsión, así que las partículas que interactúan están a mayores niveles de energía cuando se acercan. Un valor negativo de la energía potencial U indica un estado de ligadura, debido a una fuerza atractiva. La linea de razonamiento que conducía a esta barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de hidrógeno consiste en un sóoo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford explicados aquí en otra ocasión). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno.
(Recordemos que la masa es igual a la Energía: E = mc2. (En el calor de una estrella los protones son esparcidos a altas velocidades -el calor significa que las partículas involucradas se mueven rápidamente- y, como hay muchos protones que se apiñam en el núcleo denso de una estrella, deben de tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. esta era la base de conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra cosa que energía subatómica, la cual, como se sabe, existe en abundancia en toda la materia”.
A ese punto, todo iba bien la ciencia estaba cerca de identificar la fusión termonuclear como el secreto de la energía solar. Pero aquí era donde intervenía la Barrera de Coulomb. Los protones están cargados positivamente; las partículas de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del centro de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromágnéticos y fundirse en un sólo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con su rostro radiante y sonriente al ver el esfuerzo y las ecuaciones que decían que no podía brillar.
Dejemos aquí este proceso y digamos que, realmente, la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando la atravesará. Este es el “Efecto Túnel Cuántico”; que permite brillar a las estrellas. George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb, o casi. El efecto túnel cuántico se hizo cargo de los cálculos de la desalentadora predicción clásica, que establecia la fusión de los protones a sólo una milésima de la tasa necesaria para explicar la energía liberada por el Sol, y la elevó a una décima de la tasa necesaria. Luego se tardó menos de un año para dar cuenta del deficit restante: la solución fue completada en 1929, cuando Robert Atkinson y Fritz Houterman combinaron los hallazgos de Gamow con lo que se ha llamado teoría maxwelliana de la distribución de velocidades.
En la distribución maxwelliana hay siempre unas pocas partículas que se mueven mucho más rápidamente que la media y, Robert Atkinson y Fritz Houterman hallaron que estas pocas partículas veloces bastqaban para compensar la diferencia. Finalmente se hizo claro como podía romperse la Barrera de Coulomb suficientemente a menudo para que la fusión nuclear se produjese en las estrellas.
Pero la figura clave en todos estos desarrollos fue Hans Bhete, un refugiado de la Alemania nazi que había estudiado con Fermi en Roma y fue a enseñar en Cornell en EE. UU. Como su amigo Gamow, el joven Bhete era un pensador efervescente y vivaz, con tanto talento que parecía hacer su trabajo como si de un juego se tratara. Aunque no preparado en Astronomía, Bhete era un estudioso de legendaria rapidez. En 1938 ayudó al discipulo de Gamow y Edward Teller, C.L. Critchfield, a calcular una reacción que empezase con la colisión de dos protones podía generar aproximadamente la energía irradiada por el Sol, 3,86 x 1033 ergios por segundo. Así, en un lapso de menos de cuarenta años, la humanidad había progresado de la ignorancia de la existencia misma de los átomos a la comprensión del proceso de fusión termonuclear primaria que suministra energía al Sol.
Pero la reacción protón. protón no era bastante energética para explicar la luminosidad muy superior de estrellas mucho más grandes que el Sol, estrellas como las supergigantes azules de las Pléyades, que ocupan las regiones más altas del diagrama de Herptzsprung-Russell. Bhete puso remedio a esto antes de que terminase aquel el año 1938.
En abril de 1938, Bhete asistió a una conferencia organizada por Gamow y Teller que tenía el objeto de que físicos y astrónomos trabajaran juntos en la cuestión de la generación de energía en las estrellas. “Allí, los astrofísicos nos dijeron a los físicos todo que sabían sobre la constitución interna de las estrellas -recordoba Bhete-. esto era mucho (aunque) habían obtenido todos los resultados sin conocimiento de la fuente específica de energía.” De vuelta a Cornell, Bhete abordó el problema con celeridad y, en cuestión de semanas logró identificar el ciclo del Carbono, la reacción de fusión crítica que da energía a las estrellas que tiene más de una vez y media la masa del Sol.
Bhete que estaba falto de dinero, retiró el artículo que escribió sobre sus hallazgos y que ya tenía entragado en la Revista Physical Review, para entregarlo en un Concurso postulado por la Academía de Ciencias de Nueva York sobre la producción de energía en las estrellas. Por supuesto, Bhete ganó el primer Premio uy se llevó los 500 dolares que le sirvieron para que su madre pudiera emigrar a EE UU. Después lo volvió a llevar a la Revista que lo publicó y, finalmente, se lo publicaron y tal publicación le hizo ganar el Nobel. Por un tiempo, Bhete había sido el único humano que sabía por qué brillan las estrellas.
Cuando miramos al cielo y podemos contemplar extasiados esas maravillas que ahí arriba, en el espacio interestelar están brillando, y, nos da la sensación de que están hacièndonos guiños, como si quisieran mandarnos un mensaje, decirnos algo y nosotros, no pensamos en todo lo que ahí, en esos “puntitos brillantes” se está fraguando. De lo que allí ocurre, depende que los mundos tengan los materiales que en ellos están presentes y, de entre esos materiales, se destacan aquellos que por su química biológica, permiten que se pueda formar la vida a partir de unos elementos que se hiceron en los hornos nucleares de las estrellas.
Y sí, es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.
Es un gran triunfo del ingenio humano el saber de qué, están conformadas las estrellas y qué materiales se están forjando allí, al inmenso calor de sus núcleos. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir: “Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”. El hombre se vistió de gloria con la, desde entonces, famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.
A nuestro planeta sólo llega una ínfima fracción del calor que se genera en el Sol y, sin embargo, es más que suficiente para mantener aquí la vida. El Sol tiene materia que supone la misma que tendrían 300.000 Tierras. Nuestra estrella madre está situada a una UA (150 millones de kilómetros de nosotros) y, todas esas circunstancias y otras muchas, hacen que todo sea tal como lo vemos a nuestro alrededor. Si cualquiera de esos parámetros fuera diferente o variara tan sólo unas fracciones, seguramente la Tierra sería un planeta muerto y, nosotros, no estaríamos aquí. Sin embargo… ¡Estamos! y, gracias a ello, se pueden producir descubrimientos como los que más arriba hemos relatado y han podido y pueden existir personajes de cuyas mentes surgen ideas creadoras que nos llevan a saber cómo son las cosas.
Lo cierto es que, cada día sabemos mejor como funciona ma Naturaleza que, al fin y al cabo, es la que tiene todas las respuestas que necesitamos conocer.
emilio silvera
Jul
4
¡Universo! ¡Universos!.. ¿Y, nosotros?
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
Muchos son aún los secretos que esconden los Agujeros negros. Nadie sabe de qué clase de materia está hecha la singularidad (Quarks y Gluones?) y, tampoco a dónde ha ido y va a parar toda esa materia que atrae hacia sí y que ni el principio de exclusión de Pauli puede evitar que caiga en ese “pozo negro” que, según algunos, la transporta hacia otros universos mediante la expulsión por lo que se llaman agujero blanco.
Siempre hemos hecho la misma cosa… ¡Cuando no sabemos imaginamos lo que podría Ser!
Hay quien ha llegado a exponer una teoría en la que, de cada agujero negro que se forma y de toda la materia que atrae, en otro lugar, vuelve a surgir como por arte de magia, un nuevo universo que da comienzo a algo nuevo, a nuevas leyes fundamentales y a nuevas constantes de la Naturaleza y, en algunos, incluso sería posible que también, pudiera surgir la vida.
“Universos a la deriva como burbujas en la espuma del río del Tiempo”
Ideas como esa de arriba de Arthur Clarke, nos brotan de la mente al imaginar fantásticos sucesos que podrían pasar desapercibidos a nuestras limitadas condiciones físicas de percepción del “mundo” y a la -todavía- insuficiente tecnología que nos permita ir más allá de las teorías actuales que nos tienen anclados en las ideas de finales del siglo XIX y principios del XX. No podemos desarrollar esas teorías que, como la de supercuerdas, necesitan de las energías de Planck (1019 GeV) para poder verificarlas y, tales energías, no están disponible para nosotros.
Hasta nuestra época actual nos hemos contentado con crear conjuntos de otros universos y otros mundos a partir del nuestro propio, es decir, hemos obervado nuestro Universo y nuestro mundo y hemos imaginado lo que podría ser si… Y, a partir de ese si con puntos suspensivos, surge un rico abanico de variantes que, en múltiples e infinitos estados de las cosas y en presencia de fuerzas, constantes y energías que podrían ser, le damos existencia en nuestras mentes a esos universos y esos mundos que, en otros lugares aparte de nuestro lugar, podrían estar esperando a que, nuestro propio mundo evolucione para poder llegar a ellos y entonces, poder ver, que como en las galaxias las estrellas, también los universos proliferan dentro de un multiespacio mayor que acoge a infinidad de universos que pueden tener muy distinta, parecida, o, en su caso, la misma condición del nuestro.
No me parece extraña la idea de que nuestro Universo tenga una propiedad reproductora y de él, puedan surgir nuevos universos. Con las estrellas pasa precisamente eso: Tienen un ciclo que se cumple en el tiempo y, llegado su momento, riegan el espacio del material necesario para que aparezcan nuevas y más vigorasas estrellas con mundos nuevos a su alrededor.
“Los pilares de la Creación”
Hablamos de ciclos o rebotes que se producen cada cierto tiempo y del que, un universo llega a su fin para que pueda surgir otro nuevo. Jhon Wheeler llegó a sugerir que cada vez que eso se producía, los valores de las constantes de la Naturaleza se volvían a barajar y, de ser así, eso crearía una secuencia inacabable de universos en expansión y contracción en los que las constantes son diferentes. Sólo podríamos existir en aquellos ciclos en los que el “acuerdo” de las constantes da una permutación que permite la presencia de la vida.
Claro que, según lo que ahora sabemos, cuando tratamos con las propiedades del Universo como un todo, hay un factor grande que desempeña un papel dominante. Si las constantes cambian en una de esas hipotéticas permutaciones que no permite que el universo colapse de nuevo en un Big Crunch, el suceso de los ciclos terminará y el universo quedará atascado con un puñado de constantes que nunca volverían a negociar una situación nueva. Evidentemente y hasta donde podemos saber, este es, el escenario más probable con el que se podrá encontrar nuestro universo en el futuro, toda vez que parece que el devenir nos lleva a la muerte térmica de un universo siempre en expansión en el que, la entropía ganará la última batalla.
Agujero de gusano, hiperespacio, motor de curvatura…
Está claro que el medio clásico no nos sacará del planeta
No sabemos si algún día podremos encontrar el camino pero, si nuestro universo como parece tiene el final que todos los datos nos hacen presentir, entonces, si es que para entonces la vida sigue presente en el Cosmos, tendrá que buscar ese camino que le permita, situarse en otros universos que, como ahora el nuestro, tenga la posibilidad de albergar la vida en sus múltiples formas conocidas y aquellas que están y no cocemos también.
Hiperespacio, agujeros de gusano y otras ocurrencias que germinaron en nuestras mentes, ¿por qué no?, se podrían hacer realidad cuando llegado el momento, tengamos esos conocimientos que para nuestra salvación se requieren y, una condición será, la existencia del multiverso. Es decir, muchos universos dentro de un conjunto mayor en el que, la Naturaleza tenga diseñado el espacio necesario y con las condiciones exigidas para que la vida sea posible y siga generando ideas y pensamientos, a la vez que, la evolución en el Tiempo nos lleve a comprender que formamos parte de ese todo infinito que finalmente es la luz, el estado más evolucionado de la materia con la que, finalmente, nos tendremos que fundir algún día.
¿Qué se esconde en el borde del Universo observable? En realidad… ¿Tiene un borde el Universo, o, por el contrario en ese final presentido, está unido a otro universo? ¿Cómo todo está tan lejos de nosotros que nos parece físicamente inalcanzable y nos tenemos que valer de los telescopios que, al captar las luz de las galaxias lejanas, nos hablan de lo que ahí fuera existe?¿Será ésta la única manera que tendremos de mirar hacia atrás en el tiempo para ver lo que fue el pasado del Universo. Lo cierto es que, son tan grandes las distancias que, al menos de momento, la única forma de “ver” lo que existió lejos de nosotros, es captar la luz que nos envió desde el pasado. No podemos contemplar esas galaxias como son hoy si es que aún siguen siendo.
Algunos tuvieron un sueño que les llevó a pensar en la energía libre
Lo cierto es que, ideas son muchas y preguntas muchas más pero, son aún más las respuestas que no se dieron y el resultado final es siempre dejar al Universo atrapado en un océano de interrogantes que no sabemos despejar. Un fino equilibrio lo mantiene todo al borde del Caos y, sin embargo, el Universo perdura a pesar de todo dentro de ese fino equilibrio de las constantes de la Naturaleza y de las Fuerzas fundamentales que lo rigen y que hacen posible, que la materia dentro del espacio y del tiempo, evolucione hasta alcanzar su cota más interesante de producir la conciencia que nos permite (a nosotros y seguramente a otros muchos seres en nuestro universo), pesnar en todas estas cuestiones que han golpeado la mente del ser humano desde tiempos muy lejanos, incluso aquel tiempo en el que no se sabía que el mundo era un simple mundo entre infinidad de ellos en la miríada de estrellas que, cada noche, podían contemplar el cielo.
“Hasta la revolución científica del siglo XVII, el significado fluía desde nosotros hacia el mundo; después de ella, el significado fluía desde el mundo hacia nosotros”
Con estas palabras Chet Raymo se quería referir a que, nuestra ignorancia nos llevó a pensar que éramos nosotros lo importante pero, a medida que nuestros conocimientos avanzaron, nos fuímos dando cuenta de que, lo importante, estaba en la Naturtaleza a la que comenzamos observando de manera trivial hasta que nos pudimos dar cuenta de que, en ella, residían todas las respuestas que necesitábamos para saber, no ya del mundo y del Universo, sino de nosotros mismos.
Si alguna de estas constantes, variara aunque sólo fuera diez millonésimas… ¡La Vida no existiría!
De la misma manera que llegamos a poder explicar los fenómenos que se podían observar en la Naturaleza, también pudimos descubrir patrones sobrehumanos y universales que marcaban el ritmo de un Universo mayor y menos localista que el de los clásisicos griegos que tenían la Tierra como el centro de todo, cuando en realidad, era simplemente un mundo más de una infinidad de mundos.
Nuestro descubrimiento de las pautas con las que funciona la Naturaleza y las reglas por las que cambia nos llevó hasta los misteriosos números que definen la fábrica de todo lo que existe. Las Constantes de la Naturaleza dan a nuestro Universo su sensación y su existencia. Sin ellas, las fuerzas de la Naturaleza no tendrían intensidades; las partículas elementales de materia no tendrían masa; el Universo no tendría tamaño. Así que, las Constantes de la Naturaleza son el último valuarte contra un relativismo desenfrenado.
Si entráramos en contacto con otras inteligencias presentes en el Universo, miraríamos primero hacia las constantes de la Naturaleza para buscar un punto de unión, una base común mediante la cual llegar a un entendimiento inteligente que nos uniera y, hablaríamos primero sobre esas cosas que las constantes de la naturaleza definen. Las sondas que hemos enviado hacia los confines del Sistema solar y más allá en el espacio profundo, llevan información sobre nosotros y sobre nuestro lugar en el Universo, así como también las longitudes de onda que definen el átomo de Hidrógeno para decir dónde estamos y también, lo que sabemos.
Si los habitantes de un planeta lejano, sus grupos de científicos, estudiaran ésta constante, no importa por que medio y qué guarismos matemáticos la buscaran, al final el resultado sería ¡137! Ese número puro adimensional.
Las constantes de la Naturaleza son, segursamente, la mayor experiencia física que pueden compartir seres inteligentes sin importar de qué parte del Universo puedan ser, toda vez que, los seres conscientes de inteligencias evolucionadas, al igual que nosotros aquí, habrán hallado esos misteriosos números que definen un Universo para todos en el que, lo primero que hay que comprender es que, no hay supremacía de nadie sobre nadie, la inteligencia es igual en todas partes y todos, sin excepción, tendremos que compartir la misma Naturaleza.
emilio silvera
Jun
24
El Universo siempre misterioso
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
¿Es viejo el Universo?
Nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsares, agujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí están presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!
Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y espacio como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.
Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales” la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.
Es fácil caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.
A lo menos una vez al día, el cielo en su parte alta, es iluminado por un gran destello producido por grandes explosiones de rayos gamma. A menudo, esos destellos alcanzan magnitudes superiores a las que pueden ser generadas por todo un conjunto de otros rayos cósmicos y desaparecen posteriormente sin dejar más rastro. Nadie puede predecir cuando volverá a ocurrir la próxima explosión o de que dirección del cielo procederá. Hasta ahora, no contamos con evidencias duras como para asegurar cuáles podrían ser las fuentes precisas de donde provienen esos rayos gamma que observamos en lo alto del cielo, las razones que ocasionan los grandes destellos y la distancia en la cual ocurre el fenómeno.
La edad actual del Universo visible ≈ 1060 tiempos de Planck
Tamaño actual del Universo visible ≈ 1060 longitudes de Planck
La masa actual del Universo visible ≈ 1060 masas de Planck
Vemos así que la baja densidad de materia en el Universo es un reflejo del hecho de que:
La Densidad actual del Universo visible ≈10-120 de la densidad de Planck
Y la temperatura del espacio, a 3 grados sobre el cero absoluto, es, por tanto
La Temperatura actual del Universo visible ≈ 10-30 de la Planck
“Si, existe. Se trata de una temperatura inconcebiblemente alta llamada Temperatura de Planck, una de esas curiosidades científicas que no sirven realmente de mucho. El universo tenía esa temperatura durante el primer instante de Planck tras el Big Bang (10^-43 de segundo), y hablamos de 10^32 Kelvin.”
Así pues, la Temperatura de Planck es el límite calórico superior que se puede alcanzar.
Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el Universo está estructurado en una escala sobre humana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.
Con respecto a sus propios patrones el Universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.
Pero, pese a la enorme edad del Universo en “tics” de Tiempos de Planck, hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.
En todas las regiones del espacio interestelar donde existen objetos de enormes densidades y estrellas supermasivas se pueden producir sucesos de inmensas energías y, en regiones de gas y polvo de muchos años-luz de diámetro, es donde surgen los Sistemas solares que contienen planetas aptos para la vida.
¿Por qué nuestro Universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el Universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el Universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas.
Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.
Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen series amenazas exteriores.
Credit: Emily Lakdawalla/Ted Stryk
La mayoría de asteroides, incluyendo Vesta, están en el cinturón de asteroides que se sitúa entre Marte y Júpiter. Otros asteroides giran en círculos mas cerca del Sol que de la Tierra, mientras que un gran número de ellos comparten orbitas planetaria. Dada esta gran variedad de asteroides, algunos particularmente extraños han sido descubiertos en los últimos dos siglos desde que el primer asteroide fuera descubierto (Ceres en 1801).
Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una serie y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos. Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.
La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución, o, por el contrario, evitar que siga cualquier clase de evolución produciendo la extinción total y dejando la Tierra como un planeta muerto.
emilio silvera