May
19
¡Imaginación! ¡Sueños!
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)
En otras ocasiones hemos presentado aquí trabajos y, entre los temas que fueron tratados, entraba el Universo Estacionario y también la posibilidad de un final con la presencia del Big Crunch, lo cual, según todos los datos de la cosmología moderna, no será posible dado que, el Universo euclideo y la Densidad Crítica que se observa no sería suficiente para producir tal final. Por el contrario, la dinámica observada de expansión es cada vez más acelerada y, aunque algunos hablan de la “materia oscura”, en realidad no sabemos a qué se puede deber tal expansión pero, lo cierto es que no habrá colapso final y sí, en cambio, una expansión ilimitada que nos llevará hacia un “enfriamiento térmico” que llegará a alcanzar un máximo de entropía dS = dQ/T, así habrá una gran parte de la energía del Universo que no podrá producir trabajo. Sin embargo, es curioso que siendo eso lo que se deduce de los datos que tenemos, cuando miramos lo que predicen las nuevas teorías basadas en las cuerdas y la mecánica cuántica nos indica que tal escenario es poco creíble.
Sí, todo cambia. ¿Cual es la verdadera medida? ¡Llegar a comprender!

Todos los días podemos sorprendernos de los hallazgos y logros de nuestros ingenios que, tanto aquí como en el espacio, están continuamente trabajando para que nosotros conozcamos el Universo y los objetos que lo pueblan. De momento (somos aún muy jóvenes), estamos algo limitados en Ciencia y Tecnología para que, seámos nosotros mismos los que vayamos a buscar esas emocionantes sensaciones in situ. Así que, enviamos a nuestras sondas robóticas para que lo hagan por nosotros que, en la distancia, nos sorprendemos y maravillamos de lo que vamos descubriendo por ahí fuera.
El Universo es inmenso, para nosotros… ¡casi infinito! Está lleno de galaxias, estrellas y mundos de los que, unos tendrán presente la vida y otros no pero, el que la tenga, creo que, como en la Tierra, estará basada en el Carbono que es, el elemento más idóneo para hacerla posible y, aunque no podamos negar cualquier otra posibilidad, esa es, amigos míos, la que lleva la mayor ventaja.
Uno de los supuestos implícitos en pro de la inevitabilidad de un Universo grande y frío es que cualquier vida es muy parecida a la nuestra. Los biólogos parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el Carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencia extraterrestre en el Universo se centran en formas de vida similares a nosotros que habiten en planetas y necesiten agua, atmósferas gaseosas y todo lo demás. Merece la pena abrir un poco nuestra imaginación para pensar a qué podría parecerse la vida si radicara en el espacio en lugar de radicar en un planeta. Las formas de vida diferentes a la nuestra y con otros metabolismos están también aquí con nosotros y pertenecen a minúsculos seres que, son necesarios en el ecosistema terrestre para que el conjunto funcione en una simbiosis general y efectiva.
Charles Lyell (1797-1875)
“El libro de Lyell convirtió el viaje de Darwin en un viaje a través del tiempo. Darwin empezó a leerlo casi inmediatamente, en su litera, mientras sufría el primero de los muchos mareos que le atormentarían durante los cinco años siguientes. El Beagle, un bergantín sólido y macizo, de 28 metros de largo por 7,5 de ancho, era en general confortable, pero su casco era redondeado y se balanceaba mucho. Darwin empezó a aplicar lo que él llamaba “la maravillosa superioridad de la manera de Lyell de abordar la geología” tan pronto como la expedición tocó tierra en las islas de Cabo Verde.”
¿Sabremos algún día, como son las cosas?
Los cosmólogos hablan y hablan y no pocas veces utilizan conceptos y parámetros que, sin haber sido comprobados, están ahí unamovibles como si de verdades como montañas se tratara. La Energía y la Materia Oscura son una buena muestra. Las colocan por todas partes y, aunque nadie sabe lo que es (ellos los primeros), es uno de los platos que más suelen degustar cuando hablan de la expansión acelerada del universo.
Lo que sucede primero, no es necesariamente el principio. Antes del “principio”, de ese principio que nosotros llamamos Big Bang, tuvieron que suceder muchas cosas que, de momento, no hemos podido llegar a conocer, nos topamos con la oscuridad del Tiempo de Planck, esa infinitesimal fracción en la que, según parece, debieron suceder muchas cosas que desconocemos y que pudieran ser, el verdadero principio de todo. Además, hasta es posible que ni hubiera principio y, nuestro Universo, surgiera a parti4r de una fluctuación de vacío en otro universo que rasgando el espacio-tiempo, lo hizo “nacer” como otro más de los muchos que conforman un Metaverso infinito.
No siempre hablamos con propiedad
También hay simetría en las ondas gravitatorias
Siguiendo con el tema que nos ocupa, lo cierto es que, es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que preocupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?

El “Principio Copernicano”, invocado frecuentemente en la Cosmología moderna, insiste en la homogeneidad del Universo, negando cualquier primacía de posición o propiedades asociadas con la existencia humana. Si miramos por ahí, en cualquier sitio podremos leer:
“En cosmología física, el principio de Copérnico, llamado así en honor a Nicolás Copérnico, es un principio que postula que nuestro planeta -la Tierra- no ocupa ninguna posición central favorecida. Recientemente, el principio fue generalizado hacia el concepto relativista que enuncia: «los humanos no somos observadores privilegiados del universo»; en este , es equivalente al principio de mediocridad, con importantes implicaciones en la filosofía de las ciencias.”
Lo cierto es que, miremos hacia donde miremos y por muy lejos que esté el lugar que podamos observar, por lo general y exceptuando regiones locales en las que puedan hallarse objetos singulares, en todas partes existen las mismas cosas, funcionan las mismas leyes, podemos medir las mismas constantes y, Nebulosas, mundos, estrellas y galaxias con inmensos espacios vacíos entre ellas, es la tónica de un Universo en expansión que tratamos de conocer.
El princioio toma su nombre de la propuesta de Copérnico (ya anteriormente formulada por Aristarco) de desplazar a la Tierra de la posición central ocupada en el sistema de Tolomeo, aunque tal centralidad se debiese a la falta de paralaje estelar y no a una sobrevaloración de nuestra existencia en el planeta Tierra.
El paso siguiente lo dio Shapley hace un siglo, al mostrar que tampoco el Sol ocupa el centro de la Via Láctea. Finalmente, el Universo “finito pero ilimitado” de Einstein niega la posibilidad de encontrar un centro en su volumen tridimensional, y afirma la equivalencia de posición de todos los puntos del espacio. No tiene sentido preguntar dónde estamos en el continuo expandirse de un Universo que contiene probablemente más de 100.000 millones de galaxias, y que vuelve a la insignificancia aun la majestuosa estructura de la Vía Láctea, nuestra ciudad cósmica.
Sin embargo, a partir de la década de los años 30, se da una reacción interesante, que afirma, cada vez con argumentos más fuertes y detallados, que el Hombre está en un tiempo y un lugar atípicos y privilegiados en muchos respectos, que obligan a preguntarnos si nuestra existencia está ligada en un modo especial a características muy poco comunes en el Universo. Esta pregunta adquiere un significado especial al considerar las consecuencias previsibles (según las leyes físicas) de cualquier alteración en las condiciones iniciales del Universo. Con un eco de las palabras de Einstein: ¿tuvo Dios alguna alternativa al crear?. No solamente debemos dar razón de que el Universo exista, sino de que exista de tal manera y con tales propiedades que la vida inteligente puede desarrollarse en él. Tal es la razón de que se formule el Principio Antrópico, en que el Hombre (entendido en el sentido filosófico de “animal racional”, independientemente de su hábitat y su morfología corporal) aparece como condición determinante de que el Universo sea como es.
Las primeras sugerencias de una conexión entre vida inteligente y las propiedades del Universo en su momento actual aparecen en las relaciones adimensionales hechas notar por Eddington: la razón de intensidad entre fuerza electromagnética y fuerza gravitatoria entre dos electrones, entre la edad del Universo y el tiempo en que la luz cruza el diámetro clásico de un electrón, entre el radio del Universo observable y el tamaño de una partícula subatómica, nos da cifras del orden de 10 elevado a la potencia 40. El número de partículas nucleares en todo el cosmos se estima como el cuadrado de ese mismo número. ¿Son éstas coincidencias pueriles o esconden un significado profundo?. La hipótesis de los grandes números sugiere que el Hombre solamente puede existir en un lugar y momento determinado, cuando tales coincidencias se dan, aunque no se avanza una explicación de estas relaciones.”
Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida. La implicación de que el universo fue de alguna manera diseñado para hacer posible de la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, en la que la fe, no parece tener cabida.
Es decir, problema del ajuste fino significa que las las constantes fundamentales de un modelo físico para el universo deben ser ajustados de forma precisa para permitir la existencia de vida. Sobre estas constantes fundamentales no hay nada en la teoría que nos indique que deban tomar esos valores que toman. Podemos fijarlas de acuerdo con las observaciones, pero esto supone fijarlas de entre un rango de valores colosal. Esto da la impresión de cierta arbitrariedad y sugiere que el universo podría ser una realización improbable entre tal rango de valores. He ahí el problema.
El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la naturaleza y entraremos en el juego virtual de ¿qué hubiera pasado si…?
Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal o cual manera para ocurrir de esta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para nosotros y nos quitó de encima a unos terribles rivales?
Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual; sólo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto. Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza. ¿Quién sabe lo que pasará mañana?
Lo cierto es que estamos confinado en este pequeño mundo
Siempre estamos imaginando el futuro que vendrá. Los hombres tratan de diseñarlo pero, finalmente, será el Universo el que tome la última palabra de lo que deba ser. Por mucho que nosotros nos empeñemos, las estructuras del Universo nunca podrán ser cinceladas por nuestras manos ni por nuestros ingenios, sólo las inmensas fuerzas de la Naturaleza puede transformar las estrellas, las galaxias o los mundos… lo demás, por muy bello que pudiera ser, siempre será lo artificial.
Lo que ocurra en la naturaleza del universo está en el destino de la propia naturaleza del cosmos, de las leyes que la rigen y de las fuerzas que gobiernan sus mecanismo sometidos a principios y energías que, en la mayoría de los casos se pueden escapar a nuestro actual conocimiento.
Lo que le pueda ocurrir a nuestra civilización, además de estar supeditado al destino de nuestro planeta, de nuestro Sol y de nuestro Sistema solar y la Galaxia, también está en manos de los propios individuos que forman esa civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual de libre albedrío otorgado en ese plano político a quien no siempre lo merece. Todos sabemos de la imperfección humana y tambieón, de sus ambiciones.
Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser si…, lo que, la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.
En unos tres mil años, si estuviéramos aquí, podríamos contemplar una escena similar entre Andrómeda y la Vía Láctea. Todos los estudios realizados al respecto, confirman que el final de ambas galaxias, será unirse de manera irremisible para formar una galaxia mucho mayor y distintas de lo que ahora son. ¿Si para entonces, la vida sigue por aquí, cómo se verá afectada?
Llegará un momento en el que se agote el hidrógeno interior del Sol, y se estima que dentro de entre unos 5 a 6 mil millones de años, el Sol, tras fusionar todo el hidrógeno de su núcleo, se transformará en una gigante roja, proceso que llevará aproximadamente 600 millones de años y , en cuyo curso, devorará a Mercurio, y posiblemente también a Venus y a la Tierra poco antes de alcanzar su tamaño y luminosidad máximas, que se estima será casi 260 veces mayor y 2 700 veces más luminoso de lo que es hoy.
inalmente, cuando también el hidrógeno de las capas más externas del Sol se agote, se producirá un colapso gravitatorio que dejará como resultado una enana blanca, una estrella fría estable, mantenida por la repulsión debida al principio de exclusión entre electrones.
Cuando eso llegue estará acercándose el final de la Tierra como planeta que albergó la vida. Los cambios serán irreversibles, los océanos se evaporarán y sus aguas hirvientes comenzarán a llenar la atmósfera de gases. La Gigante roja engullirá a los planetas Mercurio, Venus y probablemente se quedará muy cerca de la Tierra calcinada y sin vida, o, también sufrirá el mismo final que sus hermanos los planetas menores.
Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de hidrógeno, helio, carbono, etc, para que sus capas exteriores de materia exploten y salgan disparadas al espacio interestelar, mientras que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la gravedad, convirtiéndose en una Nebulosa planetaria que en su centro tendrá lo que queda de aquel Sol esplendoroso: ¡una estrella enana blanca! de enorme densidad y de reducido diámetro. Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.
Siempre hemos soñado con escapar de la Tierra. De alguna manera, siempre hemos sabido que esto no durará eternamente. La Eternidad, lo mismo que la nada o el vacío… ¡No existen!
Pero el problema no es tan fácil y se extiende a la totalidad del universo que, aunque mucho más tarde, también está abocado a la muerte térmica, el frío absoluto si se expande para siempre como un universo abierto y eterno, o el más horroroso de los infiernos, si estamos en un universo cerrado y finito en el que, un día, la fuerza de gravedad, detendrá la expansión de las galaxias que comenzarán a moverse de nuevo en sentido contrario, acercándose las unas a las otras de manera tal que el universo comenzará, con el paso del tiempo, a calentarse, hasta que finalmente, se junte toda la materia-energía del universo en una enorme bola de fuego de millones de grados de temperatura, el Big Crunch.
Un universo replegándose sobre sí mismo no parece probable
El irreversible final está entre los dos modelos que, de todas las formas que lo miremos, es negativo para la Humanidad (si es que para entonces aún existe). En tal situación, algunos ya están buscando la manera de escapar.
Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiuniverso, esto es, que existen infinidad de universos conectados los unos a los otros. Unos tienen constantes de la naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.
Este sistema de inflación autorreproductora nos viene a decir que cuando el universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible. Cada burbuja será un nuevo universo, o mini-universo en los que reinarán escenarios diferentes o diferentes constantes y fuerzas.
“Kashlinsky y su equipo afirman que sus observaciones representan la primera pista de lo que hay más allá del horizonte cósmico. Al averiguarlo, podremos saber cómo se veía el universo inmediatamente después del Big Bang, o si nuestro universo es uno de muchos. Otros no están tan seguros. Una interpretación diferente dice que no tiene nada que ver con universos extraños sino el resultado de un defecto en una de las piedras angulares de la cosmología, la idea de que el universo debe verse igual en todas direcciones. O sea, si las observaciones resisten un escrutinio preciso.”
“Las estructuras más allá del “borde” del Universo observable, el cual están esencialmente confinados a una región con un radio de 14 mil millones de años luz, dado que sólo la luz dentro de esta distancia ha tenido tiempo de llegar hasta nosotros desde el Big Bang.
Algunos modelos han sido explorados y el resultado hallado es que en cada uno de esos mini-universos, puede haber muchas cosas diferentes; pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la naturaleza, pudiendo unos albergar la vida y otros no.
El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferenta mini-universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los mini-universos como el nuestro? Existen, como para todos los problemas planteados, diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista. Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la gravedad-cosmos) y la mecánica cuántica de Planck (el cuanto-átomo), no será posible contestar a ciertas preguntas.
Cuando nos introducimos en el “universo” de la teoría de cuerdas, parece como si estuviéramos entrando en otro mundo fuera de este nuestro, allí, se pueden ver cosas asombrosas que no podemos observar en nuestro mundo y nuestra capacidad de apreciación se deja escapar esas once dimensiones en las que, apaciblemente pueden convivir sin estridencias, la mecánica cuántica con la relatividad general.
Aunque no todos la entiendan la teoría de cuerdas tiene un gancho tremendo. Te transporta a un mundo de 11 dimensiones, universos paralelos, y partículas formadas por cuerdecitas casi invisibles vibrando a diferentes frecuencias. Además, te dice que no se trata de analogías sino de la estructura más profunda de la realidad, y que ésta podría ser la teoría final que unificara por fin a toda la física. ¿No estaremos hablando de Filosofía?
¿Estará hecho el Universo de cuerdas vibrantes?
Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, sólo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10, 11 ó 26 dimensiones. Allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del universo y de las fuerzas que en él actúan.
Científicamente, la teoría del hiperespacio lleva los nombres de Teoría de Kaluza-Klein y supergravedad. Pero en su formulación más avanzada se denomina Teoría de Supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo: diez dimensiones. Así pues, trabajando en dimensiones más altas, esta teoría del hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas. Como el Santo Grial de la , la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida.
Un Universo de “cuerdas” y de “Agujeros de Gusano”
Es cierto, los mejores siempre han buscado el Santo Grial de la Física. Una Teoría que lo pueda explicar todo, la más completa que, mediante una sencilla ecuación, responda a los misterios del Universo. Claro que tal hazaña, no depende siquiera de la inteligencia del explorador que la busca, es más bien un problema de que las herramientas necesarias (matemáticas) para hallarla, aún no han sido inventadas.
Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al cosmos: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil. Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado. Sin embargo, la teoría del hiperespacio permite la posibilidad de explicar todas las fuerzas de la naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante. En esta teoría del hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo. De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del hiperespacio.
Antes mencionábamos los universos burbujas nacidos de la inflación y, normalmente, el contacto entre estos universos burbujas es imposible, pero analizando las ecuaciones de Einstein, los cosmólogos han demostrado que podría existir una madeja de agujeros de gusano, o tubos, que conectan estos universos paralelos.
Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el hiperespacio puede proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos, de la muerte de este universo cuando al final llegue el frío o el calor.
Esta nueva teoría de supercuerdas tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas. Podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de gusano que unan partes distantes de nuestro universo. Por desgracia, los resultados son desalentadores. La energía requerida excede con mucho cualquier cosa que pueda existir en nuestro planeta. De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos. Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Que aún tardará mucho? Sí, pero el tiempo es inexorable, la debacle del frío o del fuego llegaría.
Línea de Universo
No existen dudas al respecto, la tarea es descomunal, imposible para nuestra civilización de hoy, ¿pero y la de mañana?, ¿no habrá vencido todas las barreras? Creo que el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, sólo necesita tiempo: Tiempo tenemos mucho por delante si las cosas no se tuercen para nuestra especie y la Naturaleza no se ensaña con nosotros de alguna manera. Y, si es así…
¿Sabremos aprovecharlo? Lo cierto es que nuestra osadía no tiene límites. No hemos podido solucionar -todavía- como llegar a esa primera fracción de tiempo que reside más alla del Tiempo de Planck y estamos hablando de universos paralelos y otras cuestiones que estarán después de aquella primera que nos queda por resolver. Siempre ha sido así, sin terminar una cosa nos hemos pasado a otras y, por eso, precisamente, vamos algo embarullados y tenemos ese caos mental que no nos deja ver… ¡lo sencillo!
“En Cosmología, las condiciones “iniciales” raramente son absolutamente iniciales, pues nadie sabe como calcular el estado de la materia y el espacio-tiempo antes del Tiempo de Planck, que culminó alrededor de 10-43 de segundo Después del Comienzo del Tiempo.”
Es verdaderamente encomiable la pertinaz insistencia del ser humano por saber, y, en el ámbito de la Astronomía, desde los más remotos “tiempos” que podamos recordar o de los que tenemos alguna razón, nuestra especie ha estado interesada en saber, el origen de los objetos celestes, los mecanismos que rigen sus movimientos y las fuerzas que están presentes. También en el extremo opuesto, estamos buscando para ver si, finalmente, encontramos esos otros universos.
Claro que, nosotros, los Humanos, llevamos aquí el tiempo de un parpadeo del ojo si lo comparamos con el Tiempo del Universo. Sin embargo, nos hemos valido de todos los medios posibles para llegar al entendimiento de las cosas, incluso sabemos del pasado a través del descubrimiento de la vida media de los elementos y mediante algo que denominamos datación, como la del Carbono 14, podemos saber de la edad de muchos objetos que, de otra manera, sería imposible averiguar. La vida de los elementos es muy útil y, al mismo tiempo, nos habla de que todo en el Universo tiene un Tiempo marcado. Por ejemplo, la vida media del Uranio 238 sabemos que es de 4.000 millones de años, y, la del Rubidio tiene la matusalénica vida media de 47.000 millones de años, varias veces la edad que ahora tiene el Universo.
Sin embargo, seguimos sin saber qué fue lo que pasó antes del Tiempo de Planck y, si existen otros universos.
emilio silvera
May
18
La fascinación del Universo
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)
No en pocas ocasiones nos hemos tenido que asombrar de los descubrimientos que en el Universo vamos realizando con la ayuda de los cada vez más sofisticados ingenios que nos llevan a viajes alucinantes en los que podemos visitar regiones tan distantes que, sus números nos marean, y, en ellas, descubrimos objetos que nunca pudimos pensar que pudieran existir.
El Sol comparado con VY Canis Mayoris es un simple puntito que casi no podemos ver
En la imagen podemos ver como destaca de las demás, esa es una de las estrellas más grandes que existen, hablamos de VY Canis Majoris(VY CMa) es una estrella hipergigante roja, localizada en la constelación de Canis Major. Es una de las estrellas conocidas más grandes y luminosas. En su momento fue la mayor estrella conocida, aunque luego se descubrieron otras estrellas de mayor tamaño. En la actualidad la estrella más grande conocida es UY Scuti (aunque posiblemente lo sea Westerlumd 1-26).
Esa que sobresale de todas las demás, es UY Scuti (V* UY Sct, BD-12 5055, IRC -10422, RAFGL 21621) es una estrella hipergigante roja en la constelación del Escudo. Es la estrella más grande conocida hasta ahora y posee un radio equivalente a 1708 ± 192 radios solares (un radio que correspondería a 1.188.768.000 km, 7,94 unidades astronómicas.). Si esta estrella fuera nuestro Sol englobaría todos los planetas hasta cerca de Saturno UY Scuti tiene un volumen de aproximadamente 5000 millones de veces el del Sol.
Hace unos 12.800 millones de años, cuando el universo aún era un “niño” que solo había vivido el 6% de su vida, existió un descomunal faro 420 billones de veces más luminoso que el Sol. Por aquella época el universo estaba saliendo de la edad oscura, un periodo que duró cientos de millones de años y en el que todo era tiniebla. Después aparecieron las primeras estrellas y galaxias y la luz comenzó a invadirlo todo. Poco antes de que esta etapa —conocida como reionización— acabase, se encendió ese faro cuyo origen era un desconomunal agujero negro que acaba de ser descubierto y analizado por un equipo internacional de astrónomos. Los investigadores creen que este monstruo tenía unas 12.000 millones de veces más masa que el Sol, lo que le convierte en el objeto de este tipo más grande y luminoso del universo.
Desde que se puso en órbita el telescopio espacial de rayos gamma Fermi, el 11 de junio de 2008, ha detectado poblaciones enteras de objetos nunca antes vistos. El último hallazgo de Fermi afecta al púlsar J1823-3021A, avistado en 1994 con el radiotelescopio Lovell, en Inglaterra. Un equipo internacional de expertos se ha dado cuenta de que esta estrella pulsante emite rayos gamma y gracias a Fermi ha podido caracterizar sus inusuales propiedades. Los resultados de su investigación se publican en el último número de Science.
El dato que más sorprende a los investigadores es su brillo. “Las emisiones de rayos gamma de uno de los cúmulos globulares de la Vía Láctea, llamado NGC 6624, nos hacían pensar que este albergaba 100 púlsares de milisegundo diferentes. Pero ahora hemos descubierto que todo viene de este único púlsar”, desvela a SINC Paulo Freire, investigador del Instituto Max-Planck de Radioastronomía en Alemania y uno de los autores principales del trabajo.
El brillo tan intenso que desprende revela que su campo magnético es mucho más fuerte de lo que los astrónomos creían posible para un pulsar de este tipo. “Quizá tendremos que cambiar las teorías de formación de púlsares de milisegundo tras este descubrimiento, que ayudará a entender cómo se forman estos objetos en el universo”.
Además, su periodo de rotación confirmó a los expertos que se trata de un pulsar de milisegundo ya que gira sobre sí mismo más de 183 veces por segundo.
La Nebulosa de la Tarántula o NGC 2070 o 30 Doradus es una gigantesca fábrica de estrellas 1000 años luz de ancho. Esta región HII (región de hidrógeno ionizado) es uno de los objetos astronómicos más interesantes de la Gran Nube de Magallanes (LMC) y más importante de la galaxia vecina de la Vía Láctea. Se trata de la nebulosa de emisión más grande conocida, una otra nebulosa, NGC 2060 ocupa su centro. Situada a una distancia de unos 170 000 años luz, se puede observar en la constelación de Dorado en el cielo austral. La Nebulosa de la Tarántula tiene una magnitud aparente de 5, es fácilmente visible a simple vista, ya que pertenece a otra galaxia vecina de la Vía Láctea.
Actualmente la Gran Nube de Magallanes atraviesas una época de gran formación estelar
la Gran Nube de Magallanes (LMC). La Tarántula es 100 veces más lejos que el famoso escuela estelar, la nebulosa de Orión en nuestra propia vivero. Si la Nebulosa de la Tarántula fue en nuestra galaxia, a la misma distancia que la Nebulosa de Orión (remoto sólo 1 350 años luz), cubriría un área dos veces mayor que la Osa Mayor casi una cuarta parte de cielo y sería visible incluso de día. La Nebulosa de la Tarántula contiene más de medio millón de veces la masa del Sol, esta nube grande y extravagante alberga algunas de las estrellas más masivas conocidas.
Un cúmulo globular es un tipo de cúmulo estelar que consiste en una agrupación de 105 – 106 estrellas viejas (astros de Población II), gravitacionalmente ligadas, con distribución aproximadamente esférica, y que orbita en torno a una galaxia de manera similar a un satélite. Son estas estrellas viejas las que le dan a los cúmulos globulares su típico color dorado, sólo visible por medio de la fotografía en color.
Los cúmulos globulares están generalmente compuestos por cientos de miles de estrellas viejas, de manera parecida al bulbo de una galaxia espiral, pero confinadas en un volumen de sólo unos pocos parsecs cúbicos. Algunos cúmulos globulares (como Omega Centauri en la Vía Láctea y G1 en M31) son extraordinariamente masivos, del orden de varios millones de veces la masa solar. Otros, como M15, tienen núcleos extremadamente masivos, lo que hace sospechar la presencia de agujeros negros en sus centros.
Con unas pocas excepciones notables, cada cúmulo globular parece tener una edad definida. Es decir, todas las estrellas de un cúmulo globular están aproximadamente en la misma etapa de su evolución estelar, sugiriendo así haberse formado al mismo tiempo. Fue el reconocimiento de este hecho, estudiando los diagramas Hertzsprung-Russell de cúmulos globulares, lo que dio lugar a una primera teoría de evolución de las estrellas.
Los cúmulos globulares poseen una densidad estelar muy alta, de manera que existen fuertes interacciones entre sus estrellas componentes y suelen ocurrir colisiones con relativa frecuencia. Algunos tipos exóticos de estrellas, como las azules rezagadas (errantes azules), los púlsares milisegundo y las binarias de poca masa emisoras de rayos X son mucho más frecuentes en los cúmulos globulares.
Antes vimos los cúmulos cerrados y, ahora tenemos aquí el Cúmulo abierto NGC 290 en el que liucen las estrellas tutilantes como si de un Joyero se tratara. La Belleza que el Universo nos puede ofrecer, es incomparable con cualquier otra cosa que, artificial, podamos nosotros hacer.,
Luego de clasificar las imagenes, vieron que se logro la mejor imagen ultravioleta en HD de una galaxia, hasta el dia de hoy. Lo que ayudara a todo tipo de cientificos a realizar mejores estudios.
Como se puede ver en la imágen, en el centro hay una enorme estrella o cumulo de color morado oscuro, que son las estrellas más antiguas. Alrededor de ellas estan las estrellas nuevas, en el lugar donde se crean nuevos planetas.
Las galaxias que son “universos” en miniatura, o, universos islas como las llamó Kant, contienen en pequeña proporción todo lo que el universo nos pueda ofrecer, son como muestras de universos. Asñi, de su estudio se sacan conclusiones muy valiosas.
Un agujero negro supermasivo es un agujero negro con una masa del orden de millones o decenas de miles de millones de masas solares. Estudios científicos sugieren fuertemente que la Vía Láctea tiene un agujero negro supermasivo en el centro galáctico, llamado Sagitario A*.
A todo lo anterior, lo único que tenemos que añadir es la presencia de los seres vivos en nuestro Universo que, a grandes rasgos y sin pararnos a explicaciones más profundas, ha quedado reflejado en todo lo anteriormente expuesto.
emilio silvera
May
14
Cosas de la Mecánica Cuántica
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (7)
¡La Física! Esa maravilla que está presente en todo lo que podemos ver y en aquello donde la vista no llega. La infinitud de las partículas elementales que forman todo cuanto existe en la Naturaleza, no siempre se dejan ver ni hacen posible que podamos observar las maravillas que pueden llevar a cabo,
Las sustancias formadas por una sola clase de átomos se llaman elementos químicos, y, si está conformada por distintos átomos, son compuestos. La palabra “átomo” procede del griego ατομος, que significa “indivisible” y el uso de la palabra “elemento” sugiere que se ha llegado a los ladrillos básicos con los que está formada la materia. De hecho, esta es la imagen que se tenía a mediados del siglo XIX cuando se acuñaron estos términos. Sin embargo, hoy sabemos que todo esto es falso, que los átomos se pueden dividir y que, de esta manera, los elementos han dejado de ser verdaderamente elementales. Los físicos continúan con esta nomenclatura aunque sea formalmente incorrecta, ya que, la costumbre, como dicen los juristas, no pocas veces rigen la jerga de las leyes.
A todo esto y hablando de los átomos, por fuerza, nos tenemos que acordar del electrón que da al átomo su forma esférica. Son partículas cargadas eléctricamente que se mueven alegremente alrededor del núcleo. El electrón es muy ligero: su masa es solamente 1/1.8836 de la del núcleo más ligero (el hidrógeno). La carga eléctrica del electrón es de signo opuesto a la del núcleo, de manera que los electrones están fuertemente atraídos hacia el núcleo y se repelen mutuamente. Si la carga eléctrica total de los electrones en un átomo iguala a la del núcleo, para lo que generalmente se necesitan varios electrones, se dice que el átomo está en equilibrio o que es eléctricamente neutro.
Claro que, no debemos olvidarnos de que, ¡Todo lo grande está hecho de cosas pequeñas! Una inmensa galaxia se conforma de un conjunto inmenso de átomos infinitesimales que juntos, hace ese gran todo.
La fuerza a la que obedecen los electrones, la denominada fuerza electrostática o de Coulomb, es matemáticamente bastante sencilla y, sin embargo, los electrones son los responsables de las importantes propiedades de los “enlaces químicos”. Esto se debe a que las leyes de movimiento de los electrones están regidas completamente por la “mecánica cuántica”, teoría que se completó a principios del siglo XX. Es una teoría paradójica y difícil de entender y explicar, pero al mismo tiempo es muy interesante, fantástica y revolucionaria. Cuando uno se introduce en las maravillas de la mecánica cuántica es como si hiciera un viaje a un universo que está situado fuera de este mundo nuestro, ya que, las cosas que allí se ven, desdicen todo lo que dicta nuestro sentido común de cómo tiene que ser el mundo que nos rodea.
La perfecta sincronía Está en la Naturaleza
No solamente los electrones, sino también los núcleos atómicos y los átomos en su conjunto obedecen y se rigen por la mecánica cuántica. La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck, escribió un artículo de ocho páginas y allí propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos.
Estaban bien aceptados entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para las longitudes mayores como para las longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.
Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de la onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:
E = h x v
Donde E es la energía del paquete, v la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.
Los cuantos de energía están presentes por todas partes y en todos los objetos. Números cuánticos, efecto fotoeléctrico…
Poco tiempo después, en 1905, Einstein formuló esta teoría de una forma mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos de los paquetes de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.
El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Erwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños estaban exactamente determinados por la recién descubiertas “ecuaciones de onda cuánticas”.
Pocas dudas nos pueden caber a estas alturas de que la mecánica cuántica (de Planck) y, la Relatividad –tanto especial como general- (de Einstein), además de ser las dos teorías más importantes de la Física de nuestro tiempo, funcionan de tal forma que uno, cuando profundiza en sus predicciones y las compara con lo que ocurre en el Universo, no puede por menos que, asombrarse, al comprobar como unas mentes humanas han sido capaces de llegar a estos profundos pensamientos que nos acerca a la realidad de la Naturaleza.
No olvidemos el fenómeno de el entrelazamiento cuántico (Quantenverschränkung, originariamente en alemán) es una propiedad predicha en 1935 por Einstein, Podolsky y Rosen (en lo sucesivo EPR) en su formulación de la llamada paradoja EPR.
“En mecánica cuántica, el efecto túnel es un fenómeno cuántico por el que una partícula viola los principios de la mecánica clásica penetrando una barrera de potencial o impedancia mayor que la energía cinética de la propia partícula. “
Otras muchas maravillas nos muestra la Mecánica cuántica, ese “mundo” de lo muy pequeño que lo conforma todo y que, sin él, no existiría lo grande. Las galaxias y todos los objetos del Universo están hechos de estas partículas infinitesimales.
emilio silvera
May
2
El Universo asombroso
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (1)

NGC 346 en la Pequeña Nube de Magallanes. Entre los cúmulos de SMC y la nebulosa NGC 346 hay una región de formación de estrellas de unos 200 años luz -fotografía arriba-, por el telescopio espacial Hubble. Explorando esta Nebulosa, los astrónomos han identificado una población de estrellas embrionarias concatenadas a través de las sombrías, entrelazadas franjas de polvo, que se ven aquí, a la derecha.
Ha habido dos momentos de grandes cambios en la Física occidental. El primero llegó con Galileo y Newton, que hicieron que la ciencia abandonara los antiguos ideales griegos de la razón pura, haciéndola rigurosa y dependiente de los datos experimentales y de la causalidad, rechazando conceptos tales como que la luz es una “cualidad”, e intentando cualificar cosas tales como luz y las fuerzas de la materia. Algunos, como Weinberg, siguen considerando a Newton como el científico más importante que ha existido:
Curvas de potencial en un sistema de dos cuerpos (aquí el Sol y la Tierra), mostrando los cinco puntos de Lagrange. Las flechas indican pendientes alrededor de los puntos L –acercándose o alejándose de ellos. Contra la intuición, los puntos L4 y L5 son máximos.
Equilibrio, estabilidad: el resultado de dos fuerzas contrapuestas
El equilibrio se alcanza mediante la contraposición de dos fuerzas: En el átomo, por ejemplo, la carga negativa de los electrones iguala a la positiva de los protones para que sea estable. De la misma manera, otras situaciones nos llevan a lo mismo, y, al final, resulta el Universo que podemos observar. Así, las estrellas que fusionan elementos y tienden a expandirse, frenan dicha expansión por la Fuerza de Gravedad que tiende a contraer la ingente masa, y, cuando al final agotan su combustible nuclear y la gravedad queda libre, se produce la implosión y la estrella se convertirá (dependiendo de su masa), en enana blanca, estrella de neutrones o agujero negro (no sabemos si existe ese otro tipo intermedio entre la de neutrones y el agujero negro, la estrella de Quarks-Gluones.
¿La Vida? Lo único que se me ocurre para contestar es decir que la Vida es el nivel más alto de la evolución de la Materia. Entendiendo, eso sí, que ese “nivel más alto” es aquel en el que se ha llegado hasta la consciencia de Ser. Cuando nos hemos percatado de que “somos”, entonces y sólo entonces hemos sido conscientes de que formamos parte del inmenso Universo.

Big Bang, Big Bounce, Big Crunch y otros modelos que del Universo hemos creado para intentar exponer lo que el Universo es, como “nació” y como “morirá”, la inflación y expansión, la contracción final, el nuevo comienzo, las fuerzas fundamentales y las constantes que hace de nuestro Universo el que podemos contemplar.
Analizando las ideas del físico teórico David Bohm, que exploraba la sustitución de geodésicas clásicas (el menor camino entre dos punto en una superficie curva se conoce como geodésica) a través de trayectorias cuánticas. Estas curvas fueron aplicadas a ecuaciones cuánticas creadas en la década de 1950 por el físico indio Amal Kunar Raychaudhuri.
Empleando las ecuaciones de Raychaudhuri corregidas para la mecánica cuántica, Saurya y Ahmed derivaron ecuaciones de Friedmann también corregidas para la mecánica cuántica. Estas ecuaciones de Friedmann son una forma de describir la expansión y evolución del universo dentro del contexto de la Relatividad General.
Puede que todo surgiera a partir de esa densidad infinita. Allí comenzó el Tiempo y nació el Universo que se expandió, se crearon las partículas de materia, que se juntaron para formar los núcleos que al verse arropados por los electrones con sus cargas negativas, venían a equilibrar las positivas de los protones y, de esa manera, se pudieron unir para formar moléculas y materia. Sustancia cósmica primero, estrellas y galaxias después, y, dentro de toda esa vorágine, miles de millones de años más tarde, llegaron a surgir en los mundos ¡la vida! Pensando en todo esto, a uno se le viene a la cabeza pensamientos del pasado, enseñanzas escolares y preguntas que no tienen respuestas.
Lo de no mirar atrás… ¡No me gusta! Si lo hubiéramos hecho , ¿cómo habríamos aprendido lo que sabemos?
Desde que asustados mirábamos los relámpagos en las tormentas, hemos observado la Naturaleza y, de ella, hemos podido ir aprendiendo. Esos conocimientos han hecho posible que nuestras mentes evolucionen, que surjan las ideas, que la imaginación se desboque y, vaya siempre un poco más allá de la realidad. Imaginar ha sido siempre una manera de evadir la realidad. El viaje en el tiempo ha sido una de esas fantásticas ideas y ha sido un arma maravillosa para los autores de ciencia ficción que nos mostraban paradojas tales como aquella del joven que viajó hacia atrás en el tiempo, buscó a su bisabuelo y lo mató. Dicha muerte produjo de manera simultánea que ni su abuelo, su padre ni él mismo hubieran existido nunca. Claro que, tal suceso es imposible; existe una barrera o imposibilidad física que impide esta de paradoja y, si no existe tal barrera, debería exisitir. Creo que, aún en el hipotético caso de que algún día pudiéramos viajsar en el tiempo, nunca podríamos cambiar lo que pasó. El pasado es inamovible.
¡El Tiempo! ¿Es acaso una abstracción? ¿Por qué no es igual para todos? ¿Podremos dominarlo alguna vez? Claro que saber lo que es el tiempo… ¡No lo sabemos!, y, según las circunstancias, siempre será diferente para cada uno de nosotros dependiendo de sus circunstancias particulares: Quien está con la amada no siente su transcurrir, una hora será un minuto, mientras que, el aquejado por el dolor, vivirá en otro tiempo, un minuto será una eternidad. En cuanto dominar lo que entendemos por tiempo… Si pensamos con lógica, en lugar de introducir posibilidades físicas particulares o locales, pensaremos como nos enseño Einstein, a una mayor escala, en la utilidad de un y un tiempo únicos y unidos en un bloque de espacio-tiempo que se moldea en presencia de la materia y se estira o encoge con la velocidad.
Hay en todas las cosas un ritmo que es parte de nuestro Universo.
“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede ver ese ritmo en la sucesión de las estaciones, en la forma en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”
De “Frases escogidas de Muad´Dib”, por la Irulan.
hemos imaginado estar en otros niveles
Salgamos ahora fuera del espacio-tiempo y miremos lo que sucede allí. Las historias de los individuos son trayectorias a través del bloque. Si se curvan sobre sí mismas para formar lazos cerrados entonces juzgaríamos que se ha producido un en el tiempo. Pero las trayectorias son las que son. No hay ninguna historia que “cambie” al hacerla. El viaje en el tiempo nos permite ser parte del pasado pero no cambiar el pasado. Las únicas historias de viaje en el tiempo posibles son las trayectorias autoconsistentes. En cualquier trayectoria cerrada no hay una división bien definida entre el futuro y el pasado.
Siempre nos ha gustado imaginar
Si este tipo de viaje hacia atrás en el tiempo es una vía de escape del final termodinámico del universo, y nuestro universo parece irremediablemente abocado hacia ese final, hacia ese borrador termodinámico de todas las posibilidades de procesamiento de información, entonces quizá seres súper avanzados en nuestro futuro estén ya viajando hacia atrás, hacia el ambiente cósmico benigno que proporciona el universo de nuestro tiempo. No descarto nada. Si le dicen a mi abuelo hace más de un siglo y medio que se podría meter un documento en una maquinita llamada fax, y el documento, de manera instantánea, aparecería en otra máquina similar situada a kilómetros de la primera…, los habría tachado de locos.
Si se marcha en línea recta está claro quién va delante de quién. Si se marcha en círculo cualquiera está delante y detrás de cualquier otro. Como pregona la filosofía, nada es como se ve a primera vista, todo depende bajo el punto de vista desde el que miremos las cosas.
“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.”
Los hay que creen, que la vida, es única en la Tierra. De la misma forma nuestros sentidos actuales solo nos permiten percibir la parte física del Universo. A medida que vayamos evolucionando iremos accediendo a planos más sutiles de la Creación.
Lo cierto es que siempre nos hemos creído especiales, los elegidos, ¿los únicos? ¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en las constantes son diferentes y la vida no puede existir?
En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno… ¡Y, también nosotros!
Nuestro Universo es como es las constantes son las que son
Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica, la que conforma todos los objetos del universo. Hay elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales, inestables y emiten radiación nosiva para la vida.
Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes). Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El puro y adimensional, 137!!
Un estudio de una de las constantes fundamentales del universo pone en duda la teoría popular de la energía oscura. La energía oscura es el dado a lo que está causando que la expansión del universo se acelere. Una teoría predice que una entidad inmutable que impregna el llamada la constante cosmológica, originalmente propuesta por Einstein, sería la verdadera .
En nuestro planeta, como en otros, en cualquier charca caliente surgir la vida
Lo cierto es que, las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano. Las tres formas de Universo que nos ponen los cosmólogos para que podamos elegir uno que será el que realmente se asemeja al nuestro. Abierto, plano y cerrado todo será en función de la Densidad Crítica que el Universo pueda tener-
Todo dependerá de cual sea el de la densidad de materia.
De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.
Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas…y ¡vida!
Gráfico: Sólo en el modelo de universo que se expande de la divisoria crítica (en el centro), se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.
No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que la “Densidad Crítica”. El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).
Gráfico: La “inflación” es un breve periodo de expansión acelerada durante las primeras etapas de la Universo.
Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de de partida especiales.
Todas estas explicaciones nos llevan a pensar que entre los miles de millones de galaxias conocidas que se extienden por el Universo, cada una de las cuales contiene a su vez miles de millones de estrellas, no es nada descabellado pensar que existen también, cientos de miles de millones de planetas que giran alrededor de muchas de esas estrellas, y que en alguno de estos últimos debe haber, como en el nuestro formas de vida, algunas inteligentes.
Han creado un mapa muy detallado del Universo cercano en 3D (según publica Europa Press). Un equipo internacional han podido completar el mapa más preciso y completo hecho hasta el momento y, con este avance, se puede conocer el universo y sus contenidos con una mayor precisión.
Así, nos hacemos una idea más o menos plausible del conjunto, podemos llegar a la conclusión de que, para llegar al estadio de evolucioón en el que nos encontramos, las estrellas tuvieron que más de 10.000 millones de años para hacer posible la existencia de materiales complejos aptos para la bio-química de la vida y, una vez conformado el primigenio material, se necesitaron otros 1.000 millones de años para que, las primeras y rudimentarias células vivas precursoras de la vida inteligente aparecieran.
Situada a 12.900 M de años-luz, descubren la Galaxia lejana y, seguramente, de la primeras
Hemos podido, observando a la Naturaleza, saber de todo esto que más arriba hemos comentado, y, todos los obtenidos, todos los secretos desvelados, todos los nuevos conocimientos, nos han acercado más y más al Universo infinito del que formamos parte y, al ritmo del universo, nuestras mentes han evolucionado para poder imaginar… ¡Hasta viajar en el Tiempo! Incluso pensamos en manejar las estrellas como ya, de hecho, podemos hacer con los átomos que las conforman.
emilio silvera
Abr
19
¡Los materiales para la vida!
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)
Los elementos se crean en las estrellas y en las explosiones supernovas
¡La Física! Cuando se asocia a otras disciplinas ha dado siempre un resultado espectacular y, en el caso de la Astronomía, cuando se juntó con la Física, surgió esa otra disciplina que llamamos Astrofísica. La Astrofísica es esa nueva rama de la Astronomía que estudia los procesos físicos y químicos en los que intervienen los fenómenos astronómicos. La Astrofísica se ocupa de la estructura y evolución estelar (incluyendo la generación y transporte de energía en las estrellas), las propiedades del medio interestelar y sus interacciones en sus sistemas estelares y la estructura y dinámica de los sistemas de estrellas (como cúmulos y galaxias) y sistemas de galaxias. Se sigue con la Cosmología que estudia la naturaleza, el origen y la evolución del universo. Existen varias teorías sobre el origen y evolución del universo (big bang, teoría del estado estacionario, etc.
Las estrellas, como todo en el Universo, no son inmutables y, con el paso del Tiempo, cambian para convertirse en objetos diferentes de los que, en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar hasta la vida.
Una de las cosas que siempre me han llamado poderosamente la atención, han sido las estrellas y las transformaciones que, dentro de ellas y los procesos que en su interior se procesan, dan lugar a las transiciones de materiales sencillos hacia materiales más complejos y, finalmente, cuando al final de sus vidas expulsan las capas exteriores al espacio interestelar dejando una extensa región del espacio interestelar sembrada de diversas sustancias que, siguiendo los procesos naturales e interacciones con todo lo que en el lugar está presente, da lugar a procesos químicos que transforman esas sustancias primeras en otras más complejas, sustancias orgánicas simples como, hidrocarburos y derivados que, finalmente, llegan a ser los materiales necesarios para que, mediante la química-biológica del espacio, den lugar a moléculas y sustancias que son las propicias para hacer posible el surgir de la vida.
La Química de los Carbohidratos es una parte de la Química Orgánica que ha tenido cierta entidad propia desde los comienzos del siglo XX, probablemente debido a la importancia química, biológica (inicialmente como sustancias de reserva energética) e industrial (industrias alimentaria y del papel) de estas sustancias. Ya muy avanzada la segunda mitad del siglo XX han ocurrido dos hechos que han potenciado a la Química de Carbohidratos como una de las áreas con más desarrollo dentro de la Química Orgánica actual.
Todos los animales, plantas y microbios están compuestos fundamentalmente, por las denominadas sustancias orgánicas. Sin ellas, la vida no tiene explicación (al menos que sepamos). De esta manera, en el primer período del origen de la vida tuvieron que formarse dichas sustancias, o sea, surgimiento de la materia prima que más tarde serviría para la formación de los seres vivos.
La característica principal que diferencia a las sustancias orgánicas de las inorgánicas, es que en el contenido de las primeras se encuentra como elemento fundamental el Carbono.
En las sustancias orgánicas, el carbono se combina con otros elementos: hidrógeno y oxígeno (ambos elementos juntos forman agua), nitrógeno (este se encuentra en grandes cantidades en el aire, azufre, fósforo, etc. Las distintas sustancias orgánicas no son más que las diferentes combinaciones de los elementos mencionados, pero en todas ellas, como elemento básico, siempre está el Carbono.
En el primer nivel (abajo) están los productores, o sea las plantas como maíz, frijol, papaya, cupesí, mora, yuca, árboles, hierbas, lianas, etc., que producen hojas, frutas, raíces, semillas, que comen varios animales y la gente.
En el segundo nivel están los primeros consumidores, que comen hierbas, hojas (herbívoros) y frutas (frugívoros). Estos primeros consumidores incluyen a insectos como hormigas, aves como loros y mamíferos como ratones, urina, chanchos, chivas, vacas.
En el tercer nivel están los segundos consumidores (carnívoros), es decir los que se comen a los animales del segundo nivel: por ejemplo el oso bandera come hormigas, el jausi come insectos y la culebra come ratones.
Nosotros, los humanos, somos omnívoros, es decir comemos de todo: plantas y animales. Algunos de los carnívoros comen, a veces, plantas también, como los perros. Otros, como el chancho, comen muchas plantas y a veces también carne.
Las sustancias orgánicas más sencillas y elementales son los llamados hidrocarburos o composiciones donde se combinan el Oxígeno y el Hidrógeno. El petróleo natural y otros derivados suyos, como la gasolina, el keroseno, etc., son mezcolanzas de varios hidrocarburos. Con todas estas sustancias como base, los químicos obtienen sin problemas, por síntesis, gran cantidad de combinados orgánicos, en ocasiones muy complejos y otras veces iguales a los que tomamos directamente los seres vivos, como azúcares, grasas, aceites esenciales y otros. Debemos preguntarnos como llegaron a formarse en nuestro planeta las sustancias orgánicas.
Está claro que, para los iniciados en estos temas, la cosa puede parecer de una complejidad inalcanzable, nada menos que llegar a comprender ¡el origen primario de las sustancias orgánicas!
Es nuestro planeta y el único habitado (hasta donde podemos saber). Está en la ecosfera, un espacio que rodea al Sol y que tiene las condiciones necesarias para que exista vida. Claro que, ¡son tantos los mundos! Cómo vamos a ser nosotros nos únicos que poblemos el Universo? ¡Que despercidicio de espacio!
La observación directa de la Naturaleza que nos rodea nos puede facilitar las respuestas que necesitamos. En realidad, si ahora comprobamos todas las sustancias orgánicas propias de nuestro mundo en relación a los seres vivos podemos ver que, todas, son producidas hoy día en la Tierra por efecto de la función activa y vital de los organismos.
Las plantas verdes absorben el carbono inorgánico del aire, en calidad de anhídrido carbónico, y con la energía de la luz crean, a partir de éste, sustancias orgánicas necesarias para ellas. Los animales, los hongos, también las bacterias y el resto de organismos, menos los de color verde, se alimentan de animales o vegetales vivos o descomponiendo estos mismos, una vez muertos, pueden proveerse de las sustancias orgánicas que necesitan. Con esto, podemos ver como todo el mundo actual de los seres vivos depende de los dos hechos análogos de fotosíntesis y quimiosíntesis, aplicados en las líneas anteriores.
Incluso las sustancias orgánicas que se encuentran bajo tierra como la turba, la hulla o el petróleo, han surgido, básicamente, por efecto de la acción de diferentes organismos que en un tiempo remoto se encontraban en el planeta Tierra y que con el transcurrir de los siglos quedaron ocultos bajo la maciza corteza terrestre.
Todo esto fue causa de que muchos científicos de finales del siglo XIX y principios del XX, afirmaran que era imposible que las sustancias orgánicas produjeran en la Tierra, de forma natural, solamente mediante un proceso biogenético, o sea, con la única intervención de los organismos. Esta opinión predominante entre los científicos de hace algunas décadas, constituyó un obstáculo considerable para hallar una respuesta a la cuestión del origen de la vida.
Para tratar esta cuestión era indispensable saber cómo llegaron a constituirse las sustancias orgánicas; pero ocurría que éstas sólo podían ser sintetizadas por organismos vivos. Sin embargo, únicamente podemos llegar a esta síntesis si nuestras observaciones no van más allá de los límites del planeta Tierra. Si traspasamos esa frontera nos encontraremos con que en diferentes cuerpos celestes de nuestra Galaxia se están creando sustancias orgánicas de manera abiogenética, es decir, en un ambiente que excluye cualquier posibilidad de que existan seres orgánicos en aquel lugar.
Estrella de carbono (estrella gigante roja). En una constelación con pocas estrellas brillantes , U Antliae se destaca con su color rojizo por ser una estrella de carbono y visible a simple vista en el limite de la visión humana.
Con un espectroscopio podemos estudiar la fórmula química de las atmósferas estelares, y en ocasiones casi con la misma exactitud que si tuviéramos alguna muestra de éstas en el Laboratorio. El Carbono, por ejemplo, se manifiesta ya en las atmósferas de las estrellas tipo O, que son las que están a mayor temperatura, y su increíble brillo es lo que las diferencia de los demás astros (Ya os hablé aquí de R. Lepori, la estrella carmesí, o, también conocida como la Gota de Sangre, una estrella de Carbono de increíble belleza).
En la superficie de las estrellas de Carbono existe una temperatura que oscila los 20.000 y los 28.000 grados. Es comprensible, entonces, que en esa situación no pueda prevalecer aún alguna combinación química. La materia está aquí en forma relativamente simple, como átomos libres disgregados, sueltos como partículas minúsculas que conforman la atmósfera incandescente de estos cuerpos estelares.
La atmósfera de las estrellas tipo B, característica por su luz brillante blanco-azulada y cuya corteza tiene una temperatura que va de 15.000 a 20.000 grados, también tienen vapores incandescentes de carbono. Pero aquí este elemento tampoco puede formar cuerpos químicos compuestos, únicamente existe en forma atómica, o sea, en forma de pequeñísimas partículas sueltas de materia que se mueven a una velocidad de vértigo.
Sólo la visión espectral de las estrellas Blancas tipo A, en cuya superficie hay una temperatura de unos 12.000º, muestras unas franjas tenues, que indican, por primera vez, la presencia de hidrocarburos –las más primitiva combinaciones químicas de la atmósfera de estas estrellas. Aquí, sin que existan antecedentes, los átomos de dos elementos (el carbono y el hidrógeno) se combinan resultando un cuerpo más perfecto y complejo, una molécula química.
Observando las estrellas más frías, las franjas características de los hidrocarburos son más limpias cuando más baja es la temperatura y adquieren su máxima claridad en las estrellas rojas, en cuya superficie la temperatura nunca es superior a los 4.000º.
Es curioso el resultado obtenido de la medición de Carbono en algunos cuerpos estelares por su temperatura:
- Proción: 8.000º
- Betelgeuse: 2.600º
- Sirio: 11.000º
- Rigel: 20.000º
Como es lógico pensar, las distintas estrellas se encuentran en diferentes períodos de desarrollo. El Carbono se encuentra presente en todas ellas, pero en distintos estados del mismo.
Las estrellas más jóvenes, de un color blanco-azulado son a la vez las más calientes. Éstas poseen una temperatura muy elevada, pues sólo en la superficie se alcanzan los 20.000 grados.
Los científicos descubrieron una enorme cantidad de silicatos cristalinos e hidrocarburos policíclicos aromáticos, dos sustancias que indican la presencia de oxígeno y de carbono, respectivamente. Así todos los elementos que las componen, incluido el Carbono, están en forma de átomos, de diminutas partículas sueltas. Existen estrellas de color amarillo y la temperatura en su superficie oscila entre los 6.000 y los 8.000º. En estas también encontramos Carbono en diferentes combinaciones.
El Sol, pertenece al grupo de las estrellas amarillas y en la superficie la temperatura es de 6.000º. El Carbono en la atmósfera incandescente del Sol, lo encontramos en forma de átomo, y además desarrollando diferentes combinaciones: Átomos de Carbono, Hidrógeno y Nitrógeno, Metino, Cianógeno, Dicarbono, es decir:
Moléculas orgánicas complejas por todo el Universo
- Átomos sueltos de Carbono, Hidrógeno y Nitrógeno.
- Miscibilidad combinada de carbono e hidrógeno (metano)
- Miscibilidad combinada de carbono y nitrógeno (cianógeno); y
- Dos átomos de Carbono en combinación (dicarbono).
En las atmósferas de las estrellas más calientes, el carbono únicamente se manifiesta mediante átomos libres y sueltos. Sin embargo, en el Sol, como sabemos, en parte, se presenta ya, formando combinaciones químicas en forma de moléculas de hidrocarburo de cianógeno y de dicarbono.
Para hallar las respuestas que estamos buscando en el conocimiento de las sustancias y materiales presentes en los astros y planetas, ya se está realizando un estudio en profundidad de la atmósfera de los grandes planetas del Sistema solar. Y, de momento, dichos estudios han descubierto, por ejemplo, que la atmósfera de Júpiter está formada mayoritariamente por amoníaco y metano. Lo cual hace pensar en la existencia de otros hidrocarburos. Sin embargo, la masa que forma la base de esos hidrocarburos, en Júpiter permanece en estado líquido o sólido a causa de la abaja temperatura que hay en la superficie del planeta (135 grados bajo cero). En la atmósfera del resto de grandes planetas se manifiestan estas mismas combinaciones.
Ha sido especialmente importante el estudio de los meteoritos, esas “piedras celestes” que caen sobre la Tierra de vez en cuando, y que provienen del espacio interplanetario. Estos han representado para los estudiosos los únicos cuerpos extraterrestres que han podido someter a profundos análisis químico y mineralúrgico, de forma directa. Sin olvidar, en algunos casos, los posibles fósiles.
Estos meteoritos están compuestos del mismo material que encontramos en la parte más profunda de la corteza del planeta Tierra y en su núcleo central, tanto por el carácter de los elementos que los componen como por la base de su estructura. Es fácil entender la importancia capital que tiene el estudio de los materiales de estas piedras celestes para resolver la cuestión del origen de las primitivas composiciones durante el período de formación de nuestro planeta que, al fin y al cabo, es la misma que estará presente en la conformación de otros planetas rocosos similares al nuestro, ya que, no lo olvidemos, en todo el universo rigen las mismas leyes y, la mecánica de los mundos y de las estrellas se repiten una y otra vez aquí y allí, a miles de millones de años-luz de nosotros.
Así que, se forman hidrocarburos al contactar los carburos con el agua. Las moléculas de agua contienen oxígeno que, combinado con el metal, forman los hidróxidos metálicos, mientras que el hidrógeno del agua mezclado con el carbono forman los hidrocarburos.
Los hidrocarburos originados en la atmósfera terrestre se mezclaron con las partículas de agua y amoníaco que en ella existían, creando sustancias más complejas. Así, llegaron a hacerse presentes la formación de cuerpos químicos. Moléculas compuestas por partículas de oxígeno, hidrógeno y carbono.
Todo esto desembocó en el saber sobre los Elementos que hoy podemos conocer y, a partir de Mendeléiev (un eminente químico ruso) y otros muchos…se hizo posible que el estudio llegara muy lejos y, al día de hoy, podríamos decir que se conocen todos los elementos naturales y algunos artificiales que, nos llevan a tener unos valiosos datos de la materia que en el universo está presente y, en parte, de cómo funciona cuando, esas sustancias o átomos, llegan a ligarse los unos con los otros para formar, materiales más complejos que, aparte de los naturales, están los artificiales o transuránicos.
La NASA reveló esta fotografía inédita de la Tierra y la Luna
Aquí en la Tierra, las reacciones de hidrocarburos y sus derivados oxigenados más simples con el amoníaco generaron otros cuerpos con distintas combinaciones de átomos de carbono, hidrógeno, oxígeno y nitrógeno (CHON) en su moléculas llamadas paras la vida una vez que, más tarde, por distintos fenómenos de diversos tipos, llegaron las primeras sustancias proteínicas y grasas que, dieron lugar a los aminoácidos, las Proteínas y el ADN y RDN que, finalmente desembocó en eso que llamamos vida y que, evolucionado, ha resultado ser tan complejo y, a veces, en ciertas circunstancias, peligroso: ¡Nosotros!
emilio silvera