Ago
29
Todo el Universo es una maravilla
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
La Nebulosa Roseta, también conocida como NGC 2237, es una vasta nube de gas y polvo que se encuentra a 5.219 años luz de distancia, en la constelación del unicornio. Nebulosa Roseta o Rosette Nebula (en inglés), también conocida como objeto NGC 2237 o Caldwell 49, es una vasta pero tenue nube circular de gas y polvo que por su composición llamamos región HII (hidrógeno ionizado) y cuya extensión abarca unas cinco veces la extensión de la Luna llena.
Las nubes moleculares gigantes son los objetos más grandes y masivos de la galaxia. Constituyen el lugar de formación de estrellas de gran masa, por lo que están generalmente asociadas a cúmulos de estrellas OB (estrellas jóvenes masivas) y a las nebulosas ionizadas creadas Page 4 264 LABORATORIO . . . por éstas
La remanente de supernova Cassiopeia A que se encuentra a 11.000 años luz de distancia.
La luz de la supernova Cass A, que es la muerte explosiva de una estrella masiva, alcanzó la Tierra por primera vez hace sólo 330 años. de desechos en expansión ocupa ahora unos 15 años luz en esta composición de rayos X y luz visible, mientras que la brillante fuente cerca del centro es una estrella de neutrones, los restos colapsados increíblemente densos del núcleo estelar. Aunque está suficientemente caliente emitir rayos X, la estrella de neutrones de Cass A se está enfriando. De hecho, los 10 de observación del observatorio de rayos X Chandra averiguó que la estrella de neutrones se enfrió tan rápido que los investigadores sospechan que gran del núcleo de dicha estrella está formando un superfluido de neutrones sin fricción. Los resultados del Chandra representan la primera evidencia observacional para este extraño estado de la materia.
Créditos: NASA, JPL-Caltech, Cornell
El Cometa Tempel 1 desde la Sonda Stardust-NeXT
Ningún cometa se ha visitado antes dos veces. Por tanto, el paso sin precedente de la sonda Stardust-NeXT cerca del Cometa Tempel 1 hace algún tiempo ya, nos proporcionó a los humanos una oportunidad única de ver cómo cambia el núcleo de un cometa a lo largo del tiempo. Los cambios en el núcleo del Cometa Tempel 1 eran de particular interés porque el cometa fue golpeado por un objeto cuando pasaba la sonda Deep Impact en 2005. La fotografía superior es una imagen digitalmente ensalzada del Cometa Tempel 1 cerca de su máxima aproximación a la Stardust-NeXT. Se pueden ver muchas características retratadas en 2005, como cráteres, grietas, y también áreas muy suaves. Sólo se pueden sacar unas pocas conclusiones, pero en los próximos años los astrónomos especializados en cometas y en el entendimiento del Sistema Solar se servirán de estas imágenes para buscar nuevas pistas de la composición del Cometa Tempel 1, como se encuentra el lugar del impacto del 2005, y como han evolucionado los principales accidentes del mismo.
Se trata de estrellas contra montañas de gas en NGC 2174, y las estrellas van ganando. Más en concreto, la luz energética y los vientos las estrellas masivas de formación reciente están evaporando y dispersando las oscuras guarderías estelares en que se formaron. Las estructuras de NGC 2174 son en realidad mucho menos densas que el aire, y sólo aparecen como montañas debido a cantidades relativamente pequeñas de polvo opaco interestelar. NGC 2174 es una vista poco conocida en la constelación de Orión, que puede encontrarse con binoculares cerca de la cabeza del cazador celestial. Está a unos 6.400 años luz de distancia, y la brillante nube cósmica entera cubre una zona más grande que la de la Luna llena, además de rodear diversos cúmulos abiertos de estrellas jóvenes. La imagen superior tomada desde el Telescopio Espacial Hubble, muestra una densa región interior que extiende apenas unos tres años luz adoptando una gasma de colores que muestra las emisiones de otra rojas del hidrógeno en tonos verdosos y resalta la emisión del azufre en rojo y el oxígeno en azul. En unos pocos millones de años, las estrellas probablemente ganarán de forma definitiva y toda la montaña de polvo será dispersada.
Créditos: NASA, JPL-Caltech,WISE Team
Como un barco surcando los mares cósmicos, la estrella fugitiva Zeta Ophiuchi produce el arco de onda o choque interestelar que se ve en este impresionante retrato infrarrojo la nave espacial WISE. En la vista en falso color, la azulada Zeta Oph, una estrella unas 20 veces más masiva que el sol, aparece cerca del centro de la imagen, moviéndose hacia la parte superior a 24 kilómetros por segundo. Su fuerte viento estelar la precede, comprimiento y calentando el polvoriento material interestelar y formando el frente de choque curvado. Alrededor hay nubes de material relativamente no afectado. ¿Qué mantiene a esta estrella en movimiento? Seguramente, Zeta Oph fue una vez miembro de un sistema estelar y su estrella compañera sería más masiva y por tanto de vida más corta. Cuando la compañera explotó como supernova catastróficamente, perdiendo masa, Zeta Oph fue arrjada fuera del sistema. Situada a unos 460 años luz de distancia, Zeta Oph es unas 65.000 veces más luminosa que el sol y podría ser una de las estrellas más brillantes del cielo si no estuviese rodeada de polvo oscuro. La imagen de la WISE abarca sobre 1,5 grados o 12 años luz a la distancia estimada de Zeta Ophiuchi.
Créditos: Galileo Project,JPL,NASA;reprocessed by Ted Stryk
Aunque la fase de esta luna podría parecernos familiar, la luna como tal no lo es. De hecho, esta fase gibosa muestra parte de la luna de Júpiter llamada Europa. La sonda robótica Galileo capturó esta Imagen en mosaico durante su misión orbital en Júpiter entre 1995 y 2003. Se pueden ver planicies de hielo brillante, grietas que llegan hasta el horizonte, y oscuros boquetes que probablemente contentan tanto hielo como suciedad. El terreno elevado es casi un hecho cerca del terminador, donde empieza la sombra. Europa es casi del mismo tamaño que nuestra luna, pero mucho menos abrupta, mostrando muy pocas altiplanicies o cráteres de impacto. Pruebas e imágenes de la sonda Galileo indican que pueden existir océanos océanos líquidos debajo de su helada superficie. Para poder especular de que estos mares pudieran contener alguna de vida, la ESA ha empezado ya el desarrollo de la Jovian Europa Orbitert, una sonda que orbitará Europa. Si la capa helada es suficientemente delgada, una misión en el futuro podría soltar hidro robots en los océanos para buscar vida.
Créditos: ESO /Igor Chekalin
M78 no se está escondiendo realmente en el cielo nocturno del planeta Tierra. Situada a unos 1.600 años luz de distancia y ubicada en la rica en nebulosas constelación de Orión, la grande y brillante nebulosa de reflexión, es bien conocida para los observadores del cielo con telescopio. Pero esta espléndida imagen de M78 fue seleccionada como ganadora de la competición de astrofotografía Tesoros ocultos 2010. Celebrada por el European Southern Observatory (ESO), la competición retó a astrónomos aficionados a procesar del archivo astronómico del ESO para buscar gemas cósmicas ocultas. La Imagen ganadora muestra increíbles detalles dentro de la azulada M78 (centro) abrazada por nubes de polvo oscuras, junto con otra nebulosa de reflexión más pequeña de la región, NGC 2071 (arriba). La recientemente descubierta Nebulosa McNeil, amarillenta e incluso más compacta, llama la atención en la parte inferior a la derecha del centro. Basada en datos de la cámara WFI del ESO y el telescopio de 2,2 metros de La Silla en Chile, esta imagen se extiende alrededor de apenas 0,5 grados en el cielo. Eso se corresponde con 15 años luz a la distancia estimada de M78.
Créditos: NASA, ESA, y the HubbleHeritage Team(STScI/AURA); Acknowledgment: J. Hughes(Rutgers U.
¿Qué está causando las pintorescas ondas del remanente de supernova SNR 0509-67.5? Las ondas, así la más grande nebulosa, fueron captadas con un detalle sin precedentes por el Telescopio Espacial Hubble en 2006 y otra vez a finales del año pasado. El color rojo fue recodificado por un un filtro del Hubble que dejó solamente la luz emitida por hidrógeno energético. La razón específica de las ondas sigue siendo desconocida, con dos hipótesis consideradas para su origen que las relacionan con porciones relativamente densas de gas expulsado o impactado. La razón del anillo brillante rojo más ancho está más clara, su velocidad de expansión y ecos de luz lo relacionan con una clásica explosión de supernova del Ia que ha debido ocurrir hace unos 400 años. SNR 0509 se extiende actualmente unos 23 años luz y se encuentra a unos 160.000 años luz de distancia hacia la constelación del Dorado-delfin (Dorado) en la Gran Nube de Magallanes. Sin embargo, el anillo en expansión tiene también otro gran misterio: ¿Por qué su supernova no fue vista hace 400 años, cuando la luz del estallido inicial debió alcanzar la Tierra?
Alnitak, Alnilam y Mintaka son las brillantes estrellas azuladas desde el este al oeste (izquierda a derecha) a lo largo de la diagonal de esta maravillosa vista cósmica. Conocidas también como el Cinturón de Orión, estas tres estrellas supergigantes azules son más calientes y mucho más masivas que el Sol. Se encuentran a alrededor de 1.500 años luz de distancia, nacidas de las bien estudiadas nubles interestelares de Orión. De hecho, las nubes de gas y polvo a la deriva en esta región tienen curiosas y algo sorprendentemente familiares apariencias, como la oscura nebulosa Cabeza de Caballoy la nebulosa de la Llama, cerca de Alnitak en la parte inferior izquierda. La propia famosa nebulosa de Orión se sitúa fuera de la parte inferior de este colorido campo estelar. Grabado el pasado Diciembre con una cámara digital SLR modificada y un pequeño telescopio, el bien planeado mosaico de dos fotogramas se extiende alrededor de 4 en el cielo.
Créditos.
Alrededor de estas estrellas siempre surgieron muchas historias: “Todo comienza en la constelación de Orión que posee entre sus más importantes estrellas a Betelgeuse, Rigel, Bellatriz, Almitak, Almilan, Mintaka, Saiph, Meissa, Tabit, Atiza y Eta Orionis; siendo Betelgeuse el lugar de partida de la historia. Betelgeuse esta situada en lo que llamaríamos el hombro derecho de Orión. Posee un diámetro aproximado de 450 millones de kilómetros. Si la colocáramos en el centro de nuestro sol, su radio abarcaría a Mercurio, Venus y la Tierra. Se encuentra a 310 años luz de nuestro sistema y está en vía de extinción convirtiéndose poco a poco en una estrella súpergigante roja. Ella posee 33 planetas de alta vibración y ellos se manejan muchos designios que ocurren en el orden de los pléyades. Sus habitantes son amorosos, bondadosos, pero igualmente guerreros y en uno de esos planetas habita el señor EO disfrutando de todo el amor de la creación compuesto por la luz, la energía, y la fuerza.
En esta hermosa naturaleza “muerta” celeste compuesta con un pincel cósmico, la nebulosa polvorienta NGC 2170 brilla en la parte superior izquierda. Reflejando la luz de las cercanas estrellas calientes, NGC 2170 está unida a otras nebulosas de reflexión azuladas, una región compacta de emisión roja y serpentinas de polvo oscuro contra un telón de fondo de estrellas. Al igual que los pintores de naturalezas muertashabituales en el hogar a menudo escogen sus temas, las nubes de gas, el polvo y las estrellas calientes fotografiadas aquí son también comúnmente encontradas en este escenario; una masiva nubes moleculares de formación estelar en la constelación Monoceros. molecular gigante gigante, Mon R2, está impresionantemente cercana, estimándose en solo 2 400 años luz de distancia más o menos. A esa distancia, este lienzo tendría 15 años luz de diámetro.
En lo único que difiero de la traducción que han hecho es, en la calificación de “naturaleza muerta”, ya que, nunca podríamos contemplar nada más “vivo” que lo que arriba se nos muestra. Siempre cambiante y en actividad lograr los elementos complejos de la vida.
Una de las galaxias más brillantes en el cielo del planeta Tierra y de un tamaño semejante a la Vía Láctea, la espiral M81, grande y hermosa, se encuentra a 11,8 millones de años luz de distancia en la constelación meridional de Ursa Major (Osa Mayor). Esta imagen intensa de la zona revela detalles del brillante núcleo amarillo, pero al mismo tiempo sigue características más tenues a lo largo de los espléndidos brazos espirales azules y los corredores que barren el polvo. También sigue el detalle en arco, de gran extensión, denominado bucle de Arp, que parece elevarse el disco galáctico, a la derecha. Estudiado en los 60 del siglo pasado, se ha pensado que el bucle de Arp era una cola de marea material retirado de M81 por la interacción gravitacional con su gran galaxia vecina M82. Pero una investigación reciente demuestra que gran parte del bucle de Arp posiblemente se encuentra en nuestra propia galaxia. Los colores del bucle en luz visible e infrarroja coinciden con los colores de las nubes de polvo dominantes, cirros galácticos relativamente inexplorados solo unos pocos centenares de años luz por encima del plano de la Vía Láctea. Junto con las estrellas de la Vía Láctea, las nubes de polvo se localizan en el primer plano de esta destacada imagen. La galaxia enana compañera de M81, Holmberg IX, puede ser vista justo por encima y a la izquierda de la gran espiral.
Objetos el que arriba podemos contemplar, galaxias espirales, son como entes vivos y generan entropía negativa que hace posible la regeneración del Universo a través de los sistemas dinámicos de destrucción-construcción, es decir, algo muere que algo surja a la vida. Esa es la Ley que impera en todo nuestro Universo.
¿Qué veríamos si fuésemos directo un Agujero Negro? Lo cierto es que, como nadie estuvo nunca en tal situación, lo único que podemos hacer es especular y hacer una y otra vez las ecuaciones de los distintos momentos que se podrían producir en un viaje de tal calibre en el que, a medida que nos acercamos al agujero y pasamos esa línea prohíbida del horizonte de suscesos, en algún momento tendríamos la sensación de que el tiempo se detendría, y, también sentiríamos que nuestros cuerpos sufrirían el efecto spaghetti, es decir, a medida que vamos hacia la singularidad, la masa de nuestros cuerpos se verán estiradas hacia ese lugar del que no se vuelve. Algunos ilusos, hablan de que, si la nave atravieda el agujero por el mismo centro, se saldría por otro “universo”, es decir, sería un viaje alucinante hacia lo desconocido.
La preguntita para finalizar el reportaje, tiene su guasa, y, desde luego, considerando que el agujero negro contiene el más denso de la materia que en el Universo pueda existir, la respuesta no resulta nada fácil, toda vez que, aunque nadie estuvo allí nunca para poder regresar y contarnos sus impresiones, lo cierto es que, según todos los indicios, la irresistible fuerza de Gravedad que emana del Agujero Negro, tiraría de nosotros con tal fuerza que nos espaguetizaría primero y pulverizaría después.
Mejor no pasarse por allí, por si acaso.
Emilio Silvera V.
Ago
27
Sí, ¡todo es Universo! También nosotros
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (1)
Uranio 235 es el bueno como combustible nuclear de fisión pero, en la Tierra solo supone el 7 por mil del Uranio que existe, el resto es Uranio 238.
Uranio 238
De todo el Uranio que existe en la Tierra, este es el más abundante. Pero no sirve como combustible nuclear de fisión, como analogía podríamos compararlo con la madera mojada para hacer fuego.
Plutonio 239
“El plutonio es un elemento transuránico radiactivo con el símbolo químico Pu y el número atómico 94. Es un metal actínido con apariencia gris plateada que se oscurece cuando es expuesto al aire, formando una capa opaca cuando se oxida. El elemento normalmente exhibe seis estados alotrópicos y cuatro de oxidación. Reacciona con el carbono, los halógenos, nitrógeno y silicio. Cuando se expone al aire húmedo forma óxidos e hidruros que expanden hasta un 70% su volumen, que a su vez, se desprende en forma de polvo que puede inflamarse de forma espontánea. También es un elemento radiactivo y se puede acumular en los huesos. Estas propiedades hacen que manipular plutonio sea peligroso.·
Es bueno como combustible nuclear de fisión.
Así, la necesidad de material de fisión nos llevó a emplear Uranio 238 (que no sirve para material de fisión), y, en el Reactor generador bombardearlo con neutrones lentos de Uranio 235 (que sí sirve como combustible nuclear de fisión), y, lo que se obtiene es Plutonio 239 que es válido como combustible nuclear de fisión.
¡La Necesidad agudizó nuestro Ingenio para solucionar el problema!
La Naturaleza y nosotros, una simbiosis de perfecta armonía que nuestra condición, podría llegar a romper si el proceso de humanización se eterniza y no tomamos conciencia de lo importante que es, todo lo que nos rodea en su estado natural. No tenemos conciencia de que otros seres que, con nosotros, pueblan el planeta necesitan de nosotros para poder evolucionar sin que, nuestras actividades nocivas, contaminen el mundo. Todas las formas de vida tienen la misma fuente, el mismo origen: ¡El material “fabricado” en las estrellas!
Sería interminable ponerlos a todos
Los seres vivos que han poblado nuestro mundo, desde el origen de la vida que no ha dejado de evolucionar nunca. Todas las formas de vida, sin excepción, están basadas en el Carbono. Sabemos que actualmente existen sólo el 1% de todas las especies que poblaron nuestro planeta y, seguimos descubriendo especies nuevas mientras que otras desaparecen al no saberse adaptar al entorno. Estar atentos a los mensajes que la Naturaleza nos envía, ser consciente de su grandeza, cuidar nuestro mundo.
La montaña que, curiosa, se asoma por encima de las nubes mientras el Sol la contempla y la baña con su resplandor. Escenarios maravillosos como este de arriba, en nuestro planeta está por todas partes. No sabemos valorar la suerte que hemos tenido al caer en este mundo.
El privilegio de poder contemplar la Naturaleza y ver como el Sol tiñe de rojo el paisaje al final del día. Mi casa está a 15 minutos de parajes como el que arriba podemos contemplar, y, de vez en cuando, me permito visitarlos.
La Tierra nos habla, ¡De tantas maneras! Pero… ¡Sabemos escucharla?
Hay quien cree que la Tierra podría ser tragada por agujero negro. Sin embargo, la posibilidad es muy escasa, diría que casi nula por completo. 27.000 años-luz nos separan del Centro Galáctico donde reside un Agunero negro que se traga todo lo que por allí pase , pensar en que pudiera llegar aquí… Sería ir demasiado lejos. Hemos tenido la suerte de venir a caer en una zona relativamente tranquila de nuestra Galaxia. En el Interiod del Brazo de Orión, ricamente instalado, nuestro sistema solar no se relaciona con estrellas conflictivas ni con agujeros negros peligrosos.
El Centro Galáctico con el agujero negro que nunca nos hará daño
Hay algunas Asociaciones que en relación a los avances de la Ciencia, siempre están poniendo pegas y haciendo protestas, como cuando se inauguró el LHC que, por todos los medios decían que esa máquina infernal provocará un agujero negro que nos tragará a todos. En todos los tiempos han existido gente así.
Los rayos Gamma son los fotones más energéticos conocidos, ¿Será ese nuestro final? ¡Convertirnos en pura energía! Bueno, sabemos que aparecen en las explosiones de supernovas y en otros sucesos similares. ¿Seremos nosotros algún día fuentes de luz conscientes? A estas alturas ya nada debe extrañarnos. Hace poco unos científicos han conseguido solidificar esos cuantos de luz que llamamos fotones. ¿Hasta dónde podremos llegar?
¿Sabremos alguna vez comprender dónde estamos y para qué?
¡Es tan grande el Universo! ¿Podremos comprenderlo alguna vez? Sabemos que el Universo es todo lo que existe incluyendo la materia y el Espacio-Tiempo. Sin embargo, lo que no podemos saber (con plena certeza) es empezó todo ni cómo terminará. Tampoco podemos dar una explicación de si el universo está sólo o, por el contrario, deambula acompañado por otros universos por un inmenso Metacosmos que engloba múltiples universos.
Hemos puesto una serie de imágenes ahí arriba que quiere significar la diversidad que en el Universo existe, y, ni se pueden incluir todos los ejemplos que nos gustaría ni tampoco los tenemos a mano, ya que, la mayoría de los que podríamos poner, no están a nuestro alcance ni al alcance de nuestras tecnologías.
Hacemos preguntas que nadie sabe contestar
El Universo continúa, en muchos aspectos, siendo un gran misterio que pretendemos desvelar, pero como nos decía hace unos días Max Planck, el problema está en que nosotros, en último término, formamos parte de ese misterio que pretendemos .
Nuestro planeta es asombroso, como el Universo mismo
Ahí arriba podemos contemplar imágenes de bonitos paisajes de la Tierra cambiante, del Sol y de Nebulosas y galaxias. También de algunos seres humanos a los que el Universo, les ha otorgado el don de pensar (aunque no siempre lo demostremos). Algunas imágenes son de explosiones luminosos que nos enseñan y muestran las mayores energías que en el Universo se pueden generar, a través de explosiones de supernovas que son fuentes de potentes rayos gamma.
No cejamos en nuestro empeño de saber que es… ¡la materia! Incluso pensamos que podrían existir estrellas de Quarks-Gluones (La materia extraña)
La Materia y sus componentes han sido y son el objeto de muchos investigadores y pensadores que quieren profundizar y saber el por qué, a partir de lo que llamamos materia inerte, pudo surgir, mediante cambios producidos en muy especiales…¡La Vida!
Nos encontramos con el problema de la posible existencia de eso que llaman “materia oscura”, y, a primera vista, puede parecer que la materia oscura es sólo una pequeña pieza del enorme rompecabezas que resulta ser nuestro universo, un parámetro más, ni más ni menos importante que tantas otras. Claro que, este sería un punto de vista razonable si la materia oscura sólo formase una pequeña parte del Universo. En ese caso, la podríamos considerar como poco más que una nota a pie de página de la materia luminosa, más importante, ya que, de ella, estamos hecho nosotros. Además, es mucho más fácil detectar la materia Bariónica hecha de Quarks y Leptones que esa otra que, ni sabemos de qué estará hecha.
Sin embargo, ese punto de vista estaría equivocado, toda vez que, según todos los indicios, esa “materia oscura” supone casi el total del Universo junto con la “energía Oscura”, es decir, más del 90% de la materia-energía del universo, es oscura. Puede que las brillantes espirales de las Galaxias sirvan simplemente marcadores pasivos, testimonios mudos de fuerzas que operan en un nivel invisible para nosotros.
El Universo y la Vida… El Tiempo que inexorable pasa…
Es posible que, cuando sepamos más sobre nuestro Universo reconozcamos que nuestros conocimientos del universo visible, tan difícilmente obtenidos, son poco más que el primer paso en el camino hacia la comprensión de cómo son en realidad las cosas. Muchas de las nuevas teorías tratan de buscar nuevos caminos que divergen de los que seguimos y, buscando por otros lugares no explorados, es posible, sólo posible que, podamos encontrar algunas respuestas que nos son negadas en las teorías actuales.
Es inquietante que, a estas alturas, con seguridad, ningún Astrónomo sepa darnos una respuesta fiel de cómo se pudieron formar las Galaxias, y, todos, sin excepción, nos responden con hipótesis y conjeturas que, de ninguna manera, podemos asimilar a la realidad de como fueron las cosas en aquellos comienzos del Universo.
Sería el Ylem, la sustancia cósmica del Universo
¿Qué fuerzas ocultas estaban ahí presentes para posible que las galaxias se pudieran conformar, y formarse los cúmulos de galaxias antes de que, la materia recién creada, se dispersara por todo el universo sin más? Seguramente, esa fuerza no podría ser otra que la generada por la Materia Oscura que, a decir verdad, podría ser la materia primaria que permea todo el Universo y, a partir de la cual, se puede estar formando (al evolucionar) la materia que sí podemos ver.
A mí todo esto me sobrepasa, y, “conociendo” de qué está formada la materia de la que están hechas las estrellas y las montañas, los ríos y los océanos, o los delfines y también nosotros, no deja de sorprenderme (más bien maravillarme) que, de esa materia pudieran surgir seres vivos y que, algunos, como nosotros mismos, podamos pensar y ser conscientes de toda esta grandeza.
Alguna vez, hemos podido sentirnos en un estado de euforia al sentirnos los “amos” del universo, nuestros conocimientos nos hacen grandes y, posiblemente, nada se resistirá ante tanta sabiduría. Sin embargo, ese estado de “gracia” suele durarnos muy poco. De inmediato caemos en la de que, la realidad, es muy distinta y recordamos lo que nos dijeron aquellos grandes pensadores como Sócrates. Platón y más cercano a nosotros Popper: “Nuestro conocimiento es limitado, nuestra ignorancia infinita”. Y, lo malo de dicha conclusión, es que era, y, sigue siendo cierta.
Somos parte del Universo que se expande, y, nuestras Mentes también
Así que, amigos míos, procuremos aprender, enterarnos de las cosas, ser conscientes de lo que no sabemos y, sobre todo, procurar entender lo que en la Naturaleza ocurre, ella siempre nos marca el camino a seguir pero, nosotros, no siempre prestamos la debida atención.
Emilio Silvera V.
Ago
26
¡Es tan bello el Universo!
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
Podríamos mostrar mil imágenes distintas de la Nebulosa Carina
Existen objetos en el Universo que, por mucho que lo podamos mirar, nunca dejan de sorprendernos ni dejan de producir en nosotros la sensación de grandeza que en cualquiera de sus regiones nos podemos encontrar. Ahí, en la imagen de arriba, podemos contemplar a la nebulosa Carina, en realidad una constelación austral que forma parte de aquella antigua conocida con el nombre de el Navío Argo y que fue troceada por los expertos de la Unión Astronómica Internacional en las cuatro partes que ahora son conocidas como: Vela, Puppis Popa), Pyxis(Compás o Brújula) ( y la propia Carina (Quilla).
Aquí, en la Nebulosa Carina, está la segunda estrella más brillante del cielo, Canopo y, también una de las estrellas más masivas conocidas, Eta Carinae que está pendiente de un hilo que, de un momento a otro se pueda convertir en una supernova y explotar para dar más riqueza al entorno con nuevos materiales complejos que se mezclarían con el ya existente en el lugar en el que, de pronto, aparecería un agujero negro que distorsionaría toda la zona a su alrededor.
La Imagen captada por el Hubble capturó esta nebulosa de ondulantes formas de gas interestelar frío y polvo emergiendo de una tempestuosa región estelar situada en la Nebulosa Carina, a 7500 años luz de distancia. Esta columna de polvo y gas sirve como semillero de nuevas estrellas y está repleta de actividad asociada a la formación estelar.
La Nebulosa Eta Carinae
A mediados del siglo XIX, los navegantes de los mares del sur se guiaban gracias a Eta Carinae, una estrella relativamente joven que se estima tiene entre dos y tres millones de años. En 1838, Eta Carinae estalló de una forma tan impresionante que a este evento se le conoce como “La Gran Erupción“, lo que hizo que durante algunas décadas se convirtiera en el segundo objeto más brillante del cielo nocturno.
La Gran Nebulosa de Carina, situada en la Constelación de la Quilla, a unos 7.500 años luz de nuestro Sistema Solar, tiene en su interior varias estrellas supermasivas y una de ellas es Eta Carinae. La masa de esta impresionante estrella se calcula que oscila entre 100 y 150 veces la masa solar, mientras que su luminosidad es de casi cuatro millones de veces la del Sol.
Se pueden apreciar a la estrella Eta Carinæ y los restos de erupciones antiguas que forman la Nebulosa del Homúnculo alrededor de la estrella. La nebulosa fue creada por una erupción de Eta Car cuya luz alcanzó la tierra en 1843. Eta Car aparece como un parche blanco en el centro de la imagen, donde los dos lóbulos de la nebulosa Homúnculo convergen. Como tiene una masa de 100/150 masas solares, la única manera de que su propia radiación no la destruya es eyectando material al espacio para descongestionarse y seguir viviendo, aunque se piensa que, en cualquier momento, podría producirse el suceso.
Épsilon Carinae e Ípsilon Carinae son dos estrellas dobles
Canopo la segunda estrella más brillante del firmamento es una supergigante blanco-amarilla a 310 años-luz de nosotros. Aunque se trata de una estrella del hemisferio sur puede observarse desde la costa africana del Mar Mediterráneo. Como la Vía Láctea atraviesa Carina, la constelación contiene varios cúmulos abiertos como NGC 2516 y IC 2602 que es más conocido como “Las Pléyades del Sur” que abajo podéis contemplar.
Espectaculares es sin duda el cúmulo abierto IC 2602 localizado en la constelación de Carina, grupo de unas sesenta estrellas en donde θ Carinae es la más brillante. Popularmente conocido como las “Pléyades del Sur”, ya que los primeros europeos en verlo por aquí, les recordaba a Las Pléyades del hemisferio boreal, en Tauro. También es conocido como el cúmulo de theta Carinae, Cr 229, Mel 102. El mismo fue descubierto por Abbe Lacalle el 3 de Marzo de 1752 desde Sudáfrica. También en Carina se localiza una de las cefeidas más prominentes, l Carinae o HD 84810, que muestra una oscilación en su brillo desde magnitud 3,28 a 4,18 a lo largo de un período de 35,54 días.
Estrellas principales situadas en el lugar:
- α Carinae (Canopo)
- ε Carinae (Avior)
- η Carinae (Eta Carinae)
- θ Carinae
- ι Carinae (Aspidiske)
- υ Carinae, de magnitud 2,92, estrella binaria
- χ Carinae (Drys)
- h Carinae (HD 83183), gigante luminosa
- I Carinae (HD 90589) y HD 68456
- HD 84810 (l Carinae), estrella variable cefeida
- b2 Carinae (HD 77370)
- Carinae Car (V334 Carinae)
Imagen de Mira en luz ultravioleta, en donde se aprecia el rastro que deja la estrella. La variable Mira es una estrella variable pulsante caracterizada por un color rojo intenso, un período de pulsación de más de 100 días, y una amplitud de más de una magnitud aparente. Son gigantes rojas en estados muy avanzados de su evolución estelar situadas en la rama asintótica gigante en el Diagrama de H-R, que en el transcurso de unos millones de años expulsarán sus capas exteriores creando una nebulosa planetaria, quedando el núcleo remanente como una enana blanca. Las últimas observaciones han puesto de manifiesto que una gran parte de las variables Mira no tienen forma esférica.
La variable Mira es una estrella variable pulsante caracterizada por un color rojo intenso
- S Carinae, estrella variable Mira
- RT Carinae, supergigante roja
- VY Carinae
- AG Carinae y HR Carinae, dos variables luminosas azules
- EM Carinae, binaria eclipsante
- CK Carinae e IX Carinae
- PP Carinae (p Carinae), estrella Be
- QX Carinae
- V337 Carinae
- V382 Carinae
Sigue una lista interminable de gigantes rojas, estrellas azules, estrellas binarias, irregulares, Cefeidas, sistemas masivos binarios, cúmulos, supergigantes azules como Sher 25 que se piensa está a punto de explotar como supernova, enanas blancas de ingente fulgor ultravioleta ionizante… Todo eso y mucho más está presente en la Nebulosa Carina que podemos mirar y quedar embelezados de su belleza y que, sin embargo, no llegamos a alcanzar a comprender que, en esa ingente cantidad de gases y polvo están presentes objetos de extrema energía y de belleza sin par.
La Nebulosa Carina se puede contemplar desde distintas perspectivas que nos llevan a regiones de nubes moleculares en las que se fraguan las moléculas que hacen posible el devenir de la vida. No pocas veces han quedado asombrados los Astrofísicos al observar moléculas de alcohol y de azúcares y proteínas, aminoácidos y otros elementos complejos necesarios para la formación del ADN.
Moléculas esenciales para la Vida
Hidrógeno, oxígeno, carbono, calcio, azufre, nitrógeno y fósforo son continuamente irradiados por iones, que pueden generar moléculas orgánicas evolucionando en moléculas más grandes y complejas las cuales resultan en la formación de aminoácidos y otros compuestos que más tarde, en el entorno adecuado…
Podemos concluir diciendo que, en la Nebulosa Carina, está presente la magia que sola sabe hacer el universo. Convertir en estrellas ingentes masas de gas y polvo no resultaría fácil para un mago corriente. Por otra parte, la variedad de estrellas y objetos que ahí se han formado, nos lleva a la convicción de que, un gran grupo de astrónomos, se podrían pasar la vida tan ricamente instalados en las cercanías de la Nebulosa para estudiar los sucesos que allí ocurren para poder aprender, como se forman las estrellas y los mundos y, también, los “ladrillos de la vida”.
Emilio Silvera V.
Ago
24
El colapso del núcleo de las estrellas
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (9)
Lo único que no resulta ser lo mismo cuando se mira a través a través del microscópico electrónico (o, en la jerga de la física teórica, cuando se realiza una transformación de escala) es la masa de la partícula. Esto se debe a que el alcance de la fuerza parece mayor a través del microscopio y, por lo tanto, la masa de la partícula parece ser menor. Nótese que esta situación es la opuesta a la que se presenta en vida corriente donde un grano de arena parece mayor -¿más pesado, por lo tanto?- cuando se observa con un microscopio.
La belleza de lo minúsculo visto al microscopio. Esta es arena de playa
El vacío superconductor – La máquina de Higgs-Kibble II
Una consecuencia de todo esto es que en una teoría de Yang-Mills el termino de masa parece desaparecer se realiza una transformación de escala, lo que implica que a través del microscopio se recupera la invariancia gauge. Esto es lo que causa la dificultad con la que se enfrentó Veltman. ¿Se observar directamente el potencial vector de Yang-Mills? Parece que puede observarse en el mundo de las cosas grandes, no en el mundo de lo pequeño. Esto es una contradicción y es una razón por la que ese esquema nunca ha podido funcionar adecuadamente.
En el mundo cuántico se pueden contemplar cosas más extrañas
Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, = 1’62 × 10-33 cm, es la escala de longitud por debajo de la cual es espacio, tal tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler, o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que la longitud de Planck-Wheeler, es decir, 2’61 × 10-66 cm2) juega un papel clave en la entropía de un agujero negro.
Poco tiempo después resultó evidente que existían otras subpartículas en el interior del átomo. Cuando Becquerel descubrió la radiactividad, identificó como emanaciones constituidas por electrones algunas de las radiaciones emitidas por sustancias radiactivas. Pero también quedaron al descubierto otras emisiones. Los Curie en Francia y Ernest Rutherford en Inglaterra detectaron una emisión bastante menos penetrante que el flujo electrónico. Rutherford la llamó rayos alfa, y denominó rayos beta a la emisión de electrones.
Pero el trabajo de hoy se titula: El colapso del núcleo de las estrellas
En la imagen podemos contemplar lo que se clasifica NGC 3603, es un cúmulo abierto de estrellas en una vasta zona estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 años-luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.
NGC 3603 alberga miles de estrellas de todo tipo: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.
Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de la otra una vez cada 3,77 días, es la estrella más masiva conocida hasta en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Hay que decir que la máxima máxima de las estrellas está calculada en 120 masas solares, ya que, a partir de ahí, su propia radiación las destruiría.
En el centro de la imagen podemos contemplar ese “collar de diamantes” que es el resultado evolucionado de aquella tremenda explosión estelar contemplada en 1987, cuando una estrella supermasiva, habiendo agotado todo su combustible nuclear de fusión, se contrae sobre sí misma al quedar sin defensa, en “manos” de la Gravedad que ya no se ve frenada por la inercia explosiva de la fusión que tendía a expandir la estrella.
Las capas exteriores son eyectadas al Espacio Interestelar con violencia para formar una nebulosa, mientras el grueso de la masa de la estrella se contrae más y más para formar una estrella de neutrones o un agujero negro dependiendo de su masa.
Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.
Las observaciones de SN 1987A, hechas en los últimos 20 años por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas.Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estuadinado los remanentes de supernovas muy antiguas no se podían ver.
Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Arriba podemos contemplar observaciones realizadas en distintas fechas que nos muestran la evolución de los anillos de SN 1987 A. ¿Qué pudo causar los extraños anillos de esta Supernova.Hace 28 años se observó en la Gran Nube de Magallanes la supernova más brillante de la historia contemporánea.
El clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20,000 . ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A.
Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.
El núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constiituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene (a veces) con la presión de degeneración del gas de neutrones (Principio de exclusión de Pauli) compensa el empuje hacia adentro de la Gravedad. El proceso completo hasta que todo ese ingente material se transmuta en la estrella de neutrones dura muy poco tiempo, es un proceso vertiginoso.
Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.
Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.
Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alreddor de estas estrellas de neutrones y púlsares que se conviertan en magnétares.
Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes ahora acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condicción. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnétares.
El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y tambien una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencías de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.
Pasta nuclear en estrellas de neutrones
Dentro de una estrella de neutrones
Las estrellas de neutrones son los objectos más densos del Universo. Naturalmente, la materia dentro de ellas es exótica y diferente a cualquier cosa en la tierra – ¡imagina aplastando la masa de nuestro Sol dentro de una estrella con solo 10 kilómetros! Como puedes adivinar de su nombre, las estrellas de neutrones están compuestas principalmente de neutrones, con una pequeña fracción de electrones y protones que también contribuyen a su masa. Se piensa que una estrella de neutrones es análoga a un núcleo atómico gigante, unido por fuerzas gravitacionales más que por la fuerza fuerte. Bajo la presión ejercida por la gravedad, la materia se comprime a la misma densidad que los núcleos de los átomos; las propiedades de la materia de alta densidad en la estrellas de neutrones se discute en los ámbitos de la física por tratarse de una singular forma de comportamiento de la Naturaleza.
Las estrellas de neutrones tienen densidades totales de 3,7×1017 a 5,9×1017 kg/m³ (de 2,6×1014 a 4,1×1014 veces la densidad del Sol), comparable con la densidad aproximada de un núcleo atómico de 3×1017 kg/m³.
La densidad de estas estrellas es increíblemente grande, tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra, el monte . Los púlsares fueron descubiertos en 1970 y hasta solo se conoce unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los púlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nuestros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).
Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)
Por ahora se conoce que de cada diez supernovas una se convierte en magnetar, si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.
Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.
Las estrellas mueren cuando dejan la secuencia principal, es decir, cuando no tienen material de fusión y quedan a merced de la fuerza de gravedad que hace comprimirse a la estrella más y más, en algunos casos, cuando son supermasivas, llegan a desaparecer de nuestra vista, y, su único destino es convertirse en temibles Agujeros Negros.
La explosión de una estrella gigante y supermasiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, nacerán nuevas estrellas y nuevos mundos.
Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.
El remanente estelar después de la explosión puede ser muy variado
Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!
¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?
Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.
Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).
Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.
Emilio Silvera V.
Ago
9
¿El Misterio? Persistirá, ¡como el Tiempo!
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
Tras un largo y penoso caminar por el planeta Tierra …
Los habitantes de este mundo, hemos conseguido construir un cuadro plausible del Universo, de la Naturaleza que tratamos de comprender. Hemos llegado a ser conscientes de que, en ella, en la Naturaleza, están todas las respuestas que buscamos y, nosotros mismos no hemos llegado a conocernos por ese mismo hecho de que, formando parte de la Naturaleza, y, también, somos parte del enigma que tratamos de desvelar.
Parece que ahora estamos entrando en la edad adulta, quiero significar que después de siglos y milenios de esporádicos esfuerzos, finalmente hemos llegado a comprender algunos de los hechos fundamentales del Universo, conocimiento que, presumiblemente, es un requisito de la más modesta pretensión de nuestra madurez cosmológica.
Sabemos, por ejemplo, dónde estamos, que vivimos en un planeta que gira alrededor de una estrella situada en el borde de la Galaxia espiral a la que llamamos Vía Láctea, cuya posición ha sido determinada con respecto a varios cúmulos vecinos que, en conjunto, albergan a unas cuarenta mil galaxias extendidas a través de un billón de años-luz cúbicos de espacio.
También sabemos más o menos, cuando hemos entrado en escena, hace unos cinco mil millones de años que se formaron el Sol yn los planetas de nuestro Sistema Solar , en un Universo en expansión que probablemente tiene una edad entre dos y cuatro veces mayor. Hemos determinado los mecanismos básicos de la evolución de la Tierra, hallado prueba también de evolución química a escala cósmica y hemos podido aprender suficiente física como para comprender e investigar la Naturaleza en una amplia gama de escalas desde los Quarks saltarines en el “mundo” microscópico hasta el vals de las galaxias.
Los sumerios eran un pueblo del sur de Mesopotamia cuya civilización floreció entre el 4100 y el 1750 a.C. Su nombre proviene de la región que, con frecuencia (e incorrectamente) se considera un país. Sumer nunca fue una entidad política cohesionada, sino una región de ciudades estado, cada cual con su propio rey.
En este pueblo se empleó por primera vez la ingeniería hidráulica, la astronomía, las matemáticas, la química, la medicina o la farmacopea, inventaron sus habitantes la enseñanza, la legislación, o la literatura.
Las dos primeras civilizaciones que surgieron en la historia fueron: La civilización mesopotámica, en un lugar llamado Mesopotamia (hoy Irak), entre los ríos Tigres y Éufrates. La civilización egipcia, en Egipto, alrededor del río Nilo.
Los sumerios inventaron jeroglíficos pictóricos que más tarde dieron lugar a la escritura cuneiforme propiamente dicha, y su lengua, junto con la del Antiguo Egipto, compiten por el crédito de ser la lengua más tempranamente documentada.
Mesopotamia es la civilización urbana alfabetizada más antigua del mundo , y los sumerios, que establecieron la civilización, establecieron las reglas básicas.,
Hace casi cinco mil años y más de mil antes de que se redactara la Biblia, los sumerios ofrecieron testimonio escrito del primer Job, del primer Moisés, el primer esbozo del paraíso, la primera resurrección de una divinidad y, cómo no, el primer diluvio universal.
La civilización babilónica fue una cultura antigua del Cercano Oriente que existió entre 2100 y 538 a. C. Los babilonios conquistaron a los pueblos vecinos y, dos veces en su historia, lograron construir un imperio y controlar toda la región.
Inventaron el sistema sexagesimal que creó un minuto de 60 segundos, una hora de 60 minutos y un círculo de 360 grados, así como la escritura cuneiforme que durante 3 mil años sería adaptada a unos doce idiomas.
Babilonia se fundó en algún momento antes del reinado de Sargón de Acad (el Grande, 2334-2279 a.C.) y parece haber sido una ciudad portuaria menor en el río Éufrates hasta el ascenso de Hammurabi quien reinó de 1792 a 1750 a.C. y la convirtió en la capital de su Imperio babilónico.
La civilización China es la más antigua del mundo, tiene una historia de más de 3,500 años. Su nombre “zhong guo” significa “país del centro” o “el reino central”; ellos creían que su país era el centro geográfico del mundo y que eran la única cultura civilizada.
China posee una cultura milenaria con una gran capacidad de invención. Algunos de los inventos de la ciencia china han supuesto cambios importantes en otras culturas. Veamos algunos de ellos. El papel apareció en el año 105 de nuestra era.
La cultura china era estable, impidiendo guerras y rebeliones que surgían de diferentes sistemas de creencias . Los grandes ríos de China ayudaron al comercio, las barreras naturales, la bebida, la siembra y el transporte. Muchos inventos en la antigua China la hicieron poderosa y cambiaron el resto del mundo, trayendo la civilización.
Las siete dinastias Chinas:
- Dinastía conquistadora.
- Dinastía Liang posterior.
- Dinastía Liao.
- Dinastía Qi del Sur.
- Dinastía Shun.
- Dinastía Zhou Oriental.
- Dinastía Zhou Tardía.
La cultura china era estable, impidiendo guerras y rebeliones que surgían de diferentes sistemas de creencias . Los grandes ríos de China ayudaron al comercio, las barreras naturales, la bebida, la siembra y el transporte. Muchos inventos en la antigua China la hicieron poderosa y cambiaron el resto del mundo, trayendo la civilización.
El Tiempo inexorable nunca dejó de fluir y mientras eso pasaba, nuestra especie evolucionaba, aprendía al observar los cielos y cómo y por qué pasaban las cosas. Hay realizaciones humanas de las que, en verdad, podemos sentirnos orgullosos. Aquellos habitantes de Sumer y Babilonia, de Egipto o China y también de la India y otros pueblos que dejaron una gran herencia de saber a los Griegos que pusieron al mundo occidental en el camino de la ciencia, nuestra medición del pasado se ha profundizado desde unos pocos miles de años a más de diez mil millones de años, y la del espacio se ha extendido desde un cielo de techo bajo no mucho mayor que la distancia que nos separa de la Luna hasta el radio de más de diez mil millones de años-luz del universo observable.
Tenemos razones para esperar que nuestra época sea recordada (si por ventura queda alguien para recordarlo) por sus contribuciones al supremo tesoro intelectual de toda la Humanidad unida al contexto del Universo en su conjunto por unos conocimientos que, aunque no suficiente, sí son los necesarios para saber dónde estamos y, ahora, debemos buscar la respuesta a esa pregunta: ¿Hacia dónde vamos?
Claro que…, ¡el futuro es incierto!
Como en la física, en el mundo y en nuestras vidas, también está presente el principio de incertidumbre y, de ninguna manera, podemos saber del mañana. Sin embargo, cuanto más sabemos del universo, tanto más claramente comprendemos lo poco que sabemos de él. La vastedad del Universo nos lleva a poder comprender algunas estructuras cósmicas y mecanismos que se producen y repiten como, el caso de la destrucción que nos lleva a la construcción. Es decir, una estrella masiva vieja explota y siembre el Caos y la destrucción en una extensa región del espacio, y, es precisamente ese hecho el que posibilita que, nuevas estrellas y nuevos mundos surjan a la vida. Sin embargo, la grandeza, la lejanía, esa inmensidad que se nos escapa a nuestra comprensión terrestre, nunca nos dejará comprender el universo en detalle y, siendo así, siempre tendremos secretos que desvelar y misterios que resolver.
Si añadimos a todo eso que, si poseyésemos un atlas de nuestra propia Galaxia y que dedicase una sóla página a cada sistema estelar de la Vía Láctea (de modo que el Sol y sus planetas estuviesen comprimidos en una página), tal atlas tendría más de dies mil millones de volúmenes de dies mil páginas cada uno. Se necesitaria una biblioteca del tamaño de la de Harvard para alojar el Atlas, y solamente ojearlo al ritmo de una página por segundo nos llevaría más de diez mil años. Añádance los detalles de la cartografía planetaria, la potencial biología extraterrestre, las sutilezas de los principios científicos involucrados y las dimensiones históricas del cambio, y se nos hará claro que nunca aprenderemos más que una diminuta fracción de la historia de nuestra Galaxia solamente, y hay cien mil millones de galaxias más.
Sabiendo todo todo esto, siendo consciente de que, realmente, es así, tendremos que convenir con el físico Lewis Thomas cuando dijo: “El mayor de todos los logros de la ciencia del siglo XX ha sido el descubrimiento de la ignorancia humana”.
La ignorancia, como todo en el Universo, es relativa. Nuestra ignorancia, por supuesto, siempre ha estado con nosotros, y siempre seguirá estando, es una compañera con la que cargamos toda nuestra vida y que nos pesa. Algunos procuramos que pese lo menos posible para hacer más llevadero el viaje. Lo nuevo está en nuestras consciencias y de ellas, ha surgido nuestro despertar al comprender de sus abismales dimensiones, y es eso más que otro cosa, lo que señala la madurez de nuestra especie. El espacio puede tener un horizonte y el tiempo un final pero la aventura del aprendizaje siempre será interminable y eterno, quizá (no me he parado a pensarlo) pueda ser esa la única forma de eternidad que pueda existir.
¿Explicarlo todo? ¡Nunca podremos! La Naturaleza siempre irá por delante de nosotros
La dificultad de explicarlo todo no se debe a nuestra debilidad mental, sino a la estructura misma del universo. En los últimos siglos hemos descubierto que la trama del cosmos puede abordarse en varios niveles diferentes. Mientras no se descubre el siguiente nivel, lo que ocurre en el anterior no se puede explicar, sólo puede describirse. En consecuencia, para el último nivel que se conoce en cada momento nunca hay explicaciones, sólo puede haber descripciones.
La Ciencia es intrínsicamente abierta y exploratoria, y comete errores todos los días. En verdad, ese será siempre su destino, de acuerdo con la lógica esencial del segundo teorema de incompletitud de Kurt Gödel. El teorema demuestra que la plena validez de cualquier sistema, inclusive un sistema científico, no puede demostrarse dentro del sistema. Es decir, tiene que haber algo fuera del marco de cualquier teoría para poder comprobarla. La lección que podemos haber aprendido es que, no hay ni habrá nunca una descripción científica completa y comprensiva del universo cuya validez pueda demostrarse.
No es que pertenezcamos al Universo, formamos parte de él
Y, a todo esto, debemos alegrarnos de que así sea, de que no podamos comprender el Universo en toda su inmensa dimensión y diversidad. Nuestras mentes necesitan que así sea y, tendrán, de esa manera, el escenario perfecto para seguir creciendo a medida que busca todas esas respuestas que nos faltan y, lo bueno del caso es que, cada respuesta que encontramos, viene acompañada de un montón de nuevas preguntas y, de esa manera, esa historia interminable de nuestra aventura del saber…llegará hasta la eternidad de nuestro tiempo que, necesariamente, no tiene por que ser el tiempo del universo.
Emilio Silvera V.