Sobrevuelos a Venus, la Tierra y Júpiter investigando Saturno y sus lunas
La masa de la sonda Cassini es tan grande que no fue posible emplear un vehículo de lanzamiento que la dirigiese directamente a Saturno. Para alcanzar este planeta fueron necesarias cuatro asistencias gravitacionales; de esta forma, Cassini empleó una trayectoria interplanetaria que la llevaría a Venus en dos ocasiones, posteriormente hacia la Tierra y después hacia Júpiter. Después de sobrevolar Venus en dos ocasiones a una altitud de 284 Km, el 26 de abril de 1998 y a 600 Km, el 24 de junio de 1999, el vehículo se aproximó a la Tierra, acercándose a 1171 Km de su superficie el 18 de agosto de 1999. Gracias a estas tres asistencias gravitacionales, Cassini adquirió el momento suficiente para dirigirse al Sistema Solar externo. La cuarta y última asistencia se llevaría a cabo en Júpiter, el 30 de diciembre de 2000, sobrevolándolo a una distancia de 9.723.890 Km, e impulsándose hacia Saturno.
El propio Rutherford empezó a vislumbrar la respuesta a la pregunta que arriba hacemos. Entre 1.906 y 1.908 (hace más de un siglo) realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos. La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol), pero no todos. Algunas de aquellas partículas no aparecían por ninguna parte, parecían que chocaban con algo sólido… ¿Qué sería?
Pero centrémonos en el trabajo que aquí se expone que se anuncia arriba como:Todo es Universo… ¡También nosotros!
El Universo lo es todo. El Espacio y el Tiempo, la Materia y las fuerzas que con ella interaccionan, las Constantes de la Naturaleza y todo ello, implica una serie de cuestiones de una complejidad inmensa que aún, no hemos podido resolver. La cantidad de teorías, de modelos, de experimentos y de posibilidades que están en marcha en los distintos campos del saber, son enormes, y, finalmente, todas deberán ser unidas en un solo y complementado conocimiento que nos lleve a ese entendimiento profundo de nuestro Universo como un todo que es, lo que podremos ver, trás unir las piezas del rompecabezas con el que ahora estamos trabajando al dilucidar parcelas de esa inmensidad que no podemos abarcar con la vista y menos con el conocimiento, sólo la imaginación se acerca a ese todo que pretendemos construir.
No podemos tener una imagen del Universo completo, es demasiado grande para que eso sea posible y sólo, pequeñas regiones del mismo podemos captar con nuestros telescopios que nos enseñan regiones más o menos lejanas del inmenso Cosmos. En cualquier parte que podamos mirar y observar, nos daremos cuenta de que las cosas que allí puedan pasar, son las mismas que pasan en otros lugares, toda vez que, el Universo se rige por leyes que actúan en todas partes de la misma manera. Muchos, desde hace mucho tiempo, pensaron en todas esas cuestiones.
Tales nació en la ciudad de Mileto en el año 639 a. de C. Fue el primero de los 7 sabios de Grecia y era matemático, geógrafo, pensador, astrónomo y astrólogo. Hijo de Examio e Cleóbula. Se marchó a Egipto para formarse con los sacerdotes del faraón en Geometría, astrología y física, allí aprendió cosas tan útiles como medir las pirámides por la longitud de la sombra. Era experto en astrosofía (algo que unía astronomía con filosofía) y que le daba el título de rudito en el más alto nivel. Se cuenta de él que, un día caminaba, de noche, observando las estrellas y cayó en un socavón que había en el suelo. Él fue el primero en dar al Agua la importancia que tiene para la vida.
Hoy trataré de dejar aquí una insignificante brizna de toda esa búsqueda, desesperada, por ese saber incansablemente perseguido por la especie humana que, deseosa de conocer todos aquellos misterios encerrados dentro de esa burbuja que llamamos Universo, no ha dejado, desde que Tales de Mileto desterró la mitología para emplear la lógica, de buscar el por qué del mundo, de los cielos y, en fin, de la Naturaleza. Claro que, desde aquel entonces hasta ahora, mucho es lo que nuestra curiosidad nos ha podido dar de ese saber que buscamos y del que no todos, han estado siempre seguros de lograr.
Por ejemplo:
No olvidemos que, en el siglo XIX, algunos científicos declararon que la composición de las estrellas estaría siempre fuera del alcance del experimento, y, que la única manera que tendríamos de conocerlas sería la de mirar al cielo y verlas allí, inalcanzables como puntos de luz brillantes y lejanos en la oscuridad del vacío del Espacio Interestelar. Sin embargo, podemos decir hoy, finalizando la segunda década del siglo XXI, , que no solo podemos saber la composición de las estrellas, sino también como nacen, “viven” y mueren, las distancias que las separan de nosotros y un sin fin de datos más que el estudio y la investigación nos ha posibilitado descubrir.
Las estrellas del cielo, ¡tan lejanas! ¡tan misteriosas! que en las noches oscuras nos envían guiños de complicidad, como si trataran de decirnos alguna cosa, como si nos estuvieran llamando. Fue tanto el misterio que en nuestras mentes sembraron las estrellas que, no hemos parado ni un momento por saber, no sólo de qué estaban hechas, sino como surgen a la vida, como se desarrollan sus mecanismos, como mueren y en qué se convierten después. Sabemos que las estrellas son importantes en nuestras vidas hasta el punto de que, sin ellas, no podríamos estar aquí. Una de ellas, a la que llamamos Sol, nos envía su luz y su calor haciendo posible la vida en el planeta Tierra, otra antes que el Sol, hace seguramente muchos miles de millones de años, regó el espacio con su materia estelar y, pasado el tiempo, se condenso (ayudada por la Fuerza de Gravedad) en lo que hoy conocemos como el Sistema Solar.
Nada más cierto que lo que quiere simbolizar esa enorme imagen del Pensador. Es un fiel reflejo de lo que, a través de los tiempos, ha sido el SER Humano. Nunca hemos dejado ni dejaremos de pensar, en ello está nuestro futuro. A las pruebas de la Historia me remito.
Hay proyectos que pueden ser peligrosos, y, si a estos “seres” artificiales le damos consciencia de Ser…
Particularmente creo que el ser humano es capaz de realizar todo aquello en lo que piensa dentro de unos limites racionales. Podremos, en un futuro no muy lejano, alargar de manera considerable la media de vida. Podremos colonizar otros planetas (terra-formarlos) y explotar recurso mineros en las lunas de nuestro sistema solar (las grandes compañías petroleras estarían encantadas en Titán), los turistas irán al planeta Marte o a las lunas Ganímedes o Europa. Los transportes de hoy serán reliquias del pasado y nos trasladaremos mediante sistemas de transportes aéreos más limpios, rápidos y exentos de colisiones, sus modernos censores lo impedirán. Tendremos computadoras de cifrado cuántico que harán más seguras las comunicaciones y el intercambio de datos será realmente el de la velocidad de c, y así en todos los campos del saber humano.
En el nombre “Internet del Futuro” se asocian una serie de conceptos y tecnologías que abarcan desde la infraestructura de red, dispositivos e interfaces, software y aplicaciones que compondrán el que en unos años conformará el panorama de las Tecnologías de Información y Comunicaciones.
Entre estos temas, aparece la red de redes de gran velocidad y llegando a todas partes, mediante nuevos dispositivos, con nuevas formas de interaccionar con el mundo digital, acceso fácil e inteligente los diferentes tipos de contenidos con mención especial a 3D, y todo ello soportado por innovadores modelos de negocio adaptados a este nuevo panorama.
Claro que todo, hasta lo que puede ser bueno, en exceso, se convierte en negativo
A los jóvenes no hay que convencerles de que Internet es imprescindible. El futuro para ellos es ya hoy. Una reciente encuesta pone de relieve la enorme vocación juvenil de tomar la red como bandera generacional. De hecho ellos, los jóvenes lo van a construir y modelar a su gusto y, probablemente, el Internet del futuro poco se parecerá al Internet que conocemos hoy. Alguien ha dicho: “Hoy, Internet está en su Prehistoria”. Lleva toda la razón
Estamos inmersos en un avance exponencial, imparable.
Se podría decir que, gracias a los Aceleradores de Partículas, podemos jugar con los átomos para mirar en su interior y saber, de qué está hecha la Materia que nos conforma a nosotros, a las estrellas y a los mundos de las galaxias del Universo.
Otro ejemplo de una idea “inverificable” la tenemos en la existencia del átomo. En el siglo XIX, la hipótesis atómica se reveló como el paso decisivo en la comprensión de las leyes de la química y la termo-dinámica. Sin embargo, muchos físicos se negaban a creer que los átomos existieran realmente, los aceptaban como un concepto o herramienta matemática para operar en su trabajo que, por accidente, daba la descripción correcta del mundo.Hoy somos todavía incapaces de tomar imágenes directas del átomo debido al principio de incertidumbre de Heisenberg, aunque ahora existen métodos indirectos. En 1.905, Einstein proporcionó la evidencia más convincente, aunque indirecta, de la existencia de átomos cuando demostró que el movimiento browniano (es decir, el movimiento aleatorio de partículas de polvo suspendidas en un líquido) puede ser explicado como colisiones aleatorias entre las partículas y los átomos del líquido.
Ejemplo en el que se observa la variación de los valores de la dimensión de masa y de la dimensión del contorno calculada por el método del compás en los siguientes DLA.
Otra posibilidad de crecimiento DLA es el vertical. Las partículas se lanzan desde lo alto y las partículas fijas se sitúan en el fondo del recipiente. Se puede observar en la siguiente figura como cuando una formación sobresale, las de sus lados dejan de crecer. Esto es debido a que las más grandes absorben los recursos de las más pequeñas e impiden su crecimiento, fenómeno que se da en la naturaleza cuando un árbol grande impide que crezcan los que están a su alrededor quitándoles los recursos de luz, agua…
Por analogía, podríamos esperar la confirmación experimental de la física de la décima dimensión utilizando métodos indirectos que aún ni se han inventado o descubierto. En lugar de fotografiar el objeto que deseamos, quizá nos conformaríamos, de momento, con fotografiar la “sombra” del mismo.
Bueno, con la imagen de la sombra podemos tener una idea, bastante acertada de la imagen original, el movimiento lo delata. Lo curioso del caso es que, si la miras, fijamente, comenzará a dar vueltas hacia el lado contrario.
También la existencia de los neutrinos, propuestos por Wolfgang Pauli en 1.930, para dar cuenta de la energía perdida en ciertos experimentos sobre radiactividad que parecían violar la conservación de la materia y la energía, también digo, era inverificable (en aquel momento).Pauli comprendió que los neutrinos serían casi imposibles de observar experimentalmente, porque interaccionarían muy débilmente y, por consiguiente muy raramente con la materia.La materia, toda la materia, si profundizamos en ella a niveles microscópicos, podremos comprobar el hecho de que, en un 99% está constituida de espacios vacíos y, siendo así, los neutrinos pueden atravesarla sin rozar siquiera sus átomos, de hecho, pueden atravesar la Tierra como si ni siquiera existiera y, al mismo tiempo, también nosotros somos atravesados continuamente por billones de neutrinos emitidos por el sol, incluso por la noche.
Unos quieren pesar planetas y otros neutrinos pero, todos quieren saber sobre los misterios del Universo
Hablando de neutrinos recuerdo cuando el experimento Opera de los neutrinos pusiera en tela de juicio la teoría de Einstein, la medición de la luz proveniente de las galaxias confirmaron por primera vez a escala cósmica la teoría de la relatividad del genio físico.Sin embargo, no en una, sino en varias ocasiones han querido quitarle al bueno de Einstein el honor de haber marcado el límite de velocidad en nuestro Universo.
Pauli admitió: ”He cometido el pecado más grave, he predicho la existencia de una partícula que nunca puede ser observada”. Él predijo la existencia del neutrino para explicar “la masa perdida” en procesos de desintegración.
Pero incluso Pauli, con todos sus enormes conocimientos, se equivocaba, y el neutrino ha sido comprobado mediante distintos métodos que no dejan dudas de su existencia. Incluso producimos regularmente haces de neutrinos en colisionadores de átomos, realizamos experimentos con los neutrinos emitidos por reactores nucleares y, detectamos su presencia en enormes depósitos de agua pesada colocados en profundas minas abandonadas en las entrañas de la Tierra. Cuando una espectacular supernova de iluminó en el cielo del hemisferio sur en 1.987, los físicos registraron una ráfaga de neutrinos que atravesaron sus detectores situados, precisamente, en profundas minas.
El Enorme recipiente lleno de agua pesada (SNOLSB), delatará a los neutrinos que lo atraviesen
Dentro de una antigua mina de Sudbury (Ontario, Canadá) está ubicado el complejo de investigación astrofísica SNOLAB. Una de sus instalaciones es el Observatorio de Neutrinos (ONS, en la imagen). Los neutrinos son partículas subatómicas con una masa tan ínfima —se ha calculado que menos de una milmillonésima parte de la masa de un átomo de hidrógeno— que pueden atravesar la materia ordinaria sin apenas perturbarla. La materia está “compuesta” en su mayor parte de vacío aunque nuestros ojos y nuestro cerebro (en primera instancia) no lo interpreten así.
Para evitar la interferencia de otras partículas cósmicas este peculiar observatorio no está situado en la superfície, sino nada menos que a dos kilómetros de profundidad en el interior de la corteza terrestre. La instalación ONS es básicamente un “cazador de neutrinos” capaz de detectar estas partículas producidas por las reacciones de fusión en el interior Sol y así poder analizar la composición del núcleo de nuestra estrella. La cubierta acrílica del ONS contiene un kilotón (1.000 toneladas) de agua pesada (D2O) que al reaccionar con los neutrinos hacen que se produzcan unos azulados destellos de radiación o luz Cherenkov, llamada así en honor del destacado miembro de la Academia de Ciencias de la Unión Soviética Pável Alekséyevich Cherenkov (1904-1990), Premio Nobel de Física de 1958 por el descubrimiento e interpretación de este fenómeno. El primer detector orbital de partículas de estas características —Detector Cherenkov— fue uno de los equipos científicos instalados en el satélite Sputnik-3, lanzado por la URSS el mismo año en que Cherenkov recibiera el Nobel.
Si hablamos de la masa de Planck, lo hacemos de la masa de una partícula cuya longitud de onda Compton es igual a la Longitud de Planck, está dada por la ecuación de arriba, donde tenemos la constante de Planck racionalizada (la h cortada con ese palito arriba), c que es la velocidad de la luz y G la constante gravitacional, la descripción de una partícula elemental de esta masa.o partículas que interaccionan con energías por partículas equivalentes a ellas a través de E = mc2, requiere una teoría cuántica de la Gravedad. Como la masa de Planck es del orden de 10-8 kg (equivalente a una energía de 1019 GeV) y, por ejemplo, la masa del protón es del orden de 10-27 Kg y las mayores energías alcanzables en nuestros aceleradores de partículas actuales son de un orden (aún pequeño) los efectos de gravitación cuántica no aparecen en los laboratorios de física de partículas. Sin embargo, en el universo primitivo se cree quen las partículas tenían ejnergías del orden de la energía de Planck (representada en la ecuación de abajo) que sería la energía necesaria para llegar hasta las cuerdas.
Echando una larga mirada a la historia de la ciencia, creo que existen motivos para un moderado optimismo. Witten está convencido de que la ciencia sería algún día capaz de sondear hasta las energías de Planck.
“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles. En el S.XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible. Si usted hubiera dicho a un físico del siglo XIX que hacia el S. XX sería capaz de calcularlo, le habría parecido un cuento de hadas…. La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante veinticinco años.”
Lo mismo que otros muchos, no creo que tengamos que esperar un siglo antes de que nuestro ingenio y nuestras máquinas puedan sondear de manera indirecta la décima dimensión, alguien sabrá, durante ese periodo de tiempo, resolver esa teoría de campos de cuerdas o alguna otra formula no perturbativa.El problema es teórico, no experimental. Necesitamos alguien con el ingenio y la inteligencia necesaria (además de un enorme índice de observación), para saber “ver” lo que probablemente tenemos ante nuestras narices, utilizando para ello todos los datos e indicios existentes de gente como Einstein, Kaluza y Klein, Veneziano y Suzuki, el cuarteto de cuerdas de Princeton, Michio Kaku, Witten…, y tantos otros.
Suponiendo que algún físico brillante resuelva la teoría de campos de cuerdas y derive las propiedades conocidas de nuestro Universo, sigue existiendo el problema practico de cuándo seríamos capaces de aprovechar el poder de la teoría del hiperespacio. Existen dos posibilidades:
Esperar que nuestra civilización alcance la capacidad para dominar energías millones de veces mayores que las de hoy.
Encontrar civilizaciones extraterrestres que, más avanzadas, hayan dominado el arte de manipular el Hiperespacio.
Pero, si no son como esta…¡Mejor!
Antes de que Edison (robara las ideas de Tesla) y con sus otros colaboradores aprovecharan los descubrimientos de Faraday y las ecuaciones de Maxwell, sobre la electricidad y el magnetismo, para explotarlos de manera práctica, pasaron unos setenta años.
La civilización moderna depende crucialmente del aprovechamiento de esta fuerza. La fuerza nuclear fue descubierta casi con el cambio de siglo, pasó todo el siglo XX y estamos en la primera década del XXI, han pasado 100 años, y, sin embargo, todavía no tenemos medios de aprovecharla con éxito en reactores de fusión, la energía limpia que produce el Sol.
El Mundo cambiará en menos de 100 años
El qubit es el nuevo bit
Hace tiempo abordábamos la Ley de Moore como uno de los beneficios más tangibles de la tecnología. Es la ley que dice que cada dos años se duplica el número de transistores en un circuito integrado. Por eso cada vez tenemos discos duros más pequeños y de más capacidad. Sin embargo, esta miniaturización no podrá ser eterna.
No quiero respirar polvo inteligente por accidente.
El Internet de las Cosas es una tecnología que poco a poco comienza a integrarse en la vida diaria. Por el momento, en quienes deciden comprar termostatos, lámparas y electrodomésticos inteligentes. Sin embargo, en unos 20 años el Internet de las Cosas también será polvo. Una nube de polvo inteligente capaz de monitorear el clima, los movimientos de las personas y la contaminación del agua, anticipa la agencia analista Gartner.
Tu piel será táctil, literalmente
Si bien en la actualidad se trabaja en el desarrollo de todo tipo de objetos inteligentes, dentro de 10 años tu propia piel será inteligente y servirá para manejar los dispositivos con los que interactúes. Esto podría ser posible gracias a la tecnología bio-acústica, actualmente utilizada para identificar los sonidos bajo el mar o analizar el canto de las aves.
¿Terminator en la vida real?
Tal vez la primera imagen al pensar en un cyborg sea algo como Robocop o Terminator. Puede que ese futuro no esté muy cercano, pero una de las tecnologías del futuro trabaja en el perfeccionamiento humano. En la actualidad ya existen chips que pueden implantarse en las personas para mejorar sus capacidades de visión o de escucha, con fines de rehabilitación frente a alguna discapacidad. En el mundo de la Inteligencia Artificial, algunos tratan de que los Robots tengan sentimientos.
Micro robots viviendo dentro de nuestro cuerpo
Ray Kurzweil, el Director de Ingeniería de Google, está convencido de poder vivir eternamente. El futurólogo de 66 años de edad, toma diariamente un cóctel de más de 150 pastillas y suplementos y cree que vivirá lo suficiente para que la tecnología permita la inmortalidad humana. En este caso, será la nanotecnología lo que permitirá prolongar la vida humana de formas hasta hora imposibles.
Por mi parte, creo que la inmortalidad sería un gran error. Vivir algunos años más dominando lo que se piensa… ¡Bien! Ir más allá… No sería natural ni humano.
Leer la mente será posible
“Hablar es muy primitivo. Hablar es una tecnología primitiva porque yo tengo que hablar palabra por palabra y ustedes tienen que escucharme palabra por palabra. Es muy ineficiente, una tecnología de banda corta”, sostiene José Luis Cordeiro. Según este científico del MIT, para 2035 hablar ya no será necesario, pues la telepatía será habitual a través de aparatos lectores de mente.
(Creo que el Señor Cordeiro se ha pasado tres pueblos, y, además, lo que cada Mente tenga dentro, es un recinto privado y tan particular que, violarlo… ¡Sería inhumano!).
Podríamos continuar imaginando escenas del futuro pero, como siempre pasa, serán o no serán
El próximo paso, el aprovechar la potencia de la teoría de campo unificado, requiere un salto mucho mayor en nuestra tecnología, aunque sea un salto que probablemente tendrá implicaciones muchísimo más importantes.
El problema reside en que obligamos a la teoría de supercuerdas a responder preguntas sobre energías cotidianas, cuando su “ámbito natural” está en la energía de Planck. Energía que sólo fue liberada en el propio instante de la creación. Es decir, la teoría de supercuerdas es una teoría de la propia creación, así nos puede explicar todas las partículas y la materia, las fuerzas fundamentales y el espacio-tiempo, es decir, es la teoría del propio Universo.
El dolor de cabezas que nos causa pensar en el espacio-tiempo y en el cómo podemos desplazarnos por él a grandes distancias de tiempo y también de espacio. ¿Se conseguirá alguna vez? ¿Será cierto que existen los Agujeros de Gusano? ¿Podremos alguna vez construir naves que surquen el Hiperespacio hacia otras galaxias y otros mundos?
Durante estos comentarios, frecuentemente he reseñado la palabra “espacio-tiempo” refiriéndome a una geometría que incluye las tres dimensiones espaciales y una cuarta dimensión temporal.En la física newtoniana, el espacio y el tiempo se consideraban como entidades separadas y el que los sucesos fueran simultáneos o no era una materia que se consideraba como obvia para cualquier observador capacitado.
En el concepto de Einstein del universo físico, basado en el sistema de geometría inventada por H. Minkowski (1864-1909), el espacio y el tiempo estaban considerados como enlazados, de manera que dos observadores en movimiento relativo podían estar en desacuerdo sobre la simultaneidad de sucesos distantes.En la Geometría de Minkowski (inspirada a partir de la teoría de la relatividad especial de Einstein), un suceso se consideraba como un punto de universo en un continuo de cuatro dimensiones.
Pero volvamos a las super-cuerdas. El problema fundamental al que se enfrenta esta teoría es este: de los millones de universos posibles que pueden ser generados matemáticamente por la teoría de supercuerdas, ¿cuál es el correcto? Como ha dicho David Gross:
“Existen millones y millones de soluciones con tres dimensiones espaciales. Existe una enorme abundancia de soluciones clásicas posibles… Esta abundancia de riqueza era originalmente muy satisfactoria porque proporcionaba evidencia de que una teoría como la de la cuerda heterótica podía tener un aspecto muy parecido al mundo real. Estas soluciones, además de tener cuatro dimensiones espacio-temporales, tenían otras muchas propiedades que se asemejaban a nuestro mundo: el tipo correcto de partículas tales como quarks y Leptones, y el tiempo correcto de interacciones… Esto constituyó una fuente de excitación en su momento.”
Es difícil escenificar lo que las supercuerdas son, nunca nadie pudo ver ninguna
Gross, sin embargo, advierte que aunque alguna de estas soluciones están muy próximas al modelo estándar, otras dan lugar a propiedades físicas muy embarazosas e indeseables, lo que finalmente se traduce en una auténtica incomodidad o problema, ya que tenemos muchas soluciones pero ninguna forma aceptable de escoger entre ellas. Además algunas tienen propiedades deseadas y otras potencialmente desastrosas.
Un profano, al oir esto por primera vez, puede quedar intrigado para preguntar: ¿por qué no calcular simplemente que solución se adapta o prefiere la cuerda? Puesto que la teoría de cuerdas es una teoría bien definida, parece enigmático que los físicos no puedan calcular la respuesta.
Lo único seguro es que los físicos seguirán trabajando a la búsqueda de la solución que, más pronto o más tarde, llegará.
Efecto túnel a través del espacio y del tiempo
¡Extraña mecánica cuántica!
Estaría bien poder saber como un electrón, cuando absorbe un fotón, desaparece del lugar que ocupa y, de manera instántanea, aparece en otro lugar más energético sin haber recorrido la distancia que separa ambos lugares, es el efecto túnel o salto cuántico. ¿Cuánto podríamos ganar si aprendiéramos como se hacer eso?
En definitiva, estamos planteando la misma cuestión propuesta por Kaluza, cuando en 1.919, escribió una carta a Einstein proponiéndole su teoría de la quinta dimensión para unificar el electromagnetismo de James Clark Maxwell y la propia teoría de la relatividad general. ¿Dónde está la quinta dimensión?, pero ahora en un nivel mucho más alto. Como Klein señaló en 1.926, la respuesta a esta cuestión tiene que ver con la teoría cuántica. Quizá el fenómeno más extraordinario (y complejo) de la teoría cuántica es el efecto túnel.
El efecto túnel se refiere al hecho de que los electrones son capaces de atravesar una barrera al parecer infranqueable hacia una región que estaría prohibida si los electrones fuesen tratados como partículas clásicas.El que haya una probabilidad finita de que un electrón haga un túnel entre una región clásicamente permitida a otra que no lo está, surge como consecuencia de la mecánica cuántica. El efecto es usado en el diodo túnel.La desintegración alfa es un ejemplo de proceso de efecto túnel.
Antes preguntábamos, en relación a la teoría de Kaluza – Klein, el destino o el lugar en el que se encontraba la quinta dimensión.
El profesor Teodor Kaluza nos hablaba de la Quinta Dimensión que unificaba la Relatividad de Einstein con la Teoría de Maxwell. Todo en cinco dimensiones…Ahí comenzó toda la historia que después, desembocaron enm las supersimetrías, super-gravedad, cuerdas y supercuerdas, cuerda heterotica y teoría M…¿Qué vendrá después?
La respuesta de Klein a esta pregunta fue ingeniosa al decir que estaba enrollada o compactada en la distancia o límite de Planck, ya que, cuando comenzó el Big Bang, el Universo se expandió sólo en las cuatro dimensiones conocidas de espacio y una de tiempo, pero esta dimensión no fue afectada por la expansión y continua compactada en Lp=√(Għ/c3),cuyo valor es del orden de 10-35 metros, distancia que no podemos ni tenemos medios de alcanzar, es 20 ordenes de magnitud menor que el protón que está en 10 con exponente -15 metro.
Pues las dimensiones que nos faltan en la teoría deca-dimensional, como en la de Kaluza – Klein, también están compactada en una recta o en un círculo en esa distancia o límite de Planck que, al menos por el momento, no tenemos medios de comprobar dada su enorme pequeñez menor que un protón.
¿Cómo pueden estar enrolladas unas dimensiones?
Bueno, igual que para explicar de manera sencilla la gravedad mediante el ejemplo de una sábana estirada por los 4 extremos, en la que ponemos un enorme peso en su centro y se forma una especie de hondonada que distorsiona la superficie antes lisa de la sábana, al igual que un planeta distorsiona el espacio a su alrededor, de manera tal que cualquier objeto que se acerca a la masa del objeto pesado, se ve atraído hacia él. Pues bien, en las dimensiones de espacio enrolladas, utilizamos el símil de la sábana con bandas elásticas en las esquinas.
La sábana que tenemos es pequeña y la cama es grande. Con esfuerzo logramos encajar las cuatro esquinas, pero la tensión es demasiado grande; una de las bandas elásticas salta de una esquina, y la sábana se enrolla. Este proceso se llama ruptura de simetría. La sábana uniformemente estirada posee un alto grado de simetría. La sábana se enrolla. Se puede girar la cama 180º alrededor de cualquier eje y la sábana permanece igual. Este estado altamente simétrico se denomina falso vacío. Aunque el falso vacío aparece muy simétrico, no es estable. La sábana no quiere estar en esta condición estirada. Hay demasiada tensión y la energía es demasiado alta. Pero, la sábana elástica salta y se enrolla. La simetría se rompe, y la sábana pasa a un estado de energía más baja con menor simetría. Si notamos la sábana enrollada 180º alrededor de un eje ya no volvemos a tener la misma sábana.
Un espacio de diez dimensiones
Reemplacemos ahora la sábana por el espacio-tiempo deca-dimensional, es espacio-tiempo de simetría definitiva. En el comienzo del tiempo, el universo era perfectamente simétrico. Si alguien hubiera estado allí en ese instante, podría moverse libremente y sin problemas por cualquiera de las diez dimensiones. En esa época la Gravedad y las fuerzas débiles y fuertes y electromagnéticas estaban todas ellas unificadas por la supercuerda. Sin embargo, esta simetría no podía durar. El Universo deca-dimensional, aunque perfectamente simétrico, era inestable, la energía existente muy alta, exactamente igual que la sábana, estaba en un falso vacío. Por lo tanto, el paso por efecto túnel hacia un estado de menor energía era inevitable. Cuando finalmente ocurrió el efecto túnel, tuvo lugar una transición de fase y se perdió la simetría.
La imaginación no tiene límites y, la Naturaleza tampoco
Puesto que el Universo empezó a dividirse en un Universo de cuatro y otro de seis dimensiones, el universo ya no era simétrico. Seis dimensiones se habían enrollado (como la sábana elástica).Pero nótese que la sábana puede enrollarse de cuatro maneras, dependiendo de qué esquina haya saltado. Para el universo deca-dimensional, sin embargo, existen aparentemente millones de modos de enrollarse. Para calcular que estado prefiere el Universo deca-dimensional, necesitamos resolver la teoría de campos de cuerdas utilizando la teoría de transiciones de fase, el problema más difícil en la teoría cuántica.
Las transiciones de fase no son nada nuevo. Trasladémoslo a nuestras propias vidas.En un libro llamado PASAJES, el autor, Gail Sheehy destaca que la vida no es un flujo continuo de experiencias, como parece, sino que realmente pasa por varios estadios, caracterizados por conflictos específicos que debemos resolver y por objetivos que debemos cumplir.
El psicólogo Eric Ericsson llegó a proponer una teoría de estadios psicológicos del desarrollo. Un conflicto fundamental caracteriza cada fase. Si este conflicto no queda resuelto, puede enconarse e incluso provocar una regresión a un periodo anterior. Análogamente, el psicólogo Jean Piaget demostró que el desarrollo mental de la primera infancia tampoco es un desarrollo continuo de aprendizaje, sino que está realmente caracterizado por estadios discontinuos en la capacidad de conceptualización de un niño. Con un mes de edad, un niño puede dejar de buscar una pelota una vez que ha rodado fuera de su campo de visión. Sin comprender que la pelota existe aunque no la vea. Al mes siguiente, esto resultará obvio para el niño.
¡Siempre aprendiendo! Jugando comenzamos a conocer cómo es el mundo
Esta es la esencia de la dialéctica. Según esta filosofía, todos los objetos (personas, gases, estrellas, el propio Universo) pasan por una serie de estadios. Cada estadio está caracterizado por un conflicto entre dos fuerzas opuestas. La naturaleza de dicho conflicto determina, de hecho, la naturaleza del estadio. Cuando el conflicto se resuelve, el objeto pasa a un objetivo o estadio superior, llamado síntesis, donde empieza una nueva contradicción, y el proceso pasa de nuevo a un nivel superior.
Los filósofos llaman a esto transición de la “cantidad” a la “cualidad”.Pequeños cambios cuantitativos se acumulan hasta que, eventualmente, se produce una ruptura cualitativa con el pasado. Esta teoría se aplica también a las sociedades o culturas. Las tensiones en una sociedad pueden crecer espectacularmente, como la hicieron en Francia a finales del siglo XVIII. Los campesinos se enfrenaban al hambre, se produjeron motines espontáneos y la aristocracia se retiró a sus fortalezas. Cuando las tensiones alcanzaron su punto de ruptura, ocurrió una transición de fase de lo cuantitativo a los cualitativo: los campesinos tomaron las armas, tomaron Paris y asaltaron la Bastilla.
Parece que el “vacio” está bastante lleno de cosas…que no llegamos a comprender.
Las transiciones de fases pueden ser también asuntos bastante explosivos.Por ejemplo, pensemos en un río que ha sido represado.Tras la presa se forma rápidamente un embalse con agua a enorme presión Puesto que es inestable, el embalse está en el falso vacío.El agua preferiría estar en su verdadero vacío, significando esto que preferiría reventar la presa y correr aguas abajo, hacia un estado de menor energía.Así pues, una transición de fase implicaría un estallido de la presa, que tendría consecuencias desastrosas.
También podría poner aquí el ejemplo más explosivo de una bomba atómica, donde el falso vacío corresponde al núcleo inestable de uranio donde residen atrapadas enormes energías explosivas que son un millón de veces más poderosas, para masas iguales, que para un explosivo químico.De vez en cuando, el núcleo pasa por efecto túnel a un estado más bajo, lo que significa que el núcleo se rompe espontáneamente.Esto se denomina desintegración radiactiva.Sin embargo, disparando neutrones contra los núcleos de uranio, es posible liberar de golpe esta energía encerrada según la formula de Einstein E=mc2, por supuesto, dicha liberación, es una explosión atómica ¡menuda transición de fase!
Una transición de fase que perseguimos, es dominar la Galaxia, poder moldearla con nuestras manos, y, si eso llega a ser posible alguna vez, seremos los señores del Hiperespacio. Para entonces, los misteriosos agujeros negros no tendrán secretos para nosotros, las energías perdidas tampoco y…los viajes en el tiempo, serán cosa cotidiana. ¿Será realidad algún día ese pensamiento?
Acerca su mano derecha a su amiguito del espejo que le ofrece la izquierda
Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría. Al premio Nobel Abdus Salam le gusta la ilustración siguiente: consideremos una mesa de banquete circular, donde todos los comensales están sentados con una copa de champán a cada lado. Aquí existe simetría. Mirando la mesa del banquete reflejada en un espejo, vemos lo mismo: cada comensal sentado en torno a la mesa, con copas de champán a cada lado. Asimismo, podemos girar la mesa de banquete circular y la disposición sigue siendo la misma.
Este es otro proceso de ruptura espontánea de la simetría. Si hacemos el cambio de coordenadas con el nuevo origen.
Investigadores del Instituto de Física Corpuscular (IFIC, Valencia) encontraron evidencias en 2012 de la ruptura de la simetría temporal en las leyes de la Física.
En física la ruptura espontánea de la simetría ocurre cuando un sistema definido por una lagrangiana simétrica respecto a un grupo de simetría cae en un estado vacío que no es simétrico. Cuando eso sucede el sistema no se comporta más de forma simétrica.
Rompamos ahora la simetría.Supongamos ahora que el primer comensal toma la copa que hay a su derecha.Siguiendo la pauta, todos los demás comensales tomaran la copa de champán de su derecha.Nótese que la imagen de la mesa del banquete vista en el espejo produce la situación opuesta.Cada comensal ha tomado la copa izquierda.De este modo, la simetría izquierda-derecha se ha roto.
Así pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío.
Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional original era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones.Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.
Al principio, cuando el Universo era simétrico, solo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el Universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron las primeras quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos. Doscientos millones de años más tarde, se formaron las primeras estrellas y Galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol.Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.
Las estrellas evolucionan desde que en su núcleo se comienza a fusionar Hidrógeno en Helio, de los elementos más ligeros a los más pesados. Avanza creando en el Horno termonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma explosiva deuna super nova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienzo de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.
Puesto que el peso promedio de los protones en los productos de fisión, como el cesio y el kripton, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante E=mc2.Esta es la fuente de energía que subyace en la bomba atómica.
Restos de Hiper-nova que produce cambios hacia el futuro del Universo
Así pues, la curva de energía de enlace no solo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años – luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie humana, se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del Universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.
Cuando alguien oye por vez primera la historia de la vida de las estrellas, generalmente (lo sé por experiencia), no dice nada, pero su rostro refleja escepticismo. ¿Cómo puede vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución.
Sin embargo, tenemos los medios técnicos y científicos para saber la edad que tiene, por ejemplo, el Sol.
El Sol que nos da la vida con su luz y su calor
Nuestro Sol, la estrella alrededor de la que giran todos los planetas de nuestro Sistema Solar (hay que eliminar a Plutón de la lista, ya que, en el último Congreso Internacional, han decidido, después de más de 20 años, que no tiene categoría para ser un planeta), la estrella más cercana a la Tierra (150 millones de km=UA), con un diámetro de 1.392.530 km, tiene una edad de 4.500 millones de años.
Es tal su densidad, es tal su enormidad que, como se explicó en otro ensayo anterior de este mismo trabajo, cada segundo, transforma por medio de fusión nuclear, 4.654.600 Toneladas de Hidrógeno en 4.650.000 Toneladas de Helio, las 4.600 toneladas restantes, son lanzadas al espacio exterior en forma de luz y calor de la que, una parte nos llega a la Tierra y hace posible la vida. Se calcula que al Sol le queda material de fusión para otros 4.500 millones de años.Cuando transcurra dicho periodo de tiempo, se convertirá en una gigante roja, eyectará sus materiales exteriores al espacioy se transformará finalmente en una estrella enana blanca.Para entonces, ya no podremos estar aquí.
Cuándo mentalmente me sumerjo en las profundidades inmensas del Universo que nos acoge, al ser consciente de su enormidad, veo con claridad meridiana lo insignificante que somos, en realidad, en relación al universo, como una colonia de bacterias que habitan en una manzana, allí tienen su mundo, lo más importante para ellas, y no se paran a pensar que puede llegar un niño que, de un simple puntapié, las envíe al infierno.
Sólo somos importantes a nivel local, pretendemos serlo a otros niveles pero, ¿será posible eso?
Igualmente, nosotros nos creemos importantes dentro de nuestro cerrado y limitado mundo en el que, de momento, estamos confinados.Podemos decir que hemos dado los primeros pasos para dar el salto hacia otros mundos, pero aún nos queda un largo recorrido por delante.
Tendremos que dominar la energía del Sol, ser capaces de fabricar naves espaciales que sean impenetrables a las partículas que a cientos de miles de trillones circulan por el espacio a la velocidad de la luz, poder inventar una manera de imitar la gravedad terrestre dentro de las naves para poder hacer la vida diaria y cotidiana dentro de la nave sin estar flotando todo el tiempo, y, desde luego, buscar un combustible que procure velocidades relativistas, cercanas a c, ya que, de otra manera, el traslado por los mundos cercanos se haría interminable.Finalmente, y para escapar del sistema solar, habría que buscar la manera de romper la barrera de la velocidad de la luz.
¿Viajar en el tiempo? Una idea imaginativa que, seguramente, nunca podremos plasmar en realidad
Nuestra imaginación sólo es comparable a la inmensidad del Universo. Ahí radica nuestra verdadera riqueza. La curiosidad del SER humano le empuja de manera irremediable hacia su destino en las estrellas.
Los dos grandes retos que los Astrónomos habían tenido desde siempre habían sido medir las distancias alas estrellas y averiguar su composición. Como sabéis, el primero de los problemas se solucionó al utilizar las Cefeidas, estrellas de brillo variable, como estándares. Estas estrellas habían sido estudiadas por la americana Henrietta Leavitt, y en 1912 había conseguido relacionar la magnitud absoluta (brillo intrínseco de una estrella) con el período de su oscilación luminosa. Para llegar al lugar de Observación, las cosas no eran fáciles y, los caminos que llevaban hasta el Observatorio eran peligrosos.
Post Card
P-69 Mount Wilson Observatory, CA
Teniendo en cuenta esta Ley, Edwin Hubble había detectado en 1925 en el Mount Wilson Observatory doce cefeidas en la “Nebulosa” de Andrómeda que las situaban a una distancia mayor que el tamaño de nuestra Galaxia. Esto rompía todas las expectativas, ya que en ese momento se pensaba que todo el Universo estaba contenido en la Vía Láctea.
Hagamos un alto en el camino para hacer justicia y dar al Cesar lo que es del Cesar, es decir, el mérito del descubrimiento de las estrellas Cefeidas.
Leavitt estudió las estrellas variables Cefeidas, cuyo brillo varía a periodos regulares, en el Observatorio del Harvard College. Descubrió y catalogó estrellas variables en las Nubes de Magallanes, lo que le permitió descubrir en 1912 que las Cefeidas de mayor luminosidad intrínseca tenían largos periodos, mostrando una la relación entre ambos.
Un año después, Ejnar Hertzsprung determinó la distancia de unas pocas Cefeidas lo que le permitió calibrar la relación Periodo-Luminosidad. Por lo tanto, a partir de entonces, observando el periodo de una Cefeida se podría conocer su luminosidad (y magnitud absoluta) que comparándola con la magnitud aparente observada permitiría establecer la distancia a dicha Cefeida. Este método podría utilizarse también para obtener la distancia a otras galaxias en las que se observasen estrellas Cefeidas, tal y como lo hizo Edwin Hubble en los años 1920 con la galaxia de Andrómeda.”
Cada elemento tiene su propio espectro, su huella dactilar
Cada elemento químico (como el hidrógeno, mercurio y neón en la figura) tiene un espectro único. La identificación de las líneas en los espectros de objetos …
Así que el segundo reto había llevado a los astrónomos a estudiar el espectro de la luz que emiten las estrellas. Aunque en esa época la técnica espectroscópica era muy rudimentaria, comenzó a dar sus frutos. Uno de ellos vino de la mano de Vesto Slipher, quien en la conferencia que impartió en el Lowell Observatory de Flagstaff (Arizona), en junio de 1925, anunció que el espectro de la luz que había recogido en la mayor parte de las galaxias estaba desplazado hacia el rojo. No se sabía a ciencia cierta lo que esto podía significar, pero Harlow Shapley, apoyado en el Efecto Doppler, consideró que ese corrimiento hacia el rojo era consecuencia de que las galaxias se desplazaban.
Un Universo eterno en su evolución
Georges Lamaìtre irrumpió en ese escenario tímidamente, como un estudiante de postgrado. Había nacido a finales del siglo XIX en el sur de Bélgica. Era el mayor de cuatro hermanos. Su padre había estudiado Derecho en la Universidad de Louvain y tenía una fábrica de vidrio. Georges comenzó la carrera de Ingeniero de Minas en Lovaina, pero sus estudios se vieron interrumpidos al estallar la Primera Guerra Mundial, en la que participó como artillero. Al acabar el conflicto bélico, regreso a las Aulas, pero no para continuar sus estudios de Ingeniería, sino que, se matriculó de en el segundo ciclo de Física y Matemáticas. A su término, ingresó en el Seminario de Malinas y en cc1923 recibió las Órdenes sagradas.
Georges Lemaître en 1933, durante una de sus exposiciones.
Su condición de sacerdote no le impidió continuar en su carrera científica y pidió ser admitido como estudiante investigador de Astronomía en el Royal Observatory de Greenwich para el curso 1923-24. Allí fue alumno de Eddintong, que le enseñó a conjugar la Astronomía con la Teoría de la Relatividad. No dejó de estar al día con todos y cada uno de los adelantos y experimentos que se realizaban en aquel campo de la Astronomía Cosmológica.
En 1926, el Jurado de su Doctorado le comunicó que su tesis contenían todos y cada uno de los requisitos exigidos para su admisión y, resaltaban su grado de madurez matemática. En 1927, publicó un trabajo en el que presentaba una solución a las ecuaciones de la Relatividad general y que explicaba el Universo en su Conjunto.
El cura que encontró dónde empezaba el universo. El inventó el Big Bang
No hace demasiado tiempo, creíamos que el universo era estático y que siempre había sido como es ahora. Fue Georges Lemaître quien rompió con esta idea sembrando la idea del Big Bang.
Cuando escribió el trabajo no tenía noticias de trabajos previos de Friedmann, pues estaban escritos en ruso o alemán, y ninguno de los modelos ni soluciones que conocía hasta entonces le convencían: el de Einstein contenía materia, pero era estático; el de De Sitter ajustando la constante cosmológica: un universo de simetría esférica era dinámico pero carecía de materia. Al considerar que la densidad de materia podía variar en el tiempo, Lamaítre propuso una solución intermedia entre la de Einstein y la de De Sitter ajustando la constante cosmológica: un universo de simetría esférica, eterno y en evolución. Con ese modelo no sólo buscaba una solución matemática correcta, sino que fuera compatible con la Física, al dar explicación a las observaciones astronómicas.
Años más tarde, Hubble hizo la misma propuesta que hoy conocemos como Constante de Hubble. Así que, el trabajo de Lamaítre pasó muy desapercibido y ello, le obligó a darlo a conocer para que, al menos, se le diera el mérito a que era acreedor por justicia. Lamaítre consideró que el universo estaba en expansión exponencial con un pasado infinito, donde su tamaño, era casi constante en un primer momento, para luego crecer rápidamente.
Hubble era un hombre alto , elegante e imperioso, con una elevada opinión de su lugar potencial en la historia. Hubble lograba que todo lo que hacía pareciera hacerlo sin esfuerzo -había sido una gran figura del atletismo en pista, boxeador, becario en Oxford y abogado antes de ser astrónomo-, y una de las cosas que menor esfuerzo le costaba era enfurecer a Shapley. Hubble sacó docenas de fotografias de M33 y su vecina M31, la espiral de Andrómeda, y halló en ellas lo que más tarde llamó “densos enjambres de imágenes que en ningún aspecto difieren de las estrellas ordinarias”.
Mira la estrella cometa
Durante una exploración del universo en luz ultravioleta, el telescopio espacial de la NASA Galaxy Evolution Explorer escaneó la conocida ´gigante roja´ denominada ´Mira´, que ha llamado la atención de los astrónomos desde hace 400 años. Este análisis permitió ver cómo de la misma se desprende una enorme cola, similar a la que ofrecen los cometas, formada por “semillas” de nuevos sistemas planetarios. Este material se extiende a lo largo de nada menos que trece años luz, o 20.000 veces la distancia que separa a Plutón del Sol.
La cosmología, a pesar del paso del tiempo, continúa siendo una disciplina interesante, basada en la astronomía y la física. Tenemos la necesidad de saber cómo es nuestro mundo (el universo), incluso si esa visión es inexacta o incompleta. Los antiguos sumerios, hindúes, babilonios y mayas combinaron la ciencia con la religión y las estructuras sociales para completar la imagen. Pensar que ahora nosotros, hacemos algo diferente es, engañarnos a nosotros mismos. Si la cosmología moderna parece ajena a la religión, esto es porque las hemos convertido en una auténtica religión secular. Ahora, el sitio de los dioses, es ocupado por el Universo mismo, la Naturaleza sabia que tratamos de comprender.
A diferencia de los físicos o los químicos que aceptan gustosos los desafíos de sus paradigmas, los cosmólogos modernos son lagashianos, es decir, defienden el modelo que ellos han elegido frente a cualquier prueba que vaya contra él. Como dijo el físico ruso Lev Landau: “Los cosmólogos caen a menudo en errores, pero nunca dudan”.
El mundo de la cosmología ortodoxa del big bang no soporta a los disidentes y, desde luego, hay muchos y la historia nos habla de ellos. Por poner un ejemplo, me referiré al conocido protegido de Hubble, Halton Arp, educado en Harvard y Caltech que nunca renunció al rigor intelectual de su mentor y, en consecuencia, sostenía que los corrimientos hacia el rojo no demostraban necesariamente la existencia de un universo en expansión. Todos conocemos la calidad que como astrónomo tenía Arp y de sus renombrados descubrimientos que, en su día, llenaron las primeras portadas de toda la prensa.
Arp 147 es una pareja de galaxias en fuerte interacción localizada a unos 430 millones de años luz de la Tierra sobre la constelación de Cetus. La colisión entre ambos objetos, que una vez fueron una típica galaxia elíptica y una típica galaxia espiral, ha generado una onda expansiva de formación estelar intensa en lo que era la galaxia espiral, deformando este objeto de tal forma que ahora tiene una estructura claramente anular.
A veces, los objetos en el cielo que aparecen extraños o diferentes de lo normal, tienen una historia que contar que puede ser científicamente valioso. Esta fue la idea del catálogo de Halton Arp de Galaxias Peculiares que apareció en los años 1960. Uno de los raros objetos listados es Arp 261, que ahora ha sido fotografiado con mayor detalle que nunca usando el instrumento FORS2 en el Telescopio Muy Grande de ESO. La imagen contiene varias sorpresas.
Arp 261 yace a 70 millones de años luz de distancia en la constelación de Libra. Su caótica y muy inusual estructura es creada por la interacción de dos galaxias. Aunque las estrellas individuales es muy raro que colisionen en este evento, ya que están muy alejadas unas de otras, las enormes nubes de gas y polvo ciertamente chocan a gran velocidad, lo que provoca nuevos cúmulos de calientes estrellas. Las órbitas de las estrellas existentes son dramáticamente alteradas, creando los remolinos que se extienden en la parte superior izquierda e inferior derecha de la imagen. Ambas galaxias eran probablemente enanas, no muy distintas que las Nubes de Magallanes que orbitan nuestra galaxia.
Viendo esas imágenes de increíble misterio, toda vez que esconden historias que tenemos que deducir de sus configuraciones, nos hacen caer en la cuenta de que, en realidad, todas nuestras cosmologías, desde las cosmologías sumerias y maya hasta la de los “expertos” actuales, están limitadas por una falta de visión que conlleva una enorme carencia de conocimientos. El que sabe, tiene una panorámica visual de la mente mucho más amplia que el que no tiene los conocimientos y, lo decimos fuerte y claro: ¡Aún no sabemos! Innegable es que vamos avanzando y mucho pero, de ahí a decir que conocemos lo que el Universo es… hay un enorme abismo que necesita del puente del conocimiento para poder pasar al otro lado.
En los lejanos confines del Universo, a casi 13 mil millones años luz de la Tierra, unas extrañas galaxias yacen escondidas. Envueltas en polvo y atenuadas por la enorme distancia, ni siquiera el Telescopio Espacial Hubble es capaz de reconocerlas. Tendremos que esperar a su sustituto el James Webb.
Teníamos ganas de ver lo que nos podía enseñar éste nuevo ingenio del hombre
James Webb Space Telescope (JWST NASA). Sabiendo todo lo que nos ha traído el Hubble, esas imágenes que nos ejaron literalmente con la boca abierta por el asombro, ¿qué no podrá traernos este nuevo ingenio que supera en mucho al anterior? Su nombre es en honor al segundo administrador de la NASA y, sus objetivos:
Buscar la luz de las primeras estrellas y galaxias formadas tras el supuesto big bang
Estudiar la formación y evolución de las galaxias
Comprender mejor la formación de estrellas y planetas
Estudiar los sistemas planetarios y los orígenes de la vida
En su obra Cosmos, Carl Sagan describe varios mitos antiguos de la creación, que son, según escribe este autor, “un tributo a la audacia humana”. Al tiempo que llama al big bang “nuestro mito científico moderno”, señala una diferencia crucial en el sentido de que “la ciencia se plantera así misma preguntas y podemos realizar experimentos y observaciones para tratar de comprobar nuestras teorías”.
Sin embargo, lo que está claro es que Sagan, se sentía muy atraído por la cosmología cíclica hindú, en la cual Brahma, el gran dios creador, consigue que un universo llegue a existir cuando el lo sueña
¿Qué universos soñaría Brahma? ¿Sería como este nuestro? ¿Tendrían vida?
Según el experto en religiones Mircea Eliade, durante cada día brahmánico, 4.320 millones de años para ser exactos, el universo sigue su curso. Pero, al comienzo del anochecer brahmánico, el dios se cansa de todo esto, bosteza y cae en un profundo sueño. El universo se desvanece, disolviendo los tres dominios materiales que son la Tierra, el Sol y los cielos, que contiene la Luna, los planetas y la estrella Polar. (Hay cuatro dominios superiores a éstos que no se destruyen en este ciclo). La noche va pasando; entonces Brahma empieza a soñar de nuevo y otro universo empieza a existir.
Este ciclo de creación y destrucción continúa eternamente, lo cual se pone de manifiesto en el dios hinfú Siva, señor de la danza que , que sostiene en su mano derecha el tambor que anuncia la creación del universo y en la mano izquierda la llama que. mil millones de años después, destruirá este universo. Hay que decir tambien que Brahma no es sino uno de los muchos dioses que también sueñan sus propios universos, es decir, ya por aquel entonces, se hablaba y creía en los multiversos.
Alrededor de todas aquellas configuraciones del Cosmos, como era de esperar, tenían muchos rituales y celebraciones. Cinco días después de terminar Sat Chandi Mahayajna, culto a la Energía Cósmica, empezará Yoga Poornima que es el culto a su contraparte, la Consciencia Cósmica, Shiva. Así, ambos eventos, cada uno único en su forma, rinden tributo a la figura materna y paterna del universo y crean un círculo completo de experiencia total. Al término de ambos eventos uno se siente saciado, completo y pleno.
Los 8.640 millones de años que constituyen el ciclo completo de un día y una noche en la vida de Brahma vienen a ser aproximadamente la mitad de la edad del Universo según los cálculos actuales. Los antiguos hindúes creían que cada día brahmánico duraba un kalpa, 4.320 millones de años, siendo 72.000 kalpas un siglo brahmánico, en total 311.040.000 millones de años. El hecho de que los hindúes fueran capaces de concebir el universo en miles de millones de años (en ves de hablar de los miles de millones que se solían barajar en las culturas y doctrinas religiosas primitivas occidentales) fue, según Sagan, “sin duda una casualidad”. Desde luego es posible que fuera sólo cuestión de suerte. No obstante, la similitud entre la cosmología hindú y la cosmología actual no me parece a mí una casualidad, ahi subyace un elevado conocimiento.
Es posible que, aquellas teorías que si las trasladamos a este tiempo, en algunos casos no podríamos discernir si se trata de las ideas de entonces o, por el contrario son nuestras modernas ideas, con esos ciclos alternos de destrucción y creación, pudieran estar conectados y fuertemente ligados a nuestra psique humana que, al fin y al cano, de alguna manera que no hemos podido llegar a entender, está, ciertamente, conectada con el universo del que forma parte. Claro que, debemos entender y saber extrapolar los mensajes de entonces y traerlos al aquí y ahora, y, aquellos redobles del tambor de Siva que sugieren el inmenso impulso energético repentino, podría ser muy bien lo que provocó nuestro Big Bang.
Si es cierto, ¿Qué clase de objetos habrá en ese otro universo?
Recientemente, un prestigioso físico afirma haber hallado evidencias de un Universo anterior al nuestro, mediante la observación del fondo cósmico de microondas. Esto significaría que nuestro Universo no es único, sino que han existido otros universos con anterioridad, quizás un número infinito. Es un ciclo que hasta ahora solo se creía teórico, sin ningún tipo de prueba que lo respalde. Ahora parece haberse encontrado la primera.
En el Universo, que es casi infinito para nosotros, existen muchas cosas que debemos conocer
El descubrimiento son unos extraños patrones circulares que pueden encontrarse en la radiación de fondo de microondas del WMAP (Imagen arriba), según un artículo recientemente publicado en ArXiv.org, donde Penrose explica el fenómeno, tras analizar los datos extraídos de estas anomalías. Concluye que es una clara prueba de que el espacio y el tiempo existen desde mucho antes de nuestro Big Bang hace 13.700 millones de años, que provienen de anteriores universos que podríamos llamar “eones”, de un ciclo que se lleva repitiendo desde el infinito.
Nos podemos imaginar, en un largo viaje en el tiempo hacia el pasados, todo lo que allí, en aquellas civilizaciones de pensaba acerca del Cosmos, las leyendas que se contaban para explicar los sucesos y con detalles, narrar lo que era el “mundo-universo” que ellos, en su ya inmensa imaginación, “dibujaban” de una forma muy similar a la nuestra (salvando las distancias), toda vez que, en lo esencial, muchas son las coincidencias de ayer y hoy. ¿Quiere eso decir que hemos adelantado muy poco? Todo lo contrario, hemos adelantado muchísimo para poder comprobar que, muchos de aquellos postulados, de hace miles de años, eran ciertos y apuntaban en la correcta dirección.
Lo mismo que desconocemos la auténtica naturaleza de la Luz, que según creo encierra muchos secretos que tenemos que desvelar para conocer la realidad de la Naturaleza y del Universo, de la misma manera, tenemos que llegar a desvelar los secretos que se encierra en esa esencial y sencilla sustancia que llamamos agua, ya Tales de Mileto nos hablaba de la importancia que esa sustancia tenía para la vida.
¿Cómo es posible que, a partir de la materia “inerte”, hayan podido surgir seres vivos e incluso, algunos que, como nosotros puedan pensar? Que cosa mágica se pudo producir en el corazón de las estrellas para que, materiales sencillos como el Hidrógeno se convirtieran a miles de millones de grados de calor en otros que, como el Carbono, Oxigeno y Nitrógeno…, muchos miles de millones de años más tardes, en mundos perdidos en sistemas planetarios como el nuestro, dieran lugar a la formación de Protoplasma vivo del que surgieron aquellos infinitesimales seres que llamamos bacterias y que, posibilitaron la evolución hacia formas de vida superiores?
Los sentidos: las herramientas que utiliza el cerebro para estar comunicado con el exterior
La percepción, los sentidos y los pensamientos… Para poder entender la conciencia como proceso es preciso que entendamos cómo funciona nuestro cerebro, su arquitectura y desarrollo con sus funciones dinámicas. Lo que no está claro es que la conciencia se encuentre causalmente asociada a ciertos procesos cerebrales pero no a otros.
El cerebro humano ¿es especial?, su conectividad, su dinámica, su forma de funcionamiento, su relación con el cuerpo y con el mundo exterior, no se parece a nada que la ciencia conozca. Tiene un carácter único y ofrecer una imagen fidedigna del cerebro no resulta nada fácil; es un reto tan extraordinario que no estamos preparados para cumplir en este momento. Estamos lejos de ofrecer esa imagen completa, y sólo podemos dar resultados parciales de esta enorme maravilla de la Naturaleza.
Aquí se fraguan los pensamientos como en las galaxias lo hacen las estrellas
Nuestro cerebro adulto, con poco más de 1 Kg de peso, contiene unos cien mil millones de células nerviosas o neuronas. La parte o capa ondulada más exterior o corteza cerebral, que es la parte del cerebro de evolución más reciente, contiene alrededor de treinta millones de neuronas y un billón de conexiones o sinapsis. Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en acabar el recuento. Si consideramos el número posible de circuitos neuronales, tendremos que habérnoslas con cifras hiperastronómicas. Un 10 seguido de, al menos, un millón de ceros (en comparación, el número de partículas del universo conocido asciende a “tan sólo” un 10 seguido de 79 ceros). ¡A que va a resultar que no somos tan insignificantes!
El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos.
Con tan enorme cantidad de circuitos neuronales, ¿Cómo no vamos a ser capaces de descifrar todos los secretos de nuestro universo? ¿De qué seremos capaces cuando podamos disponer de un rendimiento cerebral del 80 ó 90 por ciento? Algunas veces hemos oido comentar: “Sólo utilizamos un diez por ciento del cerebro…” En realidad, la frase no indica la realidad, se refiere al hecho de que, aunque utilizamos el cerebro en su totalidad, se estima que está al diez por ciento de su capacidad real que, será una realidad a medida que evolucione y, en el futuro, esa capacidad de hoy será un 90 por ciento mayor.
Aún no conocemos bien la direccionalidad de los circuitos neuronales
El límite de lo que podremos conseguir tiene un horizonte muy lejano. Y, llega un momento en el cual, se puede llegar a pensar que no existen limites en lo que podemos conseguir: Desde hablar sin palabras sonoras a la auto-transportación. Si -como pienso- somos pura energía pensante, no habrá límite alguno; el cuerpo que ahora nos lleva de un lugar a otro, ya no será necesario, y como los fotones que no tienen masa, podremos desplazarnos a velocidades lumínicas.
Creo que estoy corriendo demasiado en el tiempo, volvamos a la realidad. A veces mi mente se dispara. Lo mismo visito mundos extraordinarios con mares luminosos de neón líquido poblados por seres transparentes, que viajo a galaxias muy lejanas pobladas de estrellas de fusión fría circundadas por nubes doradas compuestas de antimateria en la que, los positrones medio congelados, se mueven lentamente formando un calidoscopio de figuras alucinantes de mil colores. ¡La mente, qué tesoro!
¿Quién podría decir, si no se les explicara, que son “mundos” diferentes” Nuestra Red Neuronal y el Universo. Sin embargo, ¡parece tan iguales! Si pudiéramos medir la grandeza del cerebro por la imaginación, entonces, el universo sería, casi tan grande como él.
La unidad a partir de la cual se configuran todas las fabulosas actividades del cerebro es una célula del mismo, la neurona. Las neuronas son unas células fantásticamente ramificadas y extendidas, pero diminutas que, sin embargo y en sentido figurado, podríamos decir que son tan grandes como el universo mismo.
Cuando seamos capaces de convertir en realidad todo aquello en lo que podamos pensar, entonces, habremos alcanzado la meta. Para que eso pueda llegar a ocurrir, aún falta mucho tiempo. Sin embargo, si el Universo no lo impide y nuestro transcurrir continúa, todo lo que podamos imaginar… podrá ser posible. Incluso imposibilidades físicas de hoy, dejarán de existir mañana y, ¡la Mente! posiblemente (al igual que hoy ordena a las distintas partes del cuerpo que realice esta o aquella función), se encargará de que todo funcione bien, erradicará cualquier enfermedad que nos pueda atacar y, tendrá el conjunto del “sistema” en perfectas condiciones de salud, lo cual me lleva a pensar que, para cuando eso llegue, los médicos serán un recuerdo del pasado.
Cuando se explica la evolución del ser humano se habla del proceso de hominización. Esta es el surgimiento de la especie humana tal y como la conocemos, …
Es curioso y sorprendente la evolución alcanzada por la Mente Humana. El mundo físico se representa gobernado de acuerdo a leyes matemáticas. Desde este punto de vista, todo lo que hay en el universo físico está realmente gobernado en todos sus detalles por principios matemáticos, quizá por ecuaciones tales que aún no hemos podido llegar a comprender y, ni que sabemos que puedan existir.
Lo más seguro es que la descripción real del mundo físico esté pendiente de matemáticas futuras, aún por descubrir, fundamentalmente distintas de las que ahora tenemos. Llegarán nuevos Gauss, Riemann, Euler, o, Ramanujans… que, con sus nuevas ideas transformarán el pensamiento matemático para hacer posible que podamos, al fin, comprender lo que realmente somos.
Son nuestras Mentes, productos de la evolución del Universo que, a partir de la materia inerte, ha podido alcanzar el estadio bio-químico de la consciencia y, al ser conscientes, hemos podido descubrir que existen “números misteriosos” dentro de los cuales subyacen mensajes que tenemos que desvelar.
Antes tendremos que haber descifrado las funciones modulares de los cuadernos perdidos de Ramanujan, o por ejemplo, el verdadero significado del número 137, ése número puro adimensional que encierra los misterios del electrón (e) – electromagnetismo -, de la constante de Planck (h) – el cuando te acción – y de la luz (c) – la relatividad -.
El cerebro humano avanza al ritmo que le marca el Universo
Los resultados son lentos, no se avanza con la rapidez que todos deseamos. Sin embargo, eso ocurre por algo, el ritmo del Universo considerado como Naturaleza, podríamos decir que está determinado por una Naturaleza “sabia” y, si actúa de esa manera… ¡Por algo será! Deja que de vez en cuando, sobresalgan algunas mentes y se eleven por encima del común, de ejemplos tenemos la historia llena. Esos “saltos” de la conciencia son los tiempos que marca el Universo para que, poco a poco, se produzca nuestra evolución, es la única forma de que todo se haga de manera correcta y de que, los nuevos pensamientos se vayan asentando debidamente en las Mentes futuras. Pongamos un ejemplo: Poincaré expuso su conjetura y, más de un siglo después, Perelman la resolvió. Riemann expuso su geometría del espacio curvo, y hasta 60 años más tarde no fue descubierta por Einstein para hacer posible su formulación de la relatividad general, donde describe cómo las grandes masas distorsionan el espacio y el tiempo por medio de la fuerza de gravedad que generan. El conocimiento humano avanza al ritmo que le impone la Naturaleza.
¡Son tantos los secretos que nos quedan por desvelar! la Naturaleza es la portadora de todas las respuestas…Observémosla con atención y, aprendamos de ella y, de ser posible, procuremos no molestarla, “Ella” nos permite estar aquí para que evolucionemos y, algún día, cuando seamos mayores…quizás nos deje formar parte de algo más…¿mental?
No, no será nada fácil imitar a la Naturaleza…¡Esa perfección! Sin embargo, llegados a ese punto, debemos pensar que nosotros también formamos parte de ella, la parte que piensa y, si es así, ¿qué cometido tendremos asignado en este Universo? Esa es la pregunta que ninguno de los grandes pensadores de la Historia, han podido contestar.
Pensar, por ejemplo, en las complejas matemáticas topológicas requeridas por la teoría de supercuerdaspuede producir incomodidad en muchas personas que, aún siendo físicos, no están tan capacitados como para entender tan profundas ideas (me incluyo).
Bernhard Riemann introdujo muchas nuevas ideas y fue uno de los más grandes matemáticos. En su corta vida (1.826 – 1.866) propuso innumerables propuestas matemáticas que cambiaron profundamente el curso del pensamiento de los números en el planeta Tierra, como el que subyace en la teoría relativista en su versión general de la gravedad, entre otras muchas (superficie de Riemann, etc.). Riemann les enseñó a todos a considerar las cosas de un modo diferente.
La superficie de Riemann asociada a la función holomorfa “tiene su propia opinión” y decide por sí misma cuál debería ser el, o mejor, su dominio, con independencia de la región del plano complejo que nosotros podamos haberle asignado inicialmente.
Y, mientras tanto, nuestras mentes siguen su camino, siempre queriendo ir más allá y siempre profundizando en los secretos de la Naturaleza de lo que tenemos muchos ejemplos, tales como nuestras consideraciones sobre los dos aspectos de la relatividad general de Einstein, a saber, el principio de la relatividad, que nos dice que las leyes de la física son ciegas a la distinción entre reposo y movimiento uniforme; y el principio de equivalencia, que nos dice de qué forma sutil deben modificarse estas ideas para englobar el campo gravitatorio.
Mediante la combinación de diversas observaciones de telescopios, y la ayuda del trabajo de modelación avanzada, el equipo de Emanuele Farina, de la Universidad de Insubria en la provincia de Como, Italia, y Michele Fumagalli del Instituto Carnegie de Ciencia, en Washington, D.C., Estados Unidos, fue capaz de captar como tal el trío de quásares, llamado QQQ J1519+0627. La luz de esos quásares ha viajado 9.000 millones de años-luz para llegar hasta nosotros, lo que significa que dicha luz fue emitida cuando el universo tenía sólo un tercio de su edad actual.
Todo es finito, es decir, que tiene un fin, y la velocidad de la luz no podía ser una excepción
Ahora hay que hablar del tercer ingrediente fundamental de la teoría de Einstein, que está relacionada con la finitud de la velocidad de la luz. Es un hecho notable que estos tres ingredientes básicos puedan remontarse a Galileo; en efecto, parece que fue también Galileo el primero que tuvo una expectativa clara de que la luz debería viajar con velocidad finita, hasta el punto de que intentó medir dicha velocidad. El método que propuso (1.638), que implica la sincronización de destellos de linternas entre colinas distantes, era, como sabemos hoy, demasiado tosco (otro ejemplo de la evolución que, con el tiempo, se produce en nuestras mentes). Él no tenía forma alguna de anticipar la extraordinaria velocidad de la luz.
Parece que tanto Galileo comoNewton tenían poderosas sospechas respecto a un profundo papel que conecta la naturaleza de la luz con las fuerzas que mantienen la materia unida y, si consideramos que esa fuerza que hace posible la unión de la materia reside en el corazón de los átomos (en sus núcleos), podemos hacernos una clara idea de lo ilimitado que puede ser el pensamiento humano que, ya en aquellos tiempos -en realidad mucho anteriores- pudo llegar a intuir las fuerzas que están presentes en nuestro Universo.
En los núcleos atómicos reside la fuerza (nuclear fuerte) que hace posible la existencia de la materia que comienza por los átomos que, al juntarse y formar células, hace posible que éstas se junten y formen moléculas que a su vez, se reunen para formar sustancias y cuerpos.
Pero la comprensión adecuada de estas ideas tuvo que esperar hasta el siglo XX, cuando se reveló la verdadera naturaleza de las fuerzas químicas y de las fuerzas que mantienen unidos los átomos individuales. Ahora sabemos que tales fuerzas tienen un origen fundamentalmente electromagnético (que vincula y concierne a la implicación del campo electromagnético con partículas cargadas) y que la teoría del electromagnetismo es también la teoría de la luz.
Para entender los átomos y la química se necesitan otros ingredientes procedentes de la teoría cuántica, pero las ecuaciones básicas que describen el electromagnetismo y la luz fueron propuestas en 1.865 por el físico escocés James Clark Maxwell, que había sido inspirado por los magníficos descubrimientos experimentales de Michael Faraday unos treinta años antes y que él plasmó en una maravillosa teoría.
El electromagnetismo presente en el Universo
El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría. El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo.
Esta teoría del electromagnetismo de Maxwell tenía la particularidad de que requería que la velocidad de la luz tuviera un valor fijo y definido, que normalmente se conoce como c, y que en unidades ordinarias es aproximadamente 3 × 108metros por segundo. Maxwell, guiado por los experimentos de Faraday, hizo posible un hecho que cambió la historia de la humanidad para siempre. Un hecho de la misma importancia que el descubrimiento del fuego, la rueda o los metales. El matemático y poeta escocés unificó los campos eléctrico y magnético a través de unas pocas ecuaciones que describen como estos campos se entretejen y actúan sobre la materia.
La infinita escalera que tenemos que subir para tratar de saber, se pierde en las alturas, allí donde las brumas ocultan lo que deseamos desvelar. Nadie nunca, lo podrá saber todo sobre todo. Sin embargo, es cierto que, cada día, arrancamos un secreto a la Naturaleza y la comprendemos mejor.
Claro que, estos importantísimos avances han sido simples escalones de la “infinita” escalera que tenemos que subir y, la misma relatividad de Einstein no ha sido (después de un siglo) aún comprendido en su plenitud y muchos de sus mensajes están escondidos en lo más profundo de nuestras mentes que, ha sabido parcialmente descubrir el mensaje de Einsteinpero, seguimos buscando.
Sin embargo, esto nos presenta un enigma si queremos conservar el principio de relatividad. El sentido común nos diría que si se mide que la velocidad de la luz toma el valor concreto c en el sistema de referencia del observador, entonces un segundo observador que se mueva a una velocidad muy alta con respecto al primero medirá que la luz viaja a una velocidad diferente, aumentada o disminuida, según sea el movimiento del segundo observador.
La constante de estructura fina de Sommerfeld (símbolo α) es la constante física fundamental que caracteriza la fuerza de la interacción electromagnética. Es una cantidad sin dimensiones, por lo que su valor numérico es independiente del sistema de unidades usado
Estaría bueno que, al final se descubriera que alfa (α) tuviera un papel importante en la compleja teoría de cuerdas, ¿Por qué no? En realidad alfa, la constante de estructura fina, nos habla del magnetismo, de la constante de Planck y de la relatividad especial, es decir, la velocidad de la luz y, todo eso, según parece, emergen en las ecuaciones topológicas de la moderna teoría de cuerdas. ¡Ya veremos!
Pero el principio de relatividad exigiría que las leyes físicas del segundo observador (que definen en particular la velocidad de la luz que percibe el segundo observador) deberían ser idénticas a las del primer observador. Esta aparente contradicción entre la constancia de la velocidad de la luz y el principio de relatividad condujo a Einstein (como de hecho, había llevado previamente al físico holandés Hendrick Antón Lorentz y muy en especial al matemático francés Henri Poincaré) a un punto de vista notable por el que el principio de relatividad del movimiento puede hacerse compatible con la constancia de una velocidad finita de la luz.
¿Cómo funciona esto? Sería normal que cualquier persona creyera en la existencia de un conflicto irresoluble entre los requisitos de una teoría como la de Maxwell, en la que existe una velocidad absoluta de la luz, y un principio de relatividad según el cual las leyes físicas parecen las mismas con independencia de la velocidad del sistema de referencia utilizado para su descripción.
¿No podría hacerse que el sistema de referencia se moviera con una velocidad que se acercara o incluso superara a la de la luz? Y según este sistema, ¿no es cierto que la velocidad aparente de la luz no podría seguir siendo la misma que era antes? Esta indudable paradoja no aparece en una teoría, tal como la originalmente preferida por Newton (y parece que también por Galileo), en la que la luz se comporta como partículas cuya velocidad depende de la velocidad de la fuente. En consecuencia, Galileo y Newton podían seguir viviendo cómodamente con un principio de relatividad.
La velocidad de la luz en el vacío es una constante de la Naturaleza y, cuando cientos de miles de millones de millones salen disparados de esta galaxia hacia el vacío espacial, su velocidad de 299.792.450 metros por segundo, es constante independientemente de la fuente que pueda emitir los fotones y de si ésta está en reposo o en movimiento.
Así que, la antigua imagen de la naturaleza de la luz entró en conflicto a lo largo de los años, como era el caso de observaciones de estrellas dobles lejanas que mostraban que la velocidad de la luz era independiente de la de su fuente. Por el contrario, la teoría de Maxwell había ganado fuerza, no sólo por el poderoso apoyo que obtuvo de la observación (muy especialmente en los experimentos de Heinrich Hertz en 1.888), sino también por la naturaleza convincente y unificadora de la propia teoría, por la que las leyes que gobiernan los campos eléctricos, los campos magnéticos y la luz están todos subsumidos en un esquema matemático de notable elegancia y simplicidad.
Las ondas luminosas como las sonoras, actúan de una u otra manera dependiendo del medio en el que se propagan.
En la teoría de Maxwell, la luz toma forma de ondas, no de partículas, y debemos enfrentarnos al hecho de que en esta teoría hay realmente una velocidad fija a la que deben viajar las ondas luminosas.
El punto de vista geométrico-espaciotemporal nos proporciona una ruta particularmente clara hacia la solución de la paradoja que presenta el conflicto entre la teoría de Maxwell y el principio derelatividad.
Este punto de vista espaciotemporal no fue el que Einstein adoptó originalmente (ni fue el punto de vista de Lorentz, ni siquiera, al parecer, de Poincaré), pero, mirando en retrospectiva, podemos ver la potencia de este enfoque. Por el momento, ignoremos la gravedad y las sutilezas y complicaciones asociadas que proporciona el principio de equivalencia y otras complejas cuestiones, que estimo aburrirían al lector no especialista, hablando de que en el espacio-tiempo se pueden concebir grupos de todos los diferentes rayos de luz que pasan a ser familias de íneas de universo.
Baste saber que, como quedó demostrado por Einstein, la luz, independientemente de su fuente y de la velocidad con que ésta se pueda mover, tendrá siempre la misma velocidad en el vacío, c, o 299.792.458 metros por segundo. Cuando la luz atraviesa un medio material, su velocidad se reduce. Precisamente, es la velocidad c el límite alcanzable de la velocidad más alta del universo. Es una constante universal y, como hemos dicho, es independiente de la velocidad del observador y de la fuente emisora.
El Universo está dentro de nuestras Mentes
¡La Mente! Qué caminos puede recorrer y, sobre todo ¿Quién la guía? Comencé este trabajo con la imagen del ojo humano y hablando de los sentidos y de la consciencia y mira donde he finalizado…Sí, nos falta mucho camino por recorrer para llegar a desvelar los misterios de la Mente que, en realidad, es la muestra más alta que el Universo nos puede mostrar de lo que puede surgir a partir de la sencillez de los átomos de hidrógeno que, evolucionados, primero en las entrañas de las estrellas y después en los circuitos de nuestras mentes, llega hasta los pensamientos y la imaginación que…son palabras mayores de cuyo alcance, aún no tenemos una idea que realmente refleje su realidad.
Pero, ¿existe alguna realidad?, o, por el contrario todo es siempre cambiante y lo que hoy es mañana no existirá, si “realmente” es así, ocurre igual que con el tiempo. La evolución es algo que camina siempre hacia adelante, es inexorable, nunca se para y, aunque como el tiempo pueda ralentizarse, finalmente sigue su camino hacia esos lugares que ahora, sólo podemos imaginar y que, seguramente, nuestros pensamientos no puedan (por falta de conocimientos) plasmar en lo que será esa realidad futura.
Ritmo y simetría son conceptos comunes a ciencia y arte. El Nobel Frank Wilczek es el último en traspasar en su nueva obra la frontera entre ambas
Fotografías de la serie de los años veinte ‘Formas artísticas de la naturaleza’, de Karl Blossfeldt.
¿Es el mundo una obra de arte? Tal es la cuestión que el autor se propone indagar desde el título y el prólogo de este ensayo. La idea tiene su dificultad porque en principio induce a pensar en el gran artista y en sus intenciones a la hora de crear el mundo. Sin embargo, el autor no se lanza directamente en esta dirección, sino a todo un conjunto de cuestiones que se descuelgan de la pregunta inicial. Por un lado, se trata de comparar el mundo de las ideas en las que se mueve la mente del artista cuando crea y el mundo de los cuerpos físicos de la realidad en la que está inmerso. Por otro lado, se trata de enfrentar la belleza que vive el artista cuando hace arte con la belleza que vive el científico cuando hace ciencia. Aplicamos el concepto de belleza tanto a un atardecer, que es un paisaje en condiciones efímeras, como al sonido de una música, como a un pedazo de conocimiento concebido por una mente humana. En la propuesta de Wilczek destaca un concepto sobre todos los demás: la simetría. Simetría exhiben los cristales, las plantas y los animales, simetría hay también en sus maneras de cambiar, hay simetría en las obras de arte y, sobre todo, hay simetría también en las teorías científicas. La creación científica y la creación artística ofrecen una buena pista para empezar.
Se equivocan los que aseguran que ciencia y arte son la misma cosa y se equivocan los que dicen que arte y ciencia nada tienen que ver. Sin embargo, enfrentar estas dos grandes formas de conocimiento interesa tanto por lo que comparten como por lo que difieren. La intersección no puede ser más fértil. La grandeza de la ciencia está en que un científico puede llegar a comprender sin necesidad de intuir y la grandeza del artista en que puede llegar a intuir sin necesidad de comprender. Un físico comprende el comportamiento cuántico de una partícula porque lo anticipa usando la ecuación de Schrödinger, pero no lo intuye porque sus sentidos no han experimentado nunca nada similar. No hay intuición cuántica porque no hay observadores cuánticos. En cambio, un artista puede distorsionar la realidad y fabricarse una metáfora para intuir algo que no tiene por qué comprender y que ni siquiera tiene por qué existir en la naturaleza. Oscar Reutersvärd, por ejemplo, fue un artista gráfico que inventó objetos en tres dimensiones que se pueden dibujar, pero que desafían la intuición porque no se pueden construir. Es la idea de los objetos imposibles que cautivó al gran físico y matemático Roger Penrose y al que tanto debe el celebérrimo Maurits Cornelius Escher, el artista que finalmente ha quedado en la historia como padre de la idea.
Trazos, notas, teoremas
Se enganchó tanto a esta cuestión que se pasó toda la vida reescribiendo el mismo libro. Se trata de On Growth and Form (en español en Akal, 2011) del escocés D’Arcy Thomson (1860-1948). Apareció por primera vez en 1917 con 793 páginas, pero la última edición de 1942 alcanza las 1116 páginas. Aún se puede conseguir en casi todos los idiomas y aún es tema de discusión tanto por sus aciertos como por sus errores. Sus críticos le reprochan que no acabara de comprender el mecanismo de la selección natural, aunque todo el mundo reconoce su tremenda influencia en otros autores. Yo me cuento entre los seducidos y mi réplica fue el ensayo La rebelión de las formas (Tusquets, 2004). Una obra maestra que conmovió a artistas y científicos es Gödel, Escher, Bach (Tusquets, 1987) de Douglas Hofstadter, profesor de ciencias cognitivas e hijo de un premio Nobel de física, donde se relacionan las obras del matemático autor del teorema más bello de la historia, del artista que ilustró el mundo de los objetos imposibles y del compositor barroco que revolucionó la música. Un ensayo más moderno es Truth and Beauty: Science and the Quest of Order (Oxford University Press, 2011) de David Orrell.
El mundo como obra de arte, del premio Nobel de Física Frank Wilczek, se sumerge en estas fértiles tierras fronterizas. ¿Qué es la belleza? ¿Qué es la belleza natural de los objetos reales y qué es la belleza cultural del conocimiento humano? ¿En qué punto se dan la mano ambas concepciones? El número áureo es una proporción conocida desde la antigüedad como un canon de belleza que se deduce por un razonamiento puramente mental. Basta imponer la armonía y el equilibrio que resulta más agradable y natural a nuestros sentidos. Por ello no es raro encontrarlo en todo tipo de estructuras de diseño humano, desde la arquitectura a los muebles, pasando por un simple encendedor. Pero ¿cómo demonios se explica que ese mismo número aparezca también en las formas y estructuras vivas? ¿Será como decía Oscar Wilde que la naturaleza copia al arte? La cuestión es de una profundidad sin fondo y no se limita a los objetos naturales o culturales. La belleza no está solo en los resultados visibles de las teorías científicas y matemáticas. La belleza está también en el origen, en las hipótesis de trabajo y en la concepción del mundo que han estimulado el pensamiento de los grandes creadores científicos.
Wilczek revisa las formas más bellas del pensamiento científico y de los objetos naturales para llegar a varias conclusiones no siempre explícitas en su texto. Aún antes de acordar una definición de belleza, digamos que la belleza es un concepto frecuente en el arte, propio del arte, pero que no es necesario para hacer arte. Y aún antes de acordar una definición de lo que es comprensible, digamos que la inteligibilidad es un concepto omnipresente y propio de la ciencia, pero que no es suficiente para hacer ciencia. Sin embargo, en todos los casos elegidos por Wilczek se filtra una relación esencial entre lo que es bello y lo que es comprensible. La forma más simple de belleza es la iteración en el espacio y en el tiempo, esto es, la armonía y el ritmo. Y la forma más inmediata de lograr esta belleza es la simetría. Se diría que la belleza es una especie de no cambio dentro del cambio. ¿Qué es una ley de la naturaleza? Pues algo muy parecido: es el cambio que menos cambia. Todos los movimientos de los planetas son diferentes, pero todos obedecen a las mismas ecuaciones de las mismas leyes. Los físicos buscan siempre principios de conservación (conservación de la masa, de la carga, de la energía, de la cantidad de movimiento, del momento angular…) porque con ellos se pueden anticipar los cambios que experimenta un sistema. Wilczek no puede disimular su emoción en el capítulo que dedica a Emmy Noether, la gran matemática que tanto admiró Einstein, cuyos teoremas establecen la relación entre los principios de conservación por un lado y las propiedades de simetría del espacio y del tiempo por otro. A Einstein se le debieron saltar las lágrimas con los trabajos de Noether (lo sé porque a mí me ocurrió lo mismo cuando los vi por primera vez en la pizarra de la facultad). Después de todo, tanto la teoría especial como la teoría general de la relatividad se levantan sobre el mismo pilar: el mundo puede ser complejo, misterioso, extraño…, ¡pero no feo! Es un principio estético como también queda claro en el capítulo que este ensayo dedica a la relatividad, sin duda la más grande y más bella teoría jamás concebida por una sola mente.
El caso de la física cuántica, que el libro también se entretiene en saborear a través de los trabajos seminales de Einstein y Bohr, tiene un valor añadido: invita a comprender los fundamentos de la física cuántica a través de intuiciones musicales. No alcanza quizá raíces tan profundas en la fusión de los conceptos de belleza e inteligibilidad, pero sí ofrece un camino que es bastante más que una metáfora. Comprender es buscar lo que hay de común entre cosas aparentemente diferentes. Los objetos fractales, por ejemplo, ofrecen un lenguaje común para dar cuenta de la autosimilitud y la irregularidad, de nuevo el no cambio dentro del cambio, lo que afecta tanto a los hexágonos de un panal de abejas, de la estructura de un material sintético como el grafeno o a la estructura de un copo de nieve.
El propósito de Michelson y Morley era medir la velocidad relativa a la que se mueve la Tierra con respecto al éter. Cada año, la Tierra recorre una distancia enorme en su órbita alrededor del Sol, a una velocidad de 30 km/s (más de 100.000 km/h). Se creía que la dirección del “viento del éter” con respecto a la posición de nuestra estrella variaría al medirse desde la Tierra, y así podría ser detectado. Por esta razón, y para evitar los efectos que podría provocar el Sol en el “viento” al moverse por el espacio, el experimento debería llevarse a cabo en varios momentos del año.
El libro recorre las ideas más bellas y trascendentes de la física con Galileo, Newton, Maxwell o Einstein, pero no esquiva las ideas bellas que han resultado ser falsas. La concepción geométrica de los átomos de Platón, el sistema solar de Kepler, el éter que buscaban Michelson y Morley, etcétera. Queda claro: aunque la belleza predispone a comprender, hay que reconocer que la belleza no es una garantía de verdad. Sin embargo, Wilczek consigue seducir al lector tácita y subliminalmente en favor de una respuesta a la pregunta inicial del libro: ¿es el mundo una obra de arte? Y ésta no es otra que un sonoro y apasionado ¡sí!
La teoría especial y la general de la relatividad se levantan sobre el mismo pilar: el mundo puede ser complejo, pero no feo
Wilczek es un físico teórico de amplísima cultura dentro y fuera de la física. Recibió el Premio Nobel de Física en 2004 por un tema aparentemente tan contradictorio como la libertad asintótica en la teoría de las interacciones fuertes, esto es, cuando dos quarks se acercan mucho entre ellos su fuerza de interacción se debilita tanto que se convierten en partículas libres. El libro equivale a un paseo a través de la historia de la física de la mano de alguien que comprende la realidad desde una concepción estética global del mundo…, como todos los grandes científicos.
Algunos dicen que un resultado asombroso de la teoría de supercuerdas es que pueden dar lugar a otro tipo más de materia oscura. Y, me pregunto yo, ¿aún no hemos encontrado la primera y ya estamos hablando de una segunda? Hay una versiónde la teoría de cuerdas que es muy llamativa desde el punto de vista estético, las ecuaciones parecen sugerir que en el Tiempo de Planck el Universo se desgajó en dos partes separadas.
El simple hecho de que no podamos verlos, no quiere decir que no existan. Miramos la superficie pero, ¿que puede haber debajo de ella? Delante de nuestros ojos, el inmenso océano de brillo rutilante que recibe los rayos del Sol, el rumor de las olas que vienen hacia la playa, a los lejos, el horizonte siempre inalcanzable… Pero ¿Qué hay debajo de la superficie? El que no podamos contemplarlo no quiere decir que la multiplicidad de formas de vida no estén ahí, en sus habitats ocultos para nosotros.
De la misma manera, existen muchas cosas en el Universo con por una u otra razón, se ocultan a nuestra percepción, y, sin embargo, ahí están.
Además de los cinco sentidos clásicos que todos conocemos, existen otros sentidos que, sin estar a la vista, nos acompañan y nos sirven para poder ahondar en el conocimiento de las cosas: Los “ojos de la Mente”, por medio de la intuición, el presentimiento, una idea fugaz y esclarecedora… ¡Sí, contamos con muchas armas para poder comprender el entorno que nos rodea y, mucho más allá de lo que la vista pueda alcanzar.
Siguiendo con lo que antes decía, está nuestro mundo normal con su complemento entero de partículas y compañeras supersimétricas, y hay, además, un mundo de sombra. La materia en ese mundo de sombra tiene un parecido con la del nuestro en que también tiene sus partículas y “spartículas”. Dentro de cada mundo, las partículas interaccionan unas con otras a través de un complemento entero de cuatro fuerzas. Sin embargo, las partículas de un mundo pueden interaccionar con las del otro mundo sólo a través de la fuerzqa de gravedad. Un electrón y un selectrón de sombra pueden estar cerca el uno del otro y no sentir una fuerza eléctrica, aunque cada uno de ellos lleve consigo su propia versión de carga eléctrica. La única fuerza entre los dos sería la fuerza relativamente débil de la Gravedad.
Esta imagen de arriba vista una y mil veces, nos quiere transportar a esa materia en la sombra que es parte de ese universo que no podemos ver, y, sin embargo, por mucho que se haya podido hablar de todo esto, lo único cierto es que nada se sabe y a pesar de ello, se hacen afirmaciones categóricas sobre lo que “sólo es una posibilidad” que se ha conjeturado a partir de abservaciones.
La idea de un universo en la sombra nos proporciona una manera sencilla de pensar en la “materia oscura”. El Universo dividido en materia y en materia en la sombra situada en el Tiempo de Planck, y cada una evolucionó de acuerdo con sus leyes propias que le dieron también, sus características propiedades: mientras que la una era luminosa y emitía radiaciones, la otra no lo era y, como consecuencia, no se dejaba ver.
No, esto no es la materia en la sombra de la que estamos tratando.
Existen aspirantes a ser materia en la sombra y, otro “caballero oscuro” lo tenemos en el Axión que es uno de los VIMPs favoritos como el fotino y otros compañeros, una pléyade de nuevas partículas (también, ¿cómo no?) hipotéticas que llegaron por consideraciones de simetría. Sin embargo, a diferencia de las partículas, sale de las Grandes Teorías Unificadas, que describen el universo en el segundo 10-35, más que de las teorías totalmente unificadas que operan en el Tiempo de Planck. La “materia oscura” se ha convertido en un caballo desbocado que nadie sabe hacia donde va, ni dónde pueda estar, ni de qué está formada, ni como se pudo originar… Sigue una larga lista de preguntas y conjeturas que pretenden ser las respuestas.
Neutrinos, fotones, quarks, leptones, hadrones: bariones y mesones, todos, en definitiva son lo mismo, distintos estados de la materia que conforman unos y otros en determinadas ocasiones, y, en cada momento, ocupan el lugar que les destina en Universo adoptando la forma que en ese preciso instante les corresponde. Claro que, todos estos, son objetos de nuestro Universo luminoso, el otro, el Universo en la Sombra, ni sabemos si puede estar realmente ahí.
Durante mucho tiempo, los físicos han sabido que toda reacción entre partículas elementales obedece a una simetría que llamamos CPT. Esto significa que si miramos la partícula de una reacción, y luego vemos la misma reacción cuando (1) la miramos en un espejo, (2) sustituimos todas las partículas por antipartículas y (3) hacemos pasar la partícula hacia atrás, los resultados serán idénticos. En este esquema la P significa paridad (el espejo), la C significa conjugación de carga (poner las antipartículas) y T la reserva del Tiempo (pasar la partícula al revés).
El nombre de simetría especular proviene de la imagen obtenida al reflejarse la luz en una superficie plana. Existen numerosos ejemplos de la simetría especular tanto en la naturaleza como en objetos artificiales.
Gráfica de la ruptura de simetría espontánea de la función
La simetría CPT es un principio fundamental de invariancia o simetría de las leyes físicas que establece que bajo transformaciones simultáneas que involucren la inversión de la carga eléctrica, la paridad y el sentido del tiempo las ecuaciones de evolución temporal de un proceso físico y las de un proceso análogo en que:
Conjugación de carga (C).Todas las partículas se sustituyen por sus correspondientes antipartículas.
Inversión de paridad (P). Se invierte la paridad espacial de proceso (esto tiene que ver con el intercambio de derecha e izquierda, y con el cambio en el espin de las partículas).
Inversión temporal (T). Se invierte el sentido del tiempo.
son invariantes y vienen descritos por las mismas ecuaciones y arrojan los mismos resultados. Este último resultado se conoce como teorema CPT que afirma que toda la teoría cuántica de campos local que presente covariancia de Lorentz y venga definida por un Hamiltoniano hermítico, es invariante bajo una transformación CPT.
Un alto en el camino para una explicación: Dado que la antimateria tiene la misma masa que la materia, es decir son de la misma magnitud y signo (la definición de masa es positiva siempre), el efecto gravitacional de la antimateria no debe ser distinto de la materia, es decir, siempre sera un efecto atractivo. Pero, ¿acaso no importa la equivalencia establecida de antipartícula viajando al futuro = partícula viajando al pasado?
Estas medidas de alta precisión de la estructura hiperfina del antihidrógeno permiten verificar la simetría CPT con gran sensibilidad.
La respuesta es sí. Dicha equivalencia proviene de algo llamado simetría CPT (Charge-Parity-Time), y nos dice que la equivalencia entre las partículas y antipartículas no solo corresponde a realizar una transformación sobre la carga, sino también sobre la paridad y el tiempo. La carga no afecta la gravedad, pero la paridad y el tiempo si la afectan. En otras palabras, al modificarse el tiempo (poner el tiempo al reves) y el espacio (la paridad es “girar” el espacio), estamos alterando el espacio-tiempo, y como la teoría general de la relatividad lo afirma, es la geometría de este el que determina la gravedad. Pero, a la larga, la geometría vendrá dada por la cantidad de materia que el universo pueda contener.
Reflexión especular
Se pensaba que el mundo era simétrico respecto a CPT porque, al menos al nivel de las partículas elementales, era simétrico respecto a C, P y T independientemente. Ha resultado que no es este el caso. El mundo visto en un espejo se desvía un tanto del mundo visto directamente, y lo mismo sucede con el mundo visto cuando la partícula pasa al revés. Lo que sucede es que las desviaciones entre el mundo real y el universo en cada uno de esos casos se cancelan una a la otra cuando miramos las tres inversiones combinadas.
Aunque esto es verdad, también es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que procupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?
Los axiones se propusieron por primera vez a finales de la década de 1970 para resolver un misterio en la física de partículas conocido como el problema CP fuerte, aunque más recientemente se han propuesto como candidatos para la materia oscura, que es la misteriosa sustancia que forma casi un cuarto de la masa/energía del universo. Si existen, los axiones sería muy ligeros e interaccionarían muy débilmente con la materia – propiedades que hacen que sean difíciles de encontrar. De hecho, ningún experimento en la Tierra ha descubierto por ahora pruebas de los axiones.
Los cálculos de los cosmólogos muestran que en un universo en expansión como lo es el nuestro, sería de esperar que los Axiones (si realmente existen) formen una radiación de fondo parecida a la radiación de microondas de fondo de tres grados. Las irregularidades en este fondo de Axiones lo que pueden desempeñar el papel de la “materia oscura”.
¿Estamos perdidos y hablamos de fotinos, squarks, etc. Estas partículas que son predichas por las teorías que unifican todas las fuerzas de la naturaleza. Forman un conjunto de contrapartidas de las partículas a las que estamos habituados y que nos son bien conocidas. Se nombran en analogía a sus compaleras : el squars es el compañero supersimétrico del quark, el fotino del fotón, etxc. Las más ligeras de estas partículas ¿podrían ser la materia oscuira?. Si es así, cada partícula probablemente pesaría al menos cuarenta veces más que un protón.
Así que hablamos de “Materia en la Sombra” en algunas versiones de la Teoría de Supercuerdas en las que existen universos de materia en la Sombra que existen paralelos al nuestro. Los dos universos separados cuando la Gravedad se congeló separándose de las otras fuerzas. Las partículas de sombra interaccionan con nuestro mundo, sólo a tavés de la Gravedad y, algunos creen que son, las candidatas perfectas para ocupar el sitio de la “materia oscura”.
Algunos hasta se atreven a mostrarnos la distribución de WIMPs en la Galaxia
¿WIMPs en el Sol?
Hasta el momento, todas las partículas “raras” que hemos mencionado aquí, como posibles candidatas a ser “materia oscura”, son hipotéticas. No hay pruebas de que ninguna de ellas se vayan a encontrar, de hecho, en la Naturaleza. Sin embargo, sería poco serio no prestar alguna atención a la idea y a los argumentos que con ella van aparejados -un diminuto rayo de esperanza- viene a apoyar la existencia de WIMPs.
De hecho, la polémica es continuada y no dejan de salir noticias sobre estos extraños objetos:
Desde hace ya años se propuso la existencia de partículas débilmente interactuantes o WIMPs para explicar la presencia de una masa que no podemos ver en ciertos fenómenos astronómicos, como en la rotación de galaxias. El 83% de la masa del Universo podría estar constituido por materia oscura cuya naturaleza nos es desconocida. Se ha realizado un esfuerzo por parte de diversos grupos de investigación a lo largo de todo el mundo para poder detectar esas partículas, que, por definición, son muy difíciles de detectar.
Uno de los cristales empleados en CoGeNT. Fuente: CoGeNT Collaboration.
El experimento italiano DAMA/LIBRA ha venido detectando una modulación anual en la detección de unas partículas que podrían ser WIMPs durante los últimos tiempos. Sin embargo, otros grupos de investigación no lograban ver lo mismo. Ahora, el grupo de investigadores del experimento CoGeNT informa que están viendo una señal similar a la detectada por los italianos, por lo que se confirmarían sus resultados…”
Más de lo mismo, nadie se pone de acuerdo, unos dicen una cosa y los otros la contraria y, mientras tanto, “Científicos” bien situados, que ganan bastante dinero por asistir y hablar, nos van contando en charlas y siminarios, todas esas cuestiones que, sobre los WIMPs, las partículas supersimétricas, los Universos en Sombra, la Materia Oscura y, toda esa pléyade de fascinantes incongruencias, tanto les gusta oir al público en general.
Pues, siendo así (que lo es), sigamos suponiendo, conjeturando, intuyendo y teorizando pero, por favor, con cierto decoro.