viernes, 31 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Las Galaxias! ¡La Entropía! ¡El Universo! ¡La Vida!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Telescopio James Webb capta imagen de primeras galaxias formadas tras el  Big Bang | Zona RojaLa Entropía | Blog de Jose Antonio MartinMisterios del Universo · Gater, Will: DK -978-0-2415-3810-4 - Libros  PolifemoESA - Space for Kids - Vida en condiciones extremas

 

“La neguentropía o negantropía, también llamada entropía negativa o sintropía, de un sistema vivo, es la entropía que el sistema exporta para mantener su entropía baja; se encuentra en la intersección de la entropía y la vida. Para compensar el proceso de degradación sistémica a lo largo del tiempo, algunos sistemas abiertos consiguen compensar su entropía natural con aportaciones de subsistemas con los que se relacionan. Si en un sistema cerrado el proceso entrópico no puede detenerse por sí solo, en un sistema abierto, la neguentropía sería una resistencia sustentada en subsistemas vinculados que reequilibran el sistema entrópico.”

 

El choque de la Vía Láctea con otra galaxia será antes de lo ...Álex Riveiro on Twitter: "NGC 3603, una de las regiones, de ...

 

En la Galaxia existen cientos y miles de lugares de formación de estrellas que generan entropía negativa. Los seres vivos la generan mediante la reproducción.

                                                                                   

                                                                                           Entropia negativa

La Vía Láctea (como otras galaxias espirales) es una zona de reducción de entropía…,  así se deduce de varios estudios realizados  y  se puede argumentar que,  las galaxias deben ser consideradas, por su dinámica muy especial, como sistemas vivos. En planteamiento más prudente se señala que el test de Lovelock constituye lo que se llama una condición “necesaria, pero no suficiente” para la existencia de vida. Si un sistema se encuentra en equilibrio termodinámico -si no supera el test de Lovelock-, podemos tener la seguridad de que está muerto. Si está vivo, debe producir una reducción de la entropía y superar dicho test.

 

                                       Efectos en los discos de acreción alrededor de estrellas recién ...Ciencias para el mundo contemporáneo

 

Los accidentes gravitatorios hacen que se formen nuevas estrellas, y, al final de sus vidas, la misma Gravedad las convierte en objetos diferentes a lo que fueron_ Gigantes rojas, enanas blancas, estrellas de neutrones y agujeros negros.

Pero un sistema podría producir emtropía negativa sin estar vivo, como en el caso de contracción por efecto de la gravedad que hemos comentado a lo largo de estos trabajos. Desde este punto de vista, no hay frontera claramente definida entre los objetos vivos y la materia “inerte”. Yo, por mi parte creo que, la materia nunca es inerte y, en cada momento, simplemente ocupa la fase que le ha tocado representar en ese punto del espacio y del tiempo.

                                                         

                                     James y Sandy Lovelock  ¿Qué haríamos sin ellas?

El mero hecho de que la frontera entre la vida y la ausencia de vida sea difuso, y que el lugar en el que haya que trazar la línea sea un tema de discusión, es, sin embargo, un descubrimiento importante. Contribuye a dejar claro que en relación con la vida no hay nada insólito en el contexto del modo en que funciona el Universo.

 

                                                          Materia inerte y viva

Como ya hemos visto en las explicaciones de otros trabajos expuestos aquí, es natural que los sistemas simples se organicen en redes al borde del caos y, una vez que lo hacen, es natural que la vida surja allí donde hay  “una pequeña charca caliente” que sea adecuada para ello. Esto es parte de un proceso más o menos continuo, sin que haya un salto repentino en el que comience la vida. Desde ese punto de vista,  lo más importante que la ciencia podría lograr sería el descubrimiento de, al menos, otro planeta en el que haya surgido la vida.

 

                        http://universodoppler.files.wordpress.com/2011/05/ig272_kees_saturn_titan_02.jpg
                                   ¡La vida! podría estar presente… ¡ en tantos lugares…!

Gracias a la teoría de Lovelock sobre la naturaleza de la vida estamos a punto de poder conseguirlo, y es posible que antes de los próximos 50 años se lance al espacio un telescopio capaz de encontrar planetas con sistemas como el de Gaia, nuestra Tierra.

Hay dos etapas del descubrimiento de estas otras Gaias. En primer lugar debemos ser capaces de detectar otros planetas del tamaño de la Tierra que describan órbitas alrededor de otras estrellas; luego tenemos que analizar la atmósfera de esos planetas para buscar pruebas de que los procesos de reducción de la entropía están en marcha. Los primeros planetas “extrasolares” se detectaron utilizando técnicas Doppler, que ponían de manifiesto unos cambios pequeñísimos en el movimiento de las estrellas alrededor de las cuales orbitaban dichos planetas. Este efecto, que lleva el nombre del físico del siglo XIX Christian Doppler, modifica la posición de las líneas en el espectro de la luz de un objeto, desplazándolas en una cantidad que depende de lo rápido que el objeto se mueva con respecto al observador.

 

                                            http://farm6.static.flickr.com/5010/5348863194_0e954d8a95.jpg

 

Zonas habitables, los astrónomos han ignorado las enanas blancas en su búsqueda de exoplanetas. Esto puede haber sido un error, de acuerdo con un nuevo estudio de zonas habitables en enanas blancas. Aunque los agujeros negrosy las estrellas de neutronescaptan toda la atención como destinos finales de las estrellas, la mayor parte nunca llegarán a ese extremo. Aproximadamente el 97 por ciento de las estrellas de nuestra galaxia no son lo bastante masivas para acabar en ninguna de esas dos opciones.

 

 

Planetas habitables alrededor de enanas blancas. - Eureka

                      Han detectado planetas habitables que reciben luz y calor de enanas blancas

En lugar de eso, los astrónomos creen que terminarán sus vidas como enanas blancas, densos y calientes trozos de materia inerte en los que las reacciones nucleares terminaron hace mucho. Estas estrellas tienen aproximadamente el tamaño de la Tierra y se mantienen en contra del colapso gravitatorio mediante el Principio de Exclusión de pauli, el cual evita que los electrones ocupen el mismo estado al mismo tiempo. Pero, a todo esto, hay que pensar en el tirón gravitatoria que una de estas estrellas podría incidir sobre cualquier planeta.

 

Para hacernos una idea de lo que es este tipo de observaciones, pensemos que el tirón gravitatorio que  Júpiter  ejerce sobre el Sol produce en éste un cambio de velocidad de unos 12,5 metros por segundo, y lo desplaza (con respecto al centro de masa del Sisterma solar) a una distancia de 800.000 kilómetros, más de la mitad del diámetro de este astro, cuando el Sol y Júpiter orbitan en torno a sus recíprocos centros de masa. La velocidad de este movimiento es comparable a la de un corredor olímpico de 100 metros lisos y, para un observador situado fuera del Sistema solar, esto, por el efecto Doppler, produce un pequeñísimo desplazamiento de vaiven en la posición exacta de las líneas del espectro de luz emitida por el Sol.

 

                                      Cuántos planetas caben en la zona habitable de una estrella ...Nos pueden estar mirando desde nueve planetas

                                                Puntos oscuros que orbitan estrellas distantes y que son planetas

Se trata del tipo de desplazamiento que se ha detectado en la luz a partir de los datos de algunas estrellas de nuestro entorno, y demuestra que en torno a ellas orbitan cuerpos celestes similares a Júpiter. Como ilustración diremos que la Tïerra induce en el Sol, mientras orbita alrededor de él, un cambio de velocidad de tan sólo 1 metro por segundo (la velocidad de un agradable paseo), y desplaza al Sol unicamente 450 kilómetros, con respecto al centro de masa del Sistema solar. No se dispone aún de la tecnología necesaria para medir un efecto tan pequeño a distancias tales como las de nuestras estrellas, y, pensemos que, la más cercana (Alfa Centauri), está situada a 4,3 a.l. de la Tierra, esta es la razón por la cual no se han detectado aún planetas similares a la Tierra.

 

                               Ocho preguntas frecuentes del nuevo planeta en Alfa Centauri - NaukasAlfa Centauri: Todo Lo Que Debes Saber De Este Sistema Estelar

                                                                       Sistema Alfa Centauri

Hay otras técnicas que podrían servir para identificar planetas más pequeños. Si el planeta pasa directamente por delante de su estrella (una ocultación o un tránsito), se produce un empalidecimiento regular de la luz procedente de dicha estrella. Según las estadísticas, dado que las órbitas de los planetas extrasolares podrían estar inclinadas en cualquier dirección con respecto a nuestra posición, sólo el 1 por ciento de estos planetas estará en órbitas tales que podríamos ver ocultaciones y, en cualquier caso, cada tránsito dura sólo unas pocas horas (una vez al año para un planeta que tenga una órbita como la de la Tierra; una vez cada once años para uno cuya órbita sea como la de Júpiter.

 Cuando los humanos miramos al espacio y pensamos en sus increíbles distancias, es inevitable imaginar que sería posible encontrar algún sitio como nuestra casa. No sería lógico creer que sólo en la Tierra se han dado las condiciones para la vida. En nuestra misma Galaxia, planetas como la Tierra los hay a miles o cientos de miles.

 

                                          Cómo sería vivir en Gliese 581 g? - Eureka

Ambas imágenes son de Gliese 581g

Existen, sin embargo, proyectos que mediante el sistema de lanzar satélites al espacio que controlaran el movimiento (cada uno de ellos) de un gran número de estrellas con el fin de buscar esas ocultaciones. Si se estudian 100.000 estrellas, y 1.000 de ellas muestran tránsitos, la estadística resultyante implicaría que practicamente

toda estrella similar al Sol está acompañada por planetas. Sin embargo, aunque todas las búsquerdas de este tipo son de un valor inestimable, la técnica Doppler es la que, de momento, se puede aplicar de manera más general a la búsqueda de planetas similares a la Tierra. De cualquier manera, independientemente de los planetas de este tipo que se descubran, lo que está claro es que, de momento, carecemos de la tecnología necesaria para dicha búsqueda.

 

Space Interferometry Mission (SIM) concept | Download Scientific ...Laser metrology on SIM (Space Interferometry Mission): Accuracy ...La Misión de Interferometría Espacial o Space Interferometry ...Space Interferometry Mission (SIM) concept | Download Scientific Diagram

 

La mejor perspectiva que tenemos en el momento inmediato, es la que nos ofrece el satélite de la NASA llamado SIM (Space Interforometry Mission) que mediante la técnica de interferometría (combinar los datos de varios telescopios pequeños para imitar la capacidad de observación de un telescopio mucho mayor) ver y medir la posición de las estrellas con la exactitud necesaria para descubrir las oscilaciones que delaten la presencvia de planetas como la Tierra que describen orbitas alrededor de cualquiera de las 200 estrellas más cercanas al Sol, así como por cualquiera de los planetas similares a Júpiter hasta una distancia del Sol que podría llegar hasta los 3.000 años luz.

Hacia el final de la década presente (si todo va bien), la Agencia Espacial Europea lanzará un satélite cuyo nombre será GAIA y que tendrá como misión principal, no precisamente buscar otras Gaias, sino trazar un mapa con las posiciones de los mil millones de objetos celestes más brillantes. Dado que GAIA tendrá que observar tantas estrellas, no mirará cada una muchas veces ni durante mucho tiempo, por lo que no podría detectar las oscilaciones ocasionadas por planetas similares a la Tierra; pero si podría detectar planetas del tamaño de Júpiter y, si estos planetas son tan abundantes como parece indicar los datos obtenidos hasta ahora, no es descabellado pensar que, puedan estar acompañados, como en nuestro propio Sistema solar, por otros planetas más pequeños.

 

La era de los telescopios extremadamente grandes ya está aquí - LA NACIONLa era de los telescopios extremadamente grandes ya está aquíLos grandes telescopios que vienen: el TMT - Naukas

   En las grandes alturas naturales están situados los telescopios

 

Fotografía cedida del observatorio astronómico de Paranal, cerca del lugar donde se levanta el imponente cerro que en… medio del árido desierto de Atacama, allí donde la existencia parece una quimera, se levanta el imponente cerro que en la próxima década albergará el Telescopio Europeo Extremadamente Grande, E-ELT, el mayor ojo que desde la Tierra rastreará el Universo en busca de vida en otros mundos.
Encuentran un nuevo sistema de tres exoplanetas con un potencial ...Científicos españoles descubren tres nuevos planetas, uno de ellos ...
Descubren otro posible planeta junto a la estrella más próxima al SolSistemas planetarios lejanos tienen la forma del sistema solar

Dentro de los próximos 10 años, deberíamos tener localizados decenas de miles de sistemas planetarios extrasolares en las zonas de la Vía Láctea próxima a nosotros. Sin embargo, seguiría tratándose de observaciones indirectas y, para captar los espectros de algunos de esos planetas, se necesita dar un salto más en nuestra actual tecnológía que, como he dicho, resulta indificiente para realizar ciertas investigaciones que requieren y exigen mucha más precisión.

Los nuevos proyectos y las nuevas generaciones de sofisticados aparatos de alta precisión y de IA avanzada, nos traerán, en los próximos 50 años, muchas alegrías y sorpresas que ahora, ni podemos imaginar.

Cambiemos de tema: ¿Qué es una partícula virtual?

 

                                                                                   

Diagrama de Feynmann. No pocas veces hemos dicho que, en una partícula virtual las relaciones que normalmente existen entre las magnitudes físicas de cualquier partícula no tienen por qué cumplirse. En particular, nos interesan dos magnitudes, que seguro que conocéis de sobras: energía y momento.

Por partícula-antipartícula que aparece de la “nada” y luego se aniquila rápidamente sin liberar energía.  Las partículas virtuales pueblan la totalidad del espacio en enormes cantidades, aunque no pueden ser observadas directamente.

En estos procesos no se viola el principio de conservación de la masa y la energía siempre que las partículas virtuales aparezcan y desaparezcan lo suficientemente rápido como para que el cambio de masa o energía no pueda ser detectado.  No obstante, si los miembros de una partícula virtual se alejan demasiado como para volverse a juntar, pueden convertirse en partículas reales, según ocurre en la radiación Hawking de un agujero negro; la energía requerida para hacer a las partículas reales es extraída del agujero negro.

 

 El futuro del Gran Colisionador de Hadrones - Ciencia UNAMEl colisionador del CERN en busca de más misterios del universoGran colisionador de hadrones: los hallazgos más interesantes de la máquina  más grande jamás construida por el ser humano

 

En el Gran Colisionador de Hadrones (LHC) a  las 14:22 del dia 23 de Noviembre del 2009, el detector ATLAS registro la primera colision de protones en el LHC, seguido del detector CMS, y mas tarde los detectores ALICE y LHCb. Estas primeras colisiones solo son para probar la sincronizacion de las colisiones de haces de protones con cada uno de los detectores, lo cual resultó  con éxito en cada uno de los experimentos y, marca un avance muy alentador hacia la tan esperada etapa (pasada en parte)  de toma de datos donde se pueda buscar la partícula dadora de masas a las demás partículas,  Super Simetría, Dimensiones Extras, y tantas otras cosas mas que surgen de la inmensa imaginación del  intelecto humano.

Es sin duda un momento para recordar, especialmente para aquellos que han invertido parte de su vida en un proyecto tan grande e importante como este con la esperanza de alcanzar el conocimiento sobre la materia, la Naturaleza y el Universo mismo que, nunca pudimos soñar.

 

 

Muchas han sido, aparte del coste económico, las ilusiones y noches sin dormir, de muchos científicos empeñados en este magno proyecto que, como todos esperamos, nos podría llevar hasta otra “dimensión” de la física del mundo. Ahí podrían residir muchas de las respuestas no contestadas hasta el momento. Veremos a ver que nos trae el LHC en su nueva etapa cuando de nuevo se ponga en marcha y utilice algo más que los 14 TeV que hicieron falta para busgar el Bosón de Higgs.

Pero, continuémos con la virtualidad de las partículas. La vida media de una partícula virtual aumenta a medida que disminuye la masa o energía involucrada.   Así pues, un electrón y un positrón pueden existir durante unos 4×10-21 s, aunque un par de fotones de radio con longitud de onda de 300.000 km pueden vivir hasta un segundo.

En realidad, lo que llamamos espacio vacío, está rebosante de partículas virtuales que bullen en esa “nada” para surgir y desaparecer continuamente en millonésimas de segundo.  ¡los misterios del Universo!

 

Era de Planck

 

En la teoría del Big Bang, fugaz periodo de tiempo entre el propio Big Bang y el llamado Tiempo de Planck, cuando el Universo tenía 10-43 segundo de edad y la temperatura era de 1034 k.

Durante este periodo, se piensa que los efectos de la Gravitación cuántica fueron dominantes.  La comprensión teórica de esta fase es virtualmente inexistente.

Plasma.

 

El plasma forma las estrellas y otros objetos estelares que podemos ver, es la mayor concentraci´çon de materia del univeros visible. Según algunos el cuarto estado de la materia que consiste en electrones y otras partículas subatómicas sin ninguna estructura de un orden superior a la de los núcleos atómicos.

Se trata de un Gas altamente ionizado en el que el número de electrones libres es aproximadamente igual al número de iones positivos.  Como dije antes, a veces descrito como el cuarto estado de la materia, las plasmas aparecen en el espacio interestelar, en las atmósferas de las estrellas (incluyendo el Sol), en tubos de descarga y en reactores nucleares experimentales.

 

El Plasma! Ese estado de la materia del que están hechas las ...El Plasma! Ese estado de la materia del que están hechas las ...

El Plasma: cuarto estado de la materia : Blog de Emilio Silvera V.Supernova - Wikipedia, la enciclopedia libre

             El plasma está bien presente en todos los remanentes de supernovas

Debido a que las partículas en un plasma están cargadas, su comportamiento difiere en algunos aspectos a un gas.  Los plasmas pueden ser creados en un laboratorio calentando un gas a baja presión hasta que la energía cinética media de las partículas del gas sea comparable al potencial de ionización de los átomos o moléculas de gas.  A muy altas temperaturas, del orden de 50.000 K en adelante, las colisiones entre las partículas del gas causan una ionización en cascada de este.  Sin embargo, en algunos casos, como en lámparas fluorescentes, la temperatura permanece muy baja al estar las partículas del plasma continuamente colisionando con las paredes del recipiente, causando enfriamiento y recombinación.  En esos casos la ionización es solo parcial y requiere un mayor aporte de energía.

En los reactores termonucleares, es posible mantener una enorme temperatura del plasma confinándolo lejos de las paredes del contenedor usando campos electromagnéticos.

El estudio de los plasmas se conoce como física de plasmas y, en el futuro, dará muy buenos beneficios utilizando en nuevas tecnologías como la nanotecnología que se nos viene encima y será el asombro del mundo.

Pluralidad de mundos.

 

Muchos mundos, como la Tierra, estarán situados en la zona habitable de sus estrellas y, el agua líquida, correra por los riachuelos y océanos.  Si eso es así (que lo será), muchos mundos estarán habitados y, algún día lejano en el futuro, podremos saber de ellos con precisión antes de que se produzca el contacto.

Desde tiempos inmemoriales, grandes pensadores de los siglos pasados, dejaron constancia de sus pensamientos y creencia de que, allá arriba, en los cielos, otras estrellas contenían mundos con diversidad de vida, como en el planeta Tierra.  Tales ideas, han acompañado al hombre que, no en pocas oportunidades, fueron tachados de locos.

 

La NASA descubre un sistema solar con siete planetas parecidos a ...NASA descubrió un sistema planetario a 40 años luz de la Tierra ...

Descubren nuevos exoplanetas a 160 años luzDescubiertos dos nuevos sistemas planetarios con dos soles cada ...

Hoy, con los conocimientos que poseemos, lo que sería una locura es precisamente pensar lo contrario.  ¡que estamos solos!

La Vía Lactea (una sola Galaxia de los cientos de miles de millones que pueblan el Universo), tiene más de 100.000 millones de estrellas.  Miles de millones de Sistemas Solares.  Cientos de miles de millones de planetas.  Muchos miles y miles de estrellas como el Sol de tamaño mediano, amarillas de tipo G.

¿Cómo podemos pensar que solo el planeta Tierra alberga vida?

 

Quizá ya es hora de que dejemos de usar los años luz para ...

              Proto-galaxias

Galaxia en proceso de formación.  A pesar de la enorme técnica y sofisticación de los aparatos con que contamos para la observación del cosmos, no se ha podido encontrar ninguna proto-galaxia cercana, lo cual indica que todas o la mayoría de las galaxias se formaron hace mucho tiempo. Por otra parte, los científicos pensaban que no existía nada mas pequeño que un protón. En 1968 se descubrieron nuevas particulas dentro del protón, las cuales fueron llamadas quarks. Existen tres quarks dentro de cada protón, estos quarks se mantienen unidos entre sí mediante otras partículas llamadas gluones.

Protón - Wikipedia, la enciclopedia libre

                        Protón.

Partícula masiva del Grupo o familia de los Hadrones que se clasifica como Barión.  Esta hecho por dos quarks up y un quark down y es, consecuentemente una partícula masiva con 938,3 MeV, algo menos que la del neutron.  Su carga es positiva y su lugar está en el núcleo de los átomos, por lo que se les llama de manera genérica con los neutrones con la denominación de nucleones.

 

 

Este diagrama esquemático de un púlsar ilustra las líneas de campo magnético en blanco, el eje de rotación en verde y los dos chorros polares de radiación en azul. Un Pulsar es…  Una fuente de radio desde la que se recibe un tren de pulsos altamente regular.  Ha sido catalogado más de 600 púlsares desde que se descubriera el primero en 1.976.  Los púlsares son estrellas de neutrones en rápida rotación, con un diámetro de 20-30 km.  Las estrellas se hallan altamente magnetizadas (alrededor de 108 teslas), con el eje magnético inclinado con respecto, al eje de rotación.  La emisión de radio se cree que surge por la aceleración de partículas cargadas por encima de los polos magnéticos. A medida que rota la estrella, un haz de ondas de radio barre la Tierra, siendo entonces observado el pulso, de forma similar a un faro.

Los periodos de los pulsos son típicamente de 1 s., pero varían desde los 1’56 ms (púlsares de milisegundo) hasta los cuatro con tres s. Estos periodos rotacionales van decreciendo a medida que la estrella pierde energía rotacional, aunque unos pocos púlsares jóvenes son propensos a súbitas perturbaciones conocidas como ráfagas.

 

PSR B1257+12

 

Las medidas precisas de tiempos en los púlsares han revelado la existencia de púlsares binarios, y un púlsar, PSR 1257+12, se ha demostrado que está acompañado de objetos de masa planetaria.  Han sido detectado objetos ópticos (destellos) procedentes de unos pocos púlsares, notablemente los púlsares del Cangrejo y Vela.

Se crean en explosiones de supernovas de estrellas supergigantes y otros a partir de enanas blancas, se piensa que puedan existir cien mil en la Vía Láctea.

 

File:Artist's rendering ULAS J1120+0641.jpg

                                                                                     Quasars

Objeto con un alto desplazamiento al rojo y con apariencia de estrella, aunque es probablemente el núcleo activo muy luminoso de una galaxia muy distante. El nombre es una contracción del ingles quasi stellar, debido a su apariencia estelar. Los primeros quasars descubiertos eran intensos fuentes de radio. Debido a las grandes distancias indicadas por el desplazamiento al rojo del núcleo debe ser hasta 100 veces más brillante que la totalidad de una galaxia normal.  Además algunos quasars varían en brillo en una escala de tiempo de semanas, indicando que esta inmensa cantidad de energía se origina en un volumen de unas pocas semanas-luz de longitud.  La fuente puede, por tanto, ser un disco de acreción alrededor de un agujero negro de 107 o 108 masas solares.

 

               File:Quasar 3C 273.jpg

                      Imagen de 3C273 recogida por el telescopio Hubble

El primer quasar en ser identificado como tal en 1.963 fue la radiofuente 3c 273 con un desplazamiento al rojo de 0,158, siendo todavía el quasar más brillante, óptimamente hablando, observado desde la Tierra, con magnitud 13.  Miles de quasar han sido descubiertos desde entonces.  Algunos tienen desplazamiento al rojo tan grandes como 4,9, implicando que lo vemos tal como eran cuando el Universo tenía sólo una décima parte de la edad actual.

En esta brevísima reseña no puede dejarse constancia de todo lo que se sabe sobre quasars, sin embargo, dejamos los rasgos más sobresalientes para que el lector obtenga un conocimiento básico de estos objetos estelares. Para finalizar la reseña diré que, algunas galaxias aparentemente normales pueden contener remanentes de actividad quasar en sus núcleos, y algunas galaxias Seyfert y galaxias Markarian tienen núcleos que son intrínsecamente tan brillantes como algunos quasars. Existen algunas evidencias de que los quasars aparecen en los núcleos de los espirales, y es esa interacción con una galaxia vecina la que proporciona gas o estrellas al núcleo formado por un agujero negro masivo, alimentando así la emisión del quasar.  Salvo mejor parecer.

                                  ¿Qué es la radiación cósmica de fondo?
Radiación de fondo cósmico - Wikipedia, la enciclopedia libre
                         Radiación cósmica de fondo.

Antes, hemos comentado por alguna parte que, se trata de emisión radio de microondas proveniente de todas las direcciones (isotrópica) y que corresponde a una curva de cuerpo negro. Estas propiedades coinciden con las predichas por la teoría del Big Bang, como habiendo sido generada por fotones liberados del Big Bang cuando el Universo tenía menos de un millón de años (Universo bebé) de antigüedad.

La teoría del Big Bang también supone la existencia de radiaciones de fondo de neutrinos y gravitatoria, aunque aun no tenemos los medios para detectarlas.  Sin embargo, los indicios nos confirman que la teoría puede llevar todas las papeletas para que le toque el premio.

 

2013 enero 10 : Blog de Emilio Silvera V.

 

Últimamente se ha detectado que la radiación cósmica de fondo no está repartida por igual por todo el Universo, sino que, al contrario de lo que se podía esperar, su reparto es anisotrópico, el reparto está relacionado con la clase de materia que produjo tal radiación, su densidad.  ¡Ya veremos!

De todas las maneras, ¿No es una maravilla todo el Universo? El que nosotros, estemos aquí para contarlo así lo testifica.

emilio silvera.

¿La Singularidad? ¡Un extraño objeto!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

                                                             

El concepto mismo de “singularidad” desagradaba a la mayoría de los físicos, pues la idea de una densidad infinita se alejaba de toda comprensión.  La naturaleza humana está mejor condicionada a percibir situaciones que se caracterizan por su finitud, cosas que podemos medir y pesar, y que están alojadas dentro de unos límites concretos; serán más grande o más pequeñas pero, todo tiene un comienzo y un final pero… infinito, es difícil de digerir.  Además, en la singularidad,  según resulta de las ecuaciones, ni existe el tiempo ni existe el espacio. Parece que se tratara de otro universo dentro de nuestro universo toda la región afectada por la singularidad que, eso sí, afecta de manera real al entorno donde está situada y además, no es pacífica, ya que se nutre de cuerpos estelares circundantes que atrae y engulle.

                          

La noción de singularidad empezó a adquirir un mayor crédito cuando Robert Oppenheimer, junto a Hartlan S. Snyder, en el año 1.939 escribieron un artículo anexo de otro anterior de Oppenheimer sobre las estrellas de neutrones. En este último artículo, describió de manera magistral la conclusión de que una estrella con masa suficiente podía colapsarse bajo la acción de su propia gravedad hasta alcanzar un punto adimensional; con la demostración de las ecuaciones descritas en dicho artículo, la demostración quedó servida de forma irrefutable que una estrella lo suficientemente grande, llegado su final al consumir todo su combustible de fusión nuclear, continuaría comprimiéndose bajo su propia gravedad, más allá de los estados de una enana blanca o de estrella de neutrones, para convertirse en una singularidad.

                           

Los cálculos realizados por Oppenheimer y Snyder para la cantidad de masa que debía tener una estrella para terminar sus días como una singularidad estaban en los límites másicos de M =~ masa solar, estimación que fue corregida posteriormente por otros físicos teóricos que llegaron a la conclusión de que sólo sería posible que una estrella se transformara en singularidad la que al abandonar su fase de gigante roja retiene una masa residual como menos de 2 – 3 masas solares.

Modelo OS
La figura de la izquierda representa a la nube de polvo en colapso de Oppenhieimer y Snyder, que ilustra una superficie atrapada.
El modelo de Oppenhieimer y Snyder posee una superficie atrapada, que corresponde a una superficie cuya área se iOppenheimer y Snyder desarrollaron el primer ejemplo explícito de una solución a las ecuaciones de Einstein que describía de manera cierta a un agujero negro al desarrollar el planteamiento de una nube de polvo colapsante.

En su interior, existe una singularidad, pero no es visible desde el exterior, puesto que está rodeada de un horizonte de suceso que no deja que nadie se asome, la vea, y vuelva para contarlo. Lo que traspasa los límites del horizonte de sucesos, ha tomado el camino sin retorno. Su destino irreversible, la singularidad, de la que pasará a formar parte.

Desde entonces, muchos han sido los físicos que se han especializado profundizando en las matemáticas relativas a los agujeros negros. John Wheeler (que los bautizó como agujeros negros), Roger Penrose, Stephen Hawking, Kip S. Thorne, Kerr y muchos otros nombres que ahora no recuerdo, han contribuido de manera muy notable al conocimiento de los agujeros negros.

 Simplemente con imaginar que estamos con nuestra nave en las cercanías de un agujero negro que tira de nosotros y que la nave no tiene potencia para alcanzar la velocidad de escape… ¡los pelos se ponen de punta!

Se afirma que las singularidades se encuentran rodeadas por un horizonte de sucesos, pero para un observador, en esencia, no puede ver nunca tal singularidad desde el exterior. Específicamente implica que hay alguna región incapaz de enviar señales al infinito exterior. La limitación de esta región es el horizonte de sucesos, tras ella se encuentra atrapado el pasado y el infinito nulo futuro. Lo anterior nos hace distinguir que en esta frontera se deberían reunir las características siguientes:

 Estos monstruos estelares o residuos de estrellas masivas proliferan por todas las galaxias

  • Debe ser una superficie nula donde es pareja, generada por geodésicas nulas,
  • contiene una geodésica nula de futuro sin fin, que se origina a partir de cada punto en el que no es pareja, y que
  • el área de secciones transversales espaciales jamás pueden disminuir a lo largo del tiempo.

                        

Pueden existir agujeros negros supermasivos (de 105 masas solares) en los centros de las galaxias activas. En el otro extremo, mini agujeros negros con un radio de 10-10 m y masas similares a las de un asteroide pudieron haberse formado en las condiciones extremas que se dieron poco después del big bang. Diminutos agujeros negros podrían ser capaces de capturar partículas a su alrededor, formando el equivalente gravitatorio de los átomos.

Todo esto ha sido demostrado matemáticamente por Israel, 1.967; Carter, 1.971; Robinson, 1.975; y Hawking, 1.978 con límite futuro asintótico de tal espacio-tiempo como el espacio-tiempo de Kerr, lo que resulta notable, pues la métrica de Kerr es una hermosa y exacta formulación para las ecuaciones de vacío de vacío de Einstein y, como un tema que se relaciona con la singularidad en los agujeros negros.

No resulta arriesgado afirmar que existen variables en las formas de las singularidades que, según las formuladas por Oppenheimer y su colaborador Snyder, después las de Kerr y más tarde otros, todas podrían existir como un mismo objeto que se presenta en distintas formas o maneras.

                                                  

Ahora bien, para que un ente, un objeto o un observador pueda introducirse dentro de un agujero negro,  en cualquiera que fuese su forma, tendría que traspasar el radio de Schwarzschild (las fronteras matemáticas del horizonte de sucesos), cuya velocidad de escape es igual a la de la luz, aunque ésta tampoco puede salir de allí una vez atrapada dentro de los límites fronterizos determinados por el radio. Este radio de Schwarzschild puede ser calculado usándose la ecuación para la velocidad de escape:


Para el caso de u objeto sin masa, tales como los neutrinos, se sustituye la velocidad de escape por la de la luz c2. “En el modelo de Schrödinger se abandona la concepción de los electrones como esferas diminutas con carga que giran en torno al núcleo, … Es cierto que en mecánica cuántica quedan muchos enigmas por resolver. Pero hablando de objetos de grandes masas, veamos lo que tenemos que hacer para escapar de ellos.

                   

                       Podemos escapar de la fuerza de gravedad de un planeta pero, de un A.N., será imposible.

La velocidad de escape está referida a la velocidad mínima requerida para escapar de un campo gravitacional. Así hemos comprendido que, a mayor masa del cuerpo del que se pretende escapar, mayor será la velocidad que necesitamos para escapar de él. Veamos algunas:

Objeto

Velocidad de escape

La Tierra

………….11,18 Km/s

El Sol

………….617,3 Km/s

Júpiter

………….59,6 Km/s

Saturno

………….35,6 Km/s

Venus

………….10,36 Km/s

Agujero negro

…….+ de 299.000 Km/s

Como se ve en el cuadro anterior, cada objeto celeste, en función de su masa, tiene su propia velocidad de escape para que cualquier cosa pueda salir de su órbita y escapar de él. El caso de la singularidad, es decir, la inmensa masa que está presente en las entrañas de un Agujero negro, genera una fuerza de gravedad tal que, nada está a salvo en sus inmediaciones, cualquier objeto, sea estrella, polvo estelar, planeta o lo que pudiera ser, será engullido por el “monstruo”, sin que nada pueda evitarlo.

                               

La excepción está en el último ejemplo, la velocidad de escape necesaria para vencer la fuerza de atracción de un agujero negro que, siendo preciso superar la velocidad de la luz en el vacío  igual a  299.792’458 Km/s, es algo que no está permitido, ya que todos sabemos que conforme determina la teoría de la relatividad especial esa velocidad es un límite impuesto por nuestro universo.

Existen aspectos del A.N. que influyen en el mundo cuántico, y, por ejemplo, el máximo radio que puede tener un agujero negro virtual está dado aproximadamente por:

                                                                                                  

que equivale a unos 10-³³ centímetros. Esta distancia se conoce como la Longitud de Planck y es la única unidad de distancia que se puede construir con las tres constantes fundamentales de la naturaleza: G, h y c. La Longitud de Planck es tan extremadamente pequeña (10²° veces menor que el radio de un electrón) que debe ser la distancia característica de otro nivel de la naturaleza, subyacente al mundo subatómico, donde rigen las leyes aún desconocidas de la gravedad cuántica.

Así como el océano presenta un aspecto liso e inmóvil cuando se observa desde una gran distancia, pero posee fuertes turbulencias y tormentas a escala humana, el espacio-tiempo parece “liso” y estático a gran escala, pero es extremadamente turbulento en el nivel de la Longitud de Planck donde los hoyos negros se forman y evaporan continuamente. En el mundo de Planck, las leyes de la física deben ser muy distintas de las que conocemos hasta ahora.

La estructura macroscópica del espacio-tiempo parece plana, pero éste debe ser extremadamente turbulento en el nivel de la escala de Planck. Escala en la que parece que entramos en otro mundo… ¡El de la mecánica cuántica! que se aleja de ese mundo cotidinao que conocemos en el que lo macroscópico predomina por todas partes y lo infinitesimal no se deja ver con el ojo desnudo.

¡Existen tantos secretos! ¡Es tan grande nuestra ignorancia!

emilio silvera

Espacio-tiempo curvo y los secretos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (18)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

 

La densidad de energía-momentum en la teoría de la relatividad se representa por cuadritensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein. En física las ecuaciones del campo de Einstein, ecuaciones de Einstein o ecuaciones de Einstein-Hilbert, son un conjunto de 10 ecuaciones de la teoría de la relatividad general postulada por A. Einstein que describen la Interacción fundamental de la Gravitación como resultado de que el espacio-tiempo está siendo curvado por la materia y la energía  que determinan la geometría del Espacio.

 

 

Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la maisma manera, en presencia de masa se distorsiona el esapacio-tiempo que se curva en función de la masa allí presente. No es el mismo espacio aquel en el que se encuentra una gran galaxia que, ese otro en el que sólo está presente un pequeño mundo. Sin embargo, tanto en uno como en el otro caso, la gravedad que emite el objeto de materia de que se trate, incide en el espacio circundante y en los objetos vecinos.

 

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.
Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

 

Teoría cuántica de campos — Astronoo94 Nanotecnología Cuántica Vectores, Ilustraciones y Gráficos - 123RF

 

La teoría cuántica de campos en espacio-tiempo curvo es una extensión de la teoría cuántica de campos estándar en la que se contempla la posibilidad de que el espacio-tiempo por el cual se propaga el campo no sea necesariamente plano (descrito por la métrica de Minkouski).  Una predicción genérica de esta teoría es que pueden generarse partículas debido a campos gravitacionales dependientes del tiempo, o a la presencia de horizontes.

La teoría cuántica de campos en espacio-tiempo curvo puede considerarse como una primera aproximación de gravedad cuántica. El paso siguiente consiste en una gravedad semiclásica, en la que se tendrían en cuenta las correcciones cuánticas, debidas a la presencia de materia, sobre el espacio-tiempo.

File:3D coordinate system.svg

En un espacio euclidiano convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundidad o altura. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos la gravedad, la teoría de la relatividad  nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes “secciones espaciales” de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimensional.

En las teorías actuales no existe una razón clara para que el de dimensiones espaciales sean tres. Aunque existen ciertas instuiciones sobre ello: Ehrenfest (aquel gran físico nunca reconocido) señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo).

Es cierto que en nuestro mundo tridimensional y mental existen cosas misteriosas. A veces me pregunto que importancia puede tener un nombre. (“¿Qué hay en un nombre? Lo que llamamos rosa, ¿”con cualquier otro nombre tendría el mismo dulce aroma”? (-Shakespeare, Romeo y Julieta-)  La rosa da sustento a muchos otros tópicos literarios: se marchita como símbolo de la fugacidad del tiempo y lo efímero de la vida humana; y provoca la prisa de la doncella recogerla mientras pueda. Por otro lado, le advierte de que hay que tener cuidado: no hay rosa sin espinas.

También el mundo de la poesía es un tanto misterioso y dicen, que… “Los poetas hablan consigo mismo y el mundo les oye por casualidad.” Tópicos ascéticos, metafísicos o existenciales: Quiénes somos, de dónde venimos, a dónde vamos, las llamadas preguntas trascendentales, propias de la cosmología, la antropología y la metafísica. Los poetas siempre han buscado un mundo irreal y han idealizado el enaltecido mucho más allá de este mundo.

Como siempre me pasa, me desvío del tema que en este trabajo nos ocupa: El espacio-tiempo.

Estamos inmersos en el espacio-tiempo curvo y tetradimensional de nuestro Universo. Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

                                                                               Cono de luz - Wikipedia, la enciclopedia libre

La introducción por parte de Minkouski de la idea espaciotemporal resultó tan importante es porque permitió a Einstein utilizar la idea de geometría espaciotemporal para formular su teoría de la relatividad general que describe la Gravedad que se genera en presencia de grandes masas y cómo ésta curva el espacio y distorsiona el tiempo. En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. Hemos llegado a comprender que es la materia, la que determina la geometría del espacio-tiempo.

En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano y Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.

El máximo exponente conocido del espacio-tiempo curvo, se podría decir que se da en la formación de los agujeros negros, donde la masa queda comprimida a tal densidad que se conforma en una singularidad, ese objeto de energía y densidad “infinitsas” en el que, el espacio y el tiempo desaparecen de nuestra vista y parece que entran en “otro mund” para nosotros desconocidos.

http://1.bp.blogspot.com/-TWYy8GMEeBI/TiKZMOfnoQI/AAAAAAAAOgo/HeVDOup_eC0/s1600/deformacion-espacio-tiempo.jpg

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

         59 - Curso de Relatividad General [Ecuaciones de Campo & Constante  Cosmológica] - YouTubeCuál es la ecuación matemática más hermosa del mundo? - BBC News Mundo

Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…

Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad– debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.

La CONSTANTE de PLANCK: definición sencilla - ¡¡RESUMEN FÁCIL!!ecuacioncine fans on Twitter: "ECUACIóN de Schrödinger y el principio de  incertidumbre de Heisenberg http://t.co/CbdL8xmkEJ" / Twitter

Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender  que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fin, podremos tener una teoría cuántica de la gravedad.

                                                            

Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidad que podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.

                                                         

 Esta pretende ser la imagen de un extraño objeto masivo, un quásar  que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).

Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.

Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.

Las primeras estrellas en la historia del universoÁlex Riveiro on Twitter: "No solo eso, Algol es también una estrella que  podríamos definir como arquetipo. Todas aquellas estrellas variables con  unas condiciones y características similares a las de este sistema

Las primeras estrellas del universo eran enormes, pesadas, y muy calientes. Brillaron con furia, vivieron rápido y murieron jóvenes. Pero aquellas primeras estrellas nos …

Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el universo. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.

                                         

                                                                                     Supernova 1987 A

El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.

Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espacio-tiempo y dibujar la geometría del universo.

                                                            

Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- Imagen tomada por la NASA

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.

Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividad general y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo. Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos npo han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negros descubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.

                                                                  Miden una distorsión del espacio-tiempo a 25.000 años-luz de la Tierra |  Noticias de la Ciencia y la Tecnología (Amazings® / NCYT®)

Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercer aspecto en la distorsión espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrededor del horizonte del agujero. Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.

                                                                   Enséñame de Ciencia - En física, las ecuaciones de campo de Einstein son un  conjunto de diez ecuaciones de la teoría de la relatividad general de  Albert Einstein, que describen la interacción

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividad general deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.

Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.

                                                                

Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta  la extenuación:

“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado”  Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.

 

46 - Curso de Relatividad General [Agujero de Gusano de Einstein-Rosen] -  YouTube

 

El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.

                              File:Cassini-science-br.jpg

Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debilidad resulta engañosa porque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.

¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recien llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!

emilio silvera

El Tiempo pasa y todo cambia

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

     Estallidos de formación de estrellas | Instituto de Astrofísica de Canarias  • IACLey de Hubble y expansión del Universo | ¿Qué significa la constante de  Hubble? - YouTube
                                ¿Cómo pusieron formarse las galaxias a pesar de la expansión de Hubble?
 Entradas anteriores: En realidad, las Galaxias no deberían existir
                Mecánica cuántica para principiantes (La Ciencia Para Todos) eBook :  Hacyan, Shahen: Amazon.es: Tienda KindleCientíficos prueban que el entrelazamiento cuántico es real
                                                    Función de onda entrelazamiento cuántico
Es Posible Atravesar Una Pared? | El EFECTO TÚNEL GIF | Gfycat
                                                                                                 Efecto túnel

Allí, en ese lugar infinitesimal cuántico, como en el País de las Martavillas, suceden cosas extrañas e increíbles.

 

 

 

Efecto túnel – Superconductividad (ICMM-CSIC)

 

El efecto túnel explica que se den en el espacio reacciones químicas que no se producen en condiciones normale.Un fotón energético que viaja a la velocidad de la luz, choca con un electrón orbital de un átomo. El electrón absorbe la energía del fotón y, de inmediato, desaparece del lugar que ocupaba en el átomo y, de manera simultánea, sin saber por donde ha cogido y sin recorrer el camino que le separa, aparece en otro orbital diferente. Ese es, un ejemplo del efecto túnel.

 

 

 

Esquema de una estrella tipo Sol. En su interior suceden cosas fantásticas y se transmutan elementos sencillos en otros más complejos que, al final de sus” vidas” formarán parte de Nebulosas planetarias y de mundos.

 

Qué novedades hay en la gravedad cuántica de lazos? | Las científicas  responden | Ciencia | EL PAÍSLa gravedad cuántica estaría escondida en los agujeros negros • Tendencias21

Algunos postulan que está escondida en los agujeros negros, y, otros, dicen que subyace en la teoría de cuerdas, y, precisamente por eso, cuando los físicos trabajan con las ecuaciones de campo de las cuerdas, sin que nadie las llame, como por arte de magia, allí aparecen las ecuaciones de campo de la Relatividad General. El viejo Einstein, allá donde pueda estar, estará riendo a carcajadas al verr4 que tenía razón,.

                                                       Laboratorio estelar, la cuna de los mundos.

me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, y, esa presencia invisible que permea todo el espacio y que se ha dado en denominar océano y campos de Higgs, allí donde reside esa clase de energía exótica, ese “éter” que, en definitiva hace que el Universo funcione tal como lo podemos ver. Existen muchos parámetros del Cosmos que aún no podemos comprender y de los que sólo podemos presentir, es como si pudiéramos ver la sombra de algo que no sabemos lo que es.

Todo el Universo conocido nos ofrece una ingente cantidad de objetos que se nos presentan en formas de estrellas y planetas, extensas nebulosas formadas por explosiones de supernovas y que dan lugar al nacimiento de nuevas estrellas, un sin fin de galaxias de múltiples formas y colores, extraños cuerpos que giran a velocidades inusitadas y que alumbran el espacio como si de un faro cósmico se tratara, y, objetos de enormes masas y densidades “infinitas” que no dejan escapar ni la luz que es atrapada por la fuerza de gravedad que generan.

A String of 'Cosmic Pearls' Surrounds an Exploding Star

                                                  Ya nos gustaría saber qué es todo lo que observamos en nuestro Universo

Sin embargo, todo eso, está formado por minúsculos e infinitesimales objetos que llamamos quarks y leptones, partículas elementales que se unen para formar toda esa materia que podemos ver y que llamamos Bariónica pudiendo ser detectada porque emite radiación. Al contrario ocurre con esa otra supuesta materia que llamamos oscura y que, al parecer, impregna todo el universo conocido, pero ni emite radiación ni sabemos a ciencia cierta de qué podrá estar formada, y, al mismo tiempo, existe una especie de energía presente también en todas partes de la que tampoco podemos explicar mucho.

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetro. En los sólidos y líquidos ordinarios los átomos están muy juntos. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

Isaac Asimov en uno de sus libros nos explicó que,  los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3. Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

Ese puntito blanco del centro de la Nebulosa planetaria, es mucho más denso que el osmio, es una enana blanca, y, sin embargo, no es lo más denso que en el Universo podemos encontrar. Cualquier estrella de neutrones es mucho más densa y, no hablemos de los agujeros negros, de su singularidad.

los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos al desnud0, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original. De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos  obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero los núcleos atómicos se mueven de un lado a otro sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho que todos los protones tienen carga eléctrica positiva y se repelen, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en adecuadas pueden estar juntos y empaquetados un número enorme de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

Estas estrellas se forman las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera tan increíble que se degeneran (como consecuencia de que son fermiones y están afectados por el principio de exclusión de Pauli) y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

                                        El Libro Guinness reconoce al Grantecan como el telescopio óptico  individual más grande del mundo

El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (La Palma), ha obtenido imágenes de una profundidad “sin precedentes” de una estrella de neutrones del magnetar, de las que se conocen pocos ejemplares. Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad!

                                 

Imagen captada por el telescopio Hubble de la galaxia NGC 3393. El núcleo de la galaxia, donde se encuentra la pareja de agujeros negros se ver encuadrado (NASA). Está claro que lo que se dice ver a los agujeros negros… Nadie los ha podido ver y, sólo hemos podido captar su presencia por los fenómenos que a su alrededor ocurren en la emisión inusual de radiación y el comportamiento de la materia circundante.

      Enana blanca - EcuRedTransporte de energía en enanas blancas. ¿Qué pasa con los campos  magnéticos? | Astrobites en español                                                                  Qué pasaría si cayeras en un agujero negro? Tu cuerpo sufriría un gran  cambio | Explora | Univision

Podemos decir que objetos tan fascinantes éstos (estrellas enanas blancas, de neutrones y agujeros negros), son los que nos muestran estados de la materia más densos que hemos podido llegar a conocer y que se forjan en la propia Naturaleza mediante transiciones de fase que se producen mediante los mecanismos de las fuerzas que todo lo rigen. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿ cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envíe luz y calor que la haga posible tal como la conocemos. Cuando agote su combustible nuclear de fusión, su vida se apagará y se convertirá en gigante roja primero y enana blanca después.

                                                 Estructura Del átomo De Helio E Hidrógeno Ilustraciones Svg, Vectoriales,  Clip Art Vectorizado Libre De Derechos. Image 15013058.

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio  (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de energía que incide sobre la Tierra basta mantener toda la vida en nuestro planeta).

Los rayos del Sol que envían al planeta Tierra su luz y su calor para hacer posible la vida en un planeta maravilloso que es el habitat de millones de especies, unas más inteligentes que otras en relación al roll que, a cada una, le tocó desempañar en el escenario de este gran teatro que llamaos mundo.

Nadie diría que con consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

Para completar diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.

         Este podría ser nuestro Sol en el pasado sólo era una protoestrella que se estaba formando

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654 mil toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha radiando hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más. Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

Por otra , el Sol no continuará radiando exactamente al mismo ritmo que . El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo. Cuando el Sol se convierta en gigante roja… Nosotros tendremos que haber podido buscar la manera de salir de la Tierra ubicarnos en otros mundos, dado que, dicha fase del Sol, no permitirá la vida en nuestro planeta.

  Los planetas interiores serán engullidos por nuestro Sol y, la Tierra, quedará calcinada, sus océanos se evaporarán y toda la vida, desaparecerá.

Las estrellas, todo en nuestro universo, tienen un principio y un final. La que en la imagen de arriba podemos contemplar, ha llegado al final de su ciclo, y, agotado su combustible nuclear, quedará a merced de la fuerza de la Gravedad que la convertirá en un objeto distinto del que fue durante su larga vida. Dependiendo de su masa,  las estrellas se convierten en enanas blancas -el caso del Sol-, estrella de neutrones o Agujeros negros.

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a , estos dos bultos – de los cuales uno mira la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra. Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, periodos de rotación iguales, mucho menor.

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara el planeta Tierra.

Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercano al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? Continuemos pues aprendiendo cosas nuevas.

En alguna ocasión dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo ser convertida en trabajo cuando    dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformadad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.

El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).

Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua realizar un trabajo porque crea energía . El agua sobre una superficie horizontal no puede realizar , aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.

Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún , por muy alta que sea aquella.

En realidad, la Entropía no debe resultarnos tan extraña como esa imagen de arriba, la Entropía está presente en nuestras vidas cotidianas y por todo el Universo, es algo que nació con el Tiempo al que acompaña y, cuando éste transcurre, aquella deja sentir sus efectos. Nos dice que nada es Eterno, que lo que nace muere, que todo cambia.

El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión. El Tiempo, podríamos decir que es el portador de una compañera que, como él mismo, es inexorable. La entropía lo cambia todo y, en un Sistema cerrado (pongamos el Universo), la entropía siempre crece mientras que la energía es vez menor. Todo se deteriora con el paso del tiempo.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters. De la misma manera, en el Universo, se producen transiciones de fase que desembocan en el deterioro de los objetos que lo pueblan. Nunca será lo mismo una estrella de 1ª generación que una de 3ª y, el material del que están compuestas las últimas serán más complejos y cada vez, tendrán menor posibilidad de convertirse en Nebulosas que sean capaces de crear nuevas estrellas.

Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.

      Considerado Sistema Cerrado, la Entropía no deja de aumentar en nuestro Universo a medida que el Tiempo transcurre

Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo. El estudio del flujo de energía puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y recibió el de “termodinámica”, que en griego significa “movimiento de calor”.

Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. regla es tan fundamental que se la denomina “primer principio de la termodinámica”. Sin embargo, cuando la entropía ataca, la energía quedar congelada e inservible. La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no básica, y que denomina “segundo principio de la termodinámica.”

Según segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más , ni pueden producirse cambios.

¿Está degradándose el universo?

Bueno, todos sabemos que el Universo evoluciona y, como todo, con el paso del tiempo cambia. Lo que hoy es, mañana no será. Existe una pequeña ecuación:   S = k log W que, aunque pequeña y sencilla, es la mayor aportaciópn de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación el logaritmo es el siguiente: S es la entropía de un Sistema; W el de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión del micro-mundo y el macro-mundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física conocida como Mecánica Estadística.

Pero esa, es otra historia.

emilio silvera

El secreto está en las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El Tiempo es inexorable y su transcurrir va dejando atrás las cosas que del presente, van situandose en el pasado. Lejos queda ya aquellas efemérides y celebraciones del año 2009, cuando se conmemoró el Año Internacional de la Astronomía y me cupo el honor de (humildemente), colaborar con aquellas celebraciones.

                                                                            

Astrolabio de al-Sahli, del siglo XI (M.A.N., Madrid). El astrolabio es un antiguo instrumento que permite determinar la posición y altura de las estrellas sobre la bóveda celeste. El astrolabio era usado por los navegantes, astrónomos y científicos en general para localizar los astros y observar su movimiento, para determinar la hora a partir de la latitud o, viceversa, para averiguar la latitud conociendo la hora. También sirve para medir distancias por triangulación.

Con orgullo luzco en el ojal de mi chaqueta el astrolabio que nos dieron en Madrid, a todos los invitados, a la fiesta de inauguración en la que estaban presentes muchos astrónomos y astrofísicos del mundo entero. el acto fue inaugurado por el entonces Príncipe de España (hoy el Rey).

Nebulosa planetaria - Wikipedia, la enciclopedia libreNebulosa planetaria NGC 6543 de tipo I. | Download Scientific Diagram

Observan por primera vez un chorro de gas mientras emerge de la estrella  central de una nebulosaMyCn18: la nebulosa planetaria del reloj de arena – Zona Geek

        Esto es lo que queda cuando una estrella como el Sol muere. Una Nebulosa planetaria de materiales ionizados por la fuerte radiación ultra-violeta de la estrella enana blanca en la que se ha convertido.

 ¿Cuántas veces expliqué en aquellas charlas por Institutos y Universidades todos y cada uno de los fenómenos que tenían que suceder para que, estrellas como el Sol, se convirtieran en Enanas blancas y Nebulosas planetarias?

Lo cierto es que, en su momento, ya desde el inicio del año 2.009 en el que se celebró el Año Internacional de la Astronomía, en muchos de mis artículos publicados en la colaboración que con la Organización Internacional tuve el honor de prestar, se hablaba de todos esos interesantes temas que el universo nos presenta y que, inciden en el saber de la Naturaleza y del Mundo que nos acoge que, como nosotros… ¡También es/somos Universo!

                                  

                                                      LA QUÍMICA DE LAS ESTRELLAS

Los cambios se estaban produciendo a una velocidad cada vez mayor. Al siglo de Newton también pertenecieron, entre otros, el matemático Fermat; Römer, quien midió la velocidad de la luz; Grimaldi, que estudió la difracción; Torricelli, que demostró la existencia del vacío; Pascal y Boyle, que definieron la física de los fluidos…La precisión de los telescopios y los relojes aumentó notablemente, y con ella el número de astrónomos deseosos de establecer con exactitud  la posición de las estrellas y compilar catálogos estelares cada vez más completos para comprender la Vía Láctea.

La naturaleza de los cuerpos celestes quedaba fuera de su interés: aunque se pudiera determinar la forma, la distancia, las dimensiones y los movimientos de los objetos celestes, comprender su composición no estaba a su alcance. A principios del siglo XIX, William Herschel (1738-1822), dedujo la forma de la Galaxia, construyó el mayor telescopio del mundo y descubrió Urano. Creía firmemente que el Sol estaba habitado.

                                  

                                               Hasta llegar a conocer nuestra situación astronómica…

Al cabo de pocos años, nacía la Astrofísica, que a diferencia de la Astronomía (ya llamada  -”clásica o de posición”-), se basaba en pruebas de laboratorio. Comparando la luz emitida por sustancias incandescentes con la recogida de las estrellas se sentaban las bases de lo imposible: descubrir la composición química y la estructura y el funcionamiento de los cuerpos celestes. Estaba mal vista por los astrónomos “serios” y se desarrolló gracias a físicos y químicos que inventaron nuevos instrumentos de análisis a partir de las demostraciones de Newton sobre la estructura de la luz.

                  Joseph von Fraunhofer - Y las Líneas Espectrales - Fisica; Para Escuchar -  Podcast en iVooxEspectroscopia — Astronoo

En 1814, Joseph Fraunhofer (1787-1826) realizó observaciones básicas sobre las líneas que Wollaston había visto en el espectro solar: sumaban más de 600 y eran iguales a las de los espectros de la Luna y de los planetas; también los espectros de Póux, Capella y Porción son muy similares, mientras que los de Sirio y Cástor no lo son. Al perfeccionar el  espectroscopio con la invención de la retícula de difracción (más potente y versátil que el prisma de cristal), Fraunhofer observó en el espectro solar las dos líneas del sodio: así se inició el análisis espectral de las fuentes celestes.

                                            

Mientras, en el laboratorio, John Herschel observó por primera vez la equivalencia entre los cuerpos y las sustancias que los producen, Anders J. Anhström (1814-1868) describía el espectro de los gases incandescentes y los espectros de absorción y Jean Foucault (1819-1874) comparó los espectros de laboratorio y los de fuentes celestes. Gustav Kirchhoff (1824-1887) formalizó las observaciones en una sencilla ley que cambió la forma de estudiar el cielo; “La relación entre el poder de emisión y de absorción para una longitud de onda igual es constante en todos los cuerpos que se hallan a la misma temperatura”. En 1859, esta ley empírica, que relacionaba la exploración del cielo con la física atómica, permitía penetrar en la química y la estructura de los cuerpos celestes y las estrellas. De hecho, basta el espectro de una estrella para conocer su composición. Y, con la espectroscopia, Kirchhoff y Robert Bunsen (1811-1899) demostraron que en el Sol había muchos metales.

             El Sol, más cerca que nunca | Iluminet revista de iluminaciónHistórico: toman las fotos más cercanas del Sol y detectaron un "eructo" en  la superficie

La observación del Sol obsesionó a la mayoría de los Astrofísicos. A veces, resultaba difícil identificar algunas líneas y ello condujo a descubrir un  nuevo elemento químico; se empezó a sospechar que el Sol poseía una temperatura mucho más elevada de lo imaginado. La línea de emisión de los espectros de estrellas y nebulosas demostraron  que casi un tercio de los objetos estudiados eran gaseosos. Además, gracias al trabajo de Johan Doppler (1803-1853) y de Armand H. Fizeau (1819-1896), que demostró que el alejamiento o el acercamiento respecto al observador de una fuente de señal sonora o luminosa provoca el aumento o disminución de la longitud de onda de dicha señal, empezó a precisarse la forma de objetos lejanos. El cielo volvía a cambiar y hasta las “estrellas fijas” se movían.

                

                                    EL DIAGRAMA HR: EL CAMINO HACIA EL FUTURO

El padre Ángelo Secchi (1818-1878) fue el primero en afirmar que muchos espectros estelares poseen características comunes, una afirmación refrendada hoy día con abundantes datos. Secchi clasificó las estrellas en cinco tipos, en función del aspecto general de los espectros. La teoría elegida era correcta: el paso del color blanco azulado al rojo oscuro indica una progresiva disminución de la temperatura, y la temperatura es el parámetro principal que determina la apariencia de un espectro estelar.

Más tarde, otros descubrimientos permitieron avanzar en Astrofísica: Johann Balmer (1825-1898) demostró que la regularidad en las longitudes de onda de las líneas del espectro del hidrógeno podía resumirse en una sencilla expresión matemática; Pieter Zeeman (1865-1943) descubrió que un campo magnético de intensidad relativa influye en las líneas espectrales de una fuente subdividiéndolas en un número de líneas proporcional a su intensidad, parámetro que nos permite medir los campos magnéticos de las estrellas.

                                        

En otros descubrimientos empíricos la teoría surgió tras comprender la estructura del átomo, del núcleo atómico y de las partículas elementales. Los datos recogidos se acumularon hasta que la física y la química dispusieron de instrumentos suficientes para elaborar hipótesis y teorías exhaustivas.

                                               Las radiaciones alfa, beta y gamma - Escuelapedia - Recursos Educativos

Gracias a dichos progresos pudimos asistir a asociaciones como Faraday y su concepto de “campo” como “estado” del espacio en torno a una “fuente”; Mendeléiev y su tabla de elementos químicos; Maxwell y su teoría electromagnética;  Becquerel y su descubrimiento de la radiactividad; las investigaciones de Pierre y Marie Curie; Rutherford y Soddy y sus experimentos con los rayos Alfa, Beta y Gamma; y los estudios sobre el cuerpo negro que condujeron a Planck a determinar su constante universal; Einstein y su trabajo sobre la cuantización de la energía para explicar el efecto fotoeléctrico, Bohr y su modelo cuántico del átomo; la teoría de la relatividad especial de Einstein que relaciona la masa con la energía en una ecuación simple…Todos fueron descubrimientos que permitieron explicar la energía estelar y la vida de las estrellas, elaborar una escala de tiempos mucho más amplia de lo que jamás se había imaginado y elaborar hipótesis sobre la evolución del Universo.

                    

En 1911, Ejnar Hertzsprung (1873-1967) realizó un gráfico en el que comparaba el “color” con las “magnitudes absolutas” de las estrellas y dedujo la relación entre ambos parámetros. En 1913, Henry Russell (1877-1957) realizó otro gráfico usando la clase espectral en lugar del color y llegó a idénticas conclusiones.

El Diagrama de Hertzsprung-Russell (diagrama HR) indica que el color, es decir, la temperatura, y el espectro están relacionados, así como el tipo espectral está ligado a la luminosidad. Y debido a que esta también depende de las dimensiones de la estrella, a partir de los espectros puede extraerse información precisa sobre las dimensiones reales de las estrellas observadas. Ya solo faltaba una explicación de causa-efecto que relacionara las observaciones entre si en un cuadro general de las leyes.

El progreso de la física y de la química resolvió esta situación, pues, entre otros avances, los cálculos del modelo atómico de Bohr reprodujeron las frecuencias de las líneas del hidrógeno de Balmer. Por fin, la Astrofísica había dado con la clave interpretativa de los espectros, y las energías de unión atómica podían explicar el origen de la radiación estelar, así como la razón de la enorme energía producida por el Sol.

Las líneas espectrales dependen del número de átomos que las generan, de la temperatura del gas, su presión, la composición química y el estado de ionización. De esta forma pueden determinarse la presencia relativa de los elementos en las atmósferas estelares, método que hoy también permite hallar diferencias químicas muy pequeñas, relacionadas con las edades de las estrellas. Así, se descubrió que la composición química de las estrellas era casi uniforme: 90 por ciento de hidrógeno y 9 por ciento de helio (en masa, 71% y 27%, respectivamente). El resto se compone de todos los elementos conocidos en la Tierra.

                     

Así mismo, el desarrollo de la Física ha permitido perfeccionar los modelos teóricos y explicare de forma coherente que es y como funciona una estrella. Dichos modelos sugirieron nuevas observaciones con las que se descubrieron tipos de estrellas desconocidas: las novas, las supernovas, los púlsares con periodos o tiempos que separan los pulsos, muy breves…También se descubrió que las estrellas evolucionan, que se forman grupos que luego se disgregan por las fuerzas de marea galácticas.

La Radioastronomía, una nueva rama de la Astronomía, aportó más datos sobre nuestra Galaxia, permitió reconstruir la estructura de la Vía Láctea y superar los límites de la Astronomía óptica.

Se estaban abriendo nuevos campos de estudio: los cuerpos galácticos, los cúmulos globulares, las nebulosas, los movimientos de la galaxia y sus características se estudiaron con ayuda de instrumentos cada vez más sofisticados. Y cuanto más se observaba más numerosos eran los objetos desconocidos descubiertos y más profusas las preguntas. Se descubrieron nuevos y distintos tipos de galaxias fuera de la nuestra; examinando el efecto Doppler, se supo que todas se alejaban de nosotros y, lo que es más, que cuanto más lejanas están más rápidamente se alejan.

                                                           

                                          El Telescopio Hubble nos muestra esta imagen del Universo Profundo

Acabábamos de descubrir que el Universo no terminaba en los límites de la Vía Láctea, sino que se había ampliado hasta el “infinito”, con galaxias y objetos cada vez más extraños. Sólo en el horizonte del Hubble se contabilizan 500 millones de galaxias. Y los descubrimientos continúan: desde el centro galáctico se observa un chorro de materia que se eleva más de 3.000 a.l. perpendicular al plano galáctico; se observan objetos como Alfa Cygni, que emite una energía radial equivalente a diez millones de veces la emitida por una galaxia como Andrómeda; se estudian los cuásares, que a veces parecen mas cercanos de lo que sugieren las mediciones del efecto Doppler; se habla de efectos de perspectiva que podrían falsear las conclusiones… Y nos asalta una batería de hipótesis, observaciones, nuevas hipótesis, nuevas observaciones, dudas…

Todavía no se ha hallado una respuesta cierta y global. Un número cada vez mayor de investigadores está buscándola en miles de direcciones. De esta forma se elaboran nuevos modelos de estrellas, galaxias y objetos celestes que quizá sólo la fantasía matemática de los investigadores consiga concretar: nacen los agujeros negros, los universos de espuma, las cadenas…

                                                            Imagen de miniatura de un resultado de Lens

Los fullerenos fueron descubiertos por Harold W. Kroto y Richard Smalley  en el espacio exterior, por cuyo hallazgo fueron galardonados con el Premio Nóbel de Química en 1996. Posteriormente se han ido descubriendo y caracterizando otros fullerenos, formados por menor o mayor número de átomos de carbono (desde 20 átomos hasta varios cientos).

                                                       Nanotubo - Wikipedia, la enciclopedia libre

                                                                       Nanotubo de carbono

Los primeros nanotubos se observaron en 1991: cuando el físico japonés Sumio Iijima empleaba un sistema de evaporación mediante arco eléctrico, típico para la obtención de fullerenos, observó la formación de agujas de hasta 1 mm de longitud sobre el cátodo de grafito.

Encontrsar Grafeno en el espacio ya no es una sorpresa, toparnos de bruces con océanos de metano… ¡tampoco!, hallar colonias de bacterias vivienda a muchos kilómetros de altura no es una niovedad, saber que en las estrellas se fabrican los materiales aptos para hacer posible la química de la vida… nos maravilla pero ya, no es causa de asombro. Cada día damos un paso más hacia el saber del “mundo”, de la Naturaleza, del Universo en fin.

En la actualidad, el número de investigadores centrados en problemas relacionados con la evolución estelar, la Astrofísica y las teorías cosmo-genéticas es tan elevado que ya no tiene sentido hablar de uno en particular, ni de un único hilo de investigación. Al igual que ocurre con otras ramas científicas las Astronomía se ha convertido en un trabajo de equipo a escala internacional que avanza sin cesar en una concatenación de innovaciones, inventos, nuevos instrumentos, interpretaciones cada vez más elaboradas y, a menudo más difíciles de entender incluso para los investigadores que avanzan con infinidad de caminos paralelos. Es una situación que ya vaticinaba Bacon en tiempos de Galileo.

                                           Evolución De Las Estrellas: Origen, Nacimiento, Evolución Y Muerte

Las estrellas, como casi cualquier entidad física, siguen un proceso de nacimiento, evolución y muerte. A diferencia de nosotros, la vida de una estrella se eleva a millones o miles de millones de años dependiendo de sus masas iniciales, a mayor masa menor tiempo de vida.

Hasta la Astronomía se ha hiperespecializado y, por ejemplo, quienes estudian problemas particulares de la física de las estrellas pueden desconocerlo todo sobre planetas y galaxias. También el lenguaje es cada vez más técnico, y los términos, capaces de resumir itinerarios de investigación, son complejos de traducir al lenguaje común. Así, mientras la divulgación avanza a duras penas entre una jungla de similitudes y silogismos, las informaciones que proceden de otras disciplinas son aceptadas por los científicos y los resultados de cada cual se convierten en instrumentos para todos.

          

La observación del Sol obsesionó a la mayoría de los Astrofísicos. A veces, resultaba difícil identificar algunas líneas y ello condujo a descubrir un nuevo elemento químico; se empezó a sospechar que el Sol poseía una temperatura mucho más elevada de lo imaginado. La línea de emisión de los espectros de estrellas y nebulosas demostraron que casi un tercio de los objetos estudiados eran gaseosos. Además, gracias al trabajo de Johan Doppler (1803-1853) y de Armand H. Fizeau (1819-1896), que demostró que el alejamiento o el acercamiento respecto al observador de una fuente de señal sonora o luminosa provoca el aumento o disminución de la longitud de onda de dicha señal, empezó a precisarse la forma de objetos lejanos. El cielo volvía a cambiar y hasta las “estrellas fijas” se movían.

Las investigaciones sobre planetas, estrellas, materia interestelar, galaxias y Universo van paralelas, como si fueran disciplinas independientes, pero en continua osmosis. Y mientras la información sobre el Sol y los cuerpos del Sistema solar es más completa, detallada y fiable, y las hipótesis sobre nuestra Galaxia hallan confirmación, el Universo que empezamos a distinguir más allá de nuestros limites no se pareced a lo que hace un siglo se daba por sentado. Y mientras los modelos matemáticos dibujan uno o mil universos cada más abstractos y complejos, que tienen más que ver con la filosofía que con la observación, vale la pena recordar como empezó nuestro conocimiento hace miles de años.

Otros nos indicaron la dirección a seguir pero, la dureza del camino…, esa, la tuvimos que hacer nosotros. Es decir, en cada época y lugar, los que estuvieron, miraron hacia atrás para ver lo que hicieron sus ancestros y, con aquellas enseñanzas, tener la guía del camino a seguir, o, por el contrario, si los resultados no fueron buenos, rechazarlos. Lo cierto es que, al igual que nosotros, los que vengan detrás partirán con alguna ventaja aunque tengan que hacer su propio recorrido que, ni mucho menos tienen el camino despejado y, la niebla de la ignorancia sigue siendo espesa, aunque algo más suave que la que nosotros nos encontramos.

Ahora, amigos, después de este breve repaso por una pequeña parte de la Historia de la Astronomía, al menos tendréis una idea más cercana  del recorrido que, la Humanidad, ha tenido que realizar para conocer mejor el Universo.

Los datos aquí reseñados tienen su origen en diversas fuentes que, de aquí y de allá, han sido tomadas para recomponer un mensaje que les lleve a todos algunos mensajes de como ocurrieron los acontecimientos en el pasado para que fuera posible nuestro presente.

emilio silvera