lunes, 25 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Las estrellas y la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Pequeña Nube de Magallanes

 

 

 

  

 

 

 

 

 

 

 

Hay una veintena de estrellas que se encuentran dentro de un radio de acción marcado por los doce años-luz de distancia al Sol. ¿Cuál de ella se nos presenta como la más probable para que, algunos de sus planetas pudieran albergar alguna clase de vida, incluso Vida Inteligente? La estrella más cercana a nosotros es Alfa Centauri que, en realidad es un sistema estelar situado a unos 4.37 años-luz de nosotros (unos 42 billones de kilómetros). En realidad, se trata de un sistema de tres estrellas.

Alfa Centauri contiene al menos un planeta del tamaño terrestre con algo más de la masa de la Tierra que está orbitando a Alfa Centauri B. Sin embargo, su cercanía a la estrella, unos 6 millones de kilómetros lo hace tener una temperatura de más de 1.ooo ºC lo que parece ser muy caliente para albergar alguna clase  de vida.

http://bitacoradegalileo.files.wordpress.com/2011/07/alpha-y-beta-cen-hubble.jpg

Alfa Centauri, seguramente por su cercanñía a nosotros, ha ejercido siempre una sugestiva atracción para nosotros cuando miramos el cielo nocturno. Resulta ser, en su conjunto, la tercera estrella más brillante de todas, y junto con Hadar (Beta Centauri), las dos en la imagen de arriba, es una muy importante y útil referencia para la localización de la Cruz del Sur.  Además, y como se trata de una estrella triple, Alpha Centauri A, la componente principal, se constituye en una buena candidata para la búsqueda  de planetas del mismo tipo que la Tierra.

Las tres estrellas se formaron a partir de la misma nebulosa de materia interestelar. El trio de estrellas se van orbitando las unas a las otras a un ritmo como de vals, unidas por los lazos invisibles de la fuerza gravitatoria que generan y con la que se influyen mutuamente. Lo cierto es que las estrellas triples gozan de pocas probabilidades para albergar la vida, porque no pueden mantener a sus planetas en una órbita estable y segura, la inestablidad que producen las tres estrellas en esos posibles planetas, parece que sería insoportable para formas de vida inteligente. Claro que, las distancias a las que se encuentran unas estrellas de otras es grande y… ¿quién sabe? Nunca podemos afirmar nada sin haberlo confirmado.

La siguiente estrella más allá de Alfa Centauri es la estrella de Barnard, situada a 6 años-luz aproximadamente de nuestro Sol, o, lo que es lo mismo, a unos sesenta mil billones de kilómetros de distancia. Esta estrella parece contar con una familia de planetas. Sin embargo, es una estrella muy vieja, casi tanto como el propio universo, y, por tanto, es deficitaria en la mayoría de los elementos químicos esenciales para la vida. Es poco prometedora para buscar vida en sus alrededores.

Las 10 estrellas más cercanas al Sol se encuentran en un rango de distancia entre los 4 y 10 años luz. Para tener una idea, la Vía Láctea mide unos 100.000 años luz, lo cual convierte a estas estrellas en verdaderas vecinas:

                                                En un radio de 12,5 años-luz

  1. Alfa Centauri (que, en realidad, es un sistema de tres estrellas): a 4,2 años luz.
  2. Estrella de Barnard: a 5,9 años luz.
  3. Wolf 359: a 7,7 años luz.
  4. Lalande 21185: a 8,2 años luz
  5. Sirio (un sistema binario de estrellas): a 8,6 años luz
  6. Luyten 726-8 (otro sistema binario): a 8,7 años luz.
  7. Ross 154: a 9,7 años luz
  8. Ross 248: a 10,3 años luz
  9. Epsilon Eridani: a 10,5 años luz.
  10. Lacaille 9352: a 10,7 años luz

 

 

Más allá de Barnard existe un cierto numero de estrellas, todas ellas poco prometedoras para la existencia de vida y de inteligencia porque, o son demasiado pequeñas y frías para emitir la clase de luz que la vida tal como la conocemos requiere, o demasiado jóvenes como para que haya aparecido la vida inteligente en los planetas que las circundan. No encontraremos otra estrella que pueda albergar la vida y seres inteligentes hasta que no viajemos a una distancia próxima a los once años-luz del Sol.

Épsilon Eridani está situada a unos 10,5 años-luz del Sol, es una de las estrellas más cercanas  al Sistema Solar y la tercera más próxima visible a simple vista. Está en la secuencia principal, de tipo espectral K2, muy parecida a nuestro Sol y con una masa algo menor que éste, de unas 0,83 masas solares. Es joven, sólo tiene unos 600 millones de años de edad mientras que el Sol tiene 4.600 millones de años.

Épsilon emite menos luz visible y luz ultravioleta que nuestra estrella, pero probablemente sea suficiente para permitir allí el comienzo de la vida que, si tenemos en cuenta el corto tiempo que ha pasado, no llegaría a poder ser inteligente. Claro que, los cálculos realizados sobre la vida de las entrellas en general y sobre esta en particular… ¡No son fiables! Y, siendo así (que los), tampoco podemos estar seguro de lo que en sus alrededores pueda estar presente. Se le descubrió un planeta orbitando a su alrededor, Épsilon Eridani b, que se descubrió en el año 2000. La masa del planeta está en 1,2 ± 0,33 de la de Júpiter y está a una distancia de 3,3 Unidades Astronómicas. Se cree que existen algunos planetas de reciente formación que orbitan esta estrella.

El sol (izquierda) es de mayor tamaño y algo más caliente que Tau Ceti (derecha).

Más allá de Épsilon Eridani hay nueve estrellas que se encuentran todavía dentro de un margen de distancia del Sol que no sobrepasan los 12 años-luz. Sin embargo, todas ellas, menos una, son demasiado jóvenes, demasiado viejas, demasiado pequeñas o demasiado grandes para poder albergar la vida y la inteligencia. La excepción se llama Tau Ceti.

Tau Ceti está situada exactamente a doce años-luz de nosotros y satisface todas las exigencias básicas para que en ella (en algún planeta de su entorno) haya podido evolucionar la vida inteligente: Se trata de una estrella solitaria como el Sol -al contrario que Alfa Centauri- no tendría dificultad alguna en conservar sus planetas que no serían distorsionados por la gravedad generada por estrellas cercanas. La edad de Tau Ceti es la misma que la de nuestro Sol y también tiene su mismo tamaño y existen señales de que posee una buena familia de planetas. No parece  descabellado pensar que, de entre todas las estrellas próximas a nosotros, sea Tau Ceti la única con alguna probabilidad de albergar la vida inteligente.

Sistema solar de Tau Ceti

La noticia que publicaron los medios decía: ¡Descubren un nuevo planeta extrasolar que se encuentra en una zona habitable! El planeta orbita en torno a la estrella Tau Ceti, a doce años luz del Sol. Hay cinco cuerpos cuya masa oscila entre dos y seis veces la de la Tierra.

¿Quién sabe lo que en algunos de esos planetas que orbitan la estrella Tau Ceti pudiera estar pasando? Y, desde luego, dadas las características de su sistema planetario y la cercania que parece existir entre alguno de los mundos allí presentes, si algún ser vivo inteligente pudiera contempalr el paisaje al amanecer, no sería extraño que pudiera ser testigo de una escena como la que arriba contemplamos. ¿Es tan bello el Universo! Cualquier escena que podamos imaginar en nuestras mentes… ¡Ahí estará! en alguna parte.

Es cierto que la vida, podría estar cerca de nosotros y que, por una u otra circunstancia que no conocemos, aún no hayamos podido dar con ella. Sin embargo, lo cierto es que podría estar mucho más cerca de lo que podemos pensar y, desde luego, es evidente que el Sol y su familia de planetas y pequeños mundos (que llamamos lunas), son también lugares a tener en cuenta para encontrarla aunque, posiblemente, no sea inteligente.

Con certeza, ni sabemos cuentos cientos de miles de millones de estrellas puede haber en nuestra propia Galaxia, la Vía Láctea. Sabemos más o mneos la proporción de estrellas que pueden albergar sistemas planetarios y, sólo en nuestro entorno galáctico podrían ser cuarenta mil millones de estrellas las que pudieran estar habilitadas para poder albergar la vida en sus planetas.

Estas cifras asombrosas nos llevan a plantear muchas preguntas, tales como: ¿Estarán todas esas estrellas prometedoras dándo luz y calor a planetas que tengan presente formas de vida, unas inteligentes y otras no? ¿O sólo lo están algunas? ¿O ninguna a excepción del Sol y su familia. Algunos astronómos dicen que la ciencia ya conoce la respuesta a esas preguntas. Razonan que la Tierra es una clase de planeta ordinario, que contiene materiales también ordinarios que pueden encontrarse por todas las regiones del Universo, ya que, la formación de estrellas y planetas siempre tienen su origen en los mismos materiales y los mismos mecanismos y, en todas las regiones del Universo, por muy alejadas que estén, actúan las mismas fuerzas, las mismas constantes, los mismos ritmos y las mismas energías.+

                                            Gliese 581 ¿Otra promesa vida?

Planetas como la Tierra y muy parecidos los hay en nuestra propia Galaxia a miles de millones y, si la vida hizo su aparición en esta paradisíaca variedad de planeta, estos astrónomos se preguntan, ¿por qué no habría pasado lo mismo en otros planetas similares al nuestro? ¿Tiene acaso nuestro planeta algo especial para que sólo en él esté presente la vida? La Naturaleza, amigos míos, no hace esa clase de elecciones y su discurrir está regido por leyes inamovibles que, en cualquier circunstancia y lugar, siempre emplea los caminos más “simples” y lógicos para que las cosas resulten como nosotros las podemos contemplar a nuestro alrededor. Y, siendo así (que lo es), nada aconseja a nuestro sentido común creer que estamos sólos en tan vasto Universo.

El célebre astrónomo, con una sonrisa oía la pregunta del jóven periodista:

– ¿Verdad señor que sería un milagro encontrar vida en otros planetas?

– El milagro joven, ¡sería que no la encontráramos!

 

emilio silvera

“Mundo de Agua” Para el Origen de la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

La vida echó raíces hace más de cuatro mil millones años en nuestra naciente Tierra, un lugar más húmedo y más duro que ahora, bañado por la abundancia rayos ultravioleta. Lo que comenzó como simples células finalmente se transformó en mohos del fango, ranas, elefantes, seres humanos y el resto de los reinos vivos de nuestro planeta. ¿Cómo empezó todo? En un protoplasma “vivo”, una especie de “sopa” primordial de la que surgió aquella “primera” célula replicante.

 

 

 Alrededor de estos lugares viven criaturas que soportan temperaturas imposibles

Un nuevo estudio de investigadores del Laboratorio de Propulsión a Chorro y el Instituto de Astro-biología de la NASA describe cómo la energía eléctrica producida de forma natural en el fondo del mar pudo haber dado origen a la vida en la Tierra hace 4.000 millones de años. Aunque los científicos ya habían propuesto esta hipótesis -llamada “aparición de vida hidrotermal alcalina submarina”- el nuevo estudio reúne décadas de trabajo de campo, de laboratorio e investigación teórica en un gran imagen unificada.

http://imagenagropecuaria.com/revista/wp-content/uploads/2013/03/Agua-mundo.jpg

Según los resultados, sustentados en la teoría del “mundo de agua”, la vida pudo haber comenzado en el interior de fondos marinos cálidos, en un tiempo remoto cuando los océanos se extendían por todo el planeta. Esta idea de las fuentes hidrotermales como posibles lugares para el origen de la vida fue propuesta por primera vez en 1980 tras estudiarse en el fondo del mar cerca de Cabo San Lucas, México. Llamadas “fumarolas negras” son respiraderos de burbujas con agua hirviendo y fluidos ácidos calientes. Por el contrario, los respiraderos de ventilación en el nuevo estudio -la hipótesis del científico Michael Russell del JPL en 1989- son más suaves y se filtran con líquidos alcalinos. Uno de estos complejos de estos respiraderos alcalinos se encontró casualmente en el Océano Atlántico Norte en 2000, y fue apodado la Ciudad Perdida.

“La vida se aprovecha de los estados de desequilibrio en el planeta, como puede haber sido el caso hace miles de millones de años en los respiraderos hidrotermales alcalinos”, dijo Russell. “La vida es el proceso que resuelve estos desequilibrios”.

Imagen del fondo del océano Atlántico que muestra una colección de torres calcáreas conocidas como la "Ciudad Perdida"
Imagen del fondo del océano Atlántico que muestra una colección de torres calcáreas conocidas como la “Ciudad Perdida”. Se ha sugerido que las chimeneas alcalinas hidrotermales de este tipo son el lugar de nacimiento de los primeros organismos vivos de la Tierra antigua. Image Credit: NASA/JPL-Caltech

La teoría del mundo de agua de Russell y su equipo dice que las cálidas fuentes hidrotermales alcalinas mantienen un estado de desequilibrio con respecto al antiguo entorno ácido de los alrededores en el océano, que podría haber proporcionado la llamada energía libre para impulsar el surgimiento de la vida. De hecho, los respiraderos de ventilación podrían haber creado dos desequilibrios químicos. El primero fue un gradiente de protones, donde los protones -los iones de hidrógeno- se concentraron más en el exterior de las chimeneas de ventilación. El gradiente de protones podría haber sido aprovechado para la energía -algo que nuestros propios cuerpos hacen todo el tiempo en las estructuras celulares llamadas mitocondrias.

El segundo desequilibrio podría haber implicado un gradiente eléctrico entre los fluidos hidrotermales y el océano. Hace miles de millones de años, cuando la Tierra era joven, sus océanos eran ricos en dióxido de carbono. Cuando el dióxido de carbono del océano y de los combustibles de la ventilación -hidrógeno y metano- surgió a través de la pared de los respiraderos, los electrones pudieron haber sido transferidos. Estas reacciones podrían haber producido los compuestos de carbono -u otros orgánicos más complejos- que contienen ingredientes esenciales de la vida tal como la conocemos. Al igual que los gradientes de protones, los procesos de transferencia de electrones se producen regularmente en las mitocondrias.

Como pasa con todas las formas de vida avanzadas, las enzimas son la clave para que las reacciones químicas ocurran. En nuestros antiguos océanos, los minerales pueden haber actuado como enzimas, interactuando con los productos químicos alrededor y conducir reacciones. En la teoría del mundo de agua, dos tipos diferentes de “motores” de minerales podrían haber delineado las paredes de las estructuras del respiradero.

Uno de los pequeños motores se cree que ha utilizado un mineral conocido como óxido verde, lo que le permite aprovechar las ventajas del gradiente de protones para producir una molécula que contiene fosfato que almacena energía. El otro motor se cree que ha dependido de un metal raro llamado molibdeno.

“La teoría de Michael Russell se originó hace 25 años y, desde ese momento, las misiones espaciales de JPL han encontrado una fuerte evidencia de océanos de agua líquida y fondos rocosos en Europa y Encelado”, dijo Laurie Barge, investigadora del JPL. “Hemos aprendido mucho sobre la historia del agua en Marte, y pronto podemos encontrar planetas similares a la Tierra alrededor de estrellas lejanas. Al probar esta hipótesis del origen de la vida en el laboratorio de JPL, podemos explicar cómo la vida podría haber surgido en otros lugares de nuestro Sistema Solar o más allá, y también tener una idea de cómo buscarla”.

LA NASA

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La Gravedad y la cuántica

          La Gravedad Cuántica ¿Dónde estará?

El gran biólogo J.B.S. Haldane se sintió también atraído por las posibles consecuencias biológicas de las teorías cosmológicas en que las “constantes” tradicionales cambian con el paso del tiempo o donde los procesos gravitatorios se despliegan de acuerdo con un reloj cósmico diferente del de los procesos atómicos (¿será precisamente por eso que la relatividad general – el cosmos –, no se lleva bien con la mecánica cuántica – el átomo –?).

Resultado de imagen de La Gravedad y la cuántica

                                Todo lo grande está hecho de cosas pequeñas

Tales universos de dos tiempos habían sido propuestos por Milne y fueron las primeras sugerencias de que G podría no ser constante. Unos procesos, como la desintegración radiactiva o los ritmos de interacción molecular, podrían ser constantes sobre una escala de tiempo pero significativamente variables con respecto a la otra. Esto daba lugar a un escenario en el que la bioquímica que sustentaba la vida sólo se hacía posible después de una particular época cósmica, Haldane sugiere que:

Resultado de imagen de La vida primigenia infinitesimal

                                                               El Universo está lleno de formas de vida que ni podemos imaginar

“Hubo, de hecho, un momento en el que se hizo posible por primera vez vida de cualquier tipo, y las formas superiores de vida sólo pueden haberse hecho posibles en una fecha posterior.  Análogamente, un cambio en las propiedades de la materia puede explicar algunas de las peculiaridades de la geología precámbrica.”

Este imaginativo escenario no es diferente del que ahora se conoce como “equilibrio interrumpido”, en el que la evolución ocurre en una sucesión discontinua de brotes acelerados entre los que se intercalan largos periodos de cambio lento. Sin embargo, Haldane ofrece una explicación para los cambios.

Lo que tienen en común todas estas respuestas a las ideas de Eddington y Dirac es una apreciación creciente de que las constantes de la naturaleza desempeñan un papel cosmológico vital:

Resultado de imagen de Las constantes universales y la vida

Existe un lazo entre la estructura del universo en conjunto y las condiciones locales internas que se necesitan para que la vida se desarrolle y persista. Si las constantes tradicionales varían, entonces las teorías astronómicas tienen grandes consecuencias para la biología, la geología y la propia vida.

No podemos descartar la idea ni abandonar la posibilidad de que algunas “constantes” tradicionales de la naturaleza pudieran estar variando muy lentamente durante el transcurso de los miles de millones de años de la historia del universo. Es comprensible por tanto el interés por los grandes números que incluyen las constantes de la naturaleza. Recordemos que Newton nos trajo su teoría de la Gravedad Universal, que más tarde mejora Einstein y que, no sería extraño, en el futuro mejorará algún otro con una nueva teoría más completa y ambiciosa que explique lo grande (el cosmos) y lo pequeño (el átomo), las partículas (la materia) y la energía por interacción de las cuatro fuerzas fundamentales.

¿Será la teoría de Supercuerdas ese futuro?

Resultado de imagen de Robert Dicke

         Robert Dicke

Me referiré ahora aquí a un físico extraño. Se sentía igualmente cómodo como matemático, como físico experimental, como destilador de datos astronómicos complicados o como diseñador de sofisticados instrumentos de medida.

Tenía los intereses científicos más amplios y diversos que imaginarse pueda. Él decía que al final del camino todos los conocimientos convergen en un solo punto, el saber.

Resultado de imagen de La constante Gravitatoria variable

La balanza de gravitación es un instrumento muy sensible que permite demostrar la atracción entre dos masas y determinar el valor de la constante G.

Así de curioso, ya podéis imaginar que fue uno de los que de inmediato se puso manos a la obra para comprobar la idea de la constante gravitatoria variable de Dirac que podía ser sometida a una gran cantidad de pruebas observacionales, utilizando los datos de la geología, la paleontología, la astronomía, la física de laboratorio y cualquier otro que pudiera dar una pista sobre ello. No estaba motivado por el deseo de explicar los grandes números. Hacia mediados de la década de los 60 hubo una motivación adicional para desarrollar una extensión de la teoría de la gravedad de Einstein que incluye una Gvariable. En efecto, durante un tiempo pareció que las predicciones de Einstein no coincidían en lo referente o sobre el cambio de órbita de Mercurio que era distinta a las observaciones cuando se tenía en cuentra la forma ligeramente achatada del Sol.

Robert Dicke, que este era el nombre del extraño personaje, y su estudiante de investigación Carl Brans, en 1.961, demostraron que si se permitía una variación de G con el tiempo, entonces podía elegirse un ritmo de cambio para tener un valor que coincidiera con las observaciones de la órbita de Mercurio. Lamentablemente, se descubrió que todo esto era una pérdida de tiempo. El desacuerdo con la teoría de Einstein a inexactitudes de nuestros intentos de medir el diámetro del Sol que hacían que este pareciera tener una forma de órbita diferente a la real. Con su turbulenta superficie, en aquel tiempo, no era fácil medir el tamaño del Sol. Así que, una vez resuelto este problema en 1.977, desapareció la necesidad de una G variable para conciliar la observación con la teoría.

Resultado de imagen de Posible variación de las constantes físicas con el Tiempo

La llamada constante de estructura fina es adimensional (σ (alfa) 137). Se obtiene mediante la combinación de la velocidad de la luz con la constante de Planck y la carga de un electrón. Afecta a la estructura externa de cada átomo, que controla la forma en la que reaccionan los electrones de un átomo cuando este es atravesado por rayos de luz. Si la velocidad de la luz cambiara con el paso del tiempo, la constante de estructura fina cambiaría también, como lo haría el patrón característico de líneas producido por átomos.

De todas las maneras, lo anterior no quita importancia al trabajo realizado por Dicke que preparó una revisión importante de las evidencias geofísicas, paleontológicas y astronómicas a favor de posibles variaciones de las constantes físicas tradicionales. Hizo la interesante observación de explicar los “grandes números” de Eddington y Dirac bajo el apunte de que allí tenía que subyacer algún aspecto biológico que de momento no éramos capaces de ver.

Imagen relacionada

“El problema del gran tamaño de estos números es ahora fácil de explicar… Hay un único número adimensional grande que tiene su origen estático. Este es el número de partículas del universo. La edad del universo “ahora” no es aleatoria sino que está condicionada por factores biológicos… porque algún cambio en los valores de grandes números impedirían la existencia del hombre para considerar el problema”.

 

Imagen relacionada

Cuatro años más tarde desarrolló esta importante intuición con más detalle, con especial referencia a las coincidencias de los grandes números de Dirac, en una breve carta que se publicó en la revista Nature. Dicke argumentaba que formas de vidas bioquímicas como nosotros mismos deben su propia base química a elementos tales como el carbono, nitrógeno, el oxígeno y el fósforo que son sintetizados tras miles de millones de años de evolución estelar en la secuencia principal. (El argumento se aplica con la misma fuerza a cualquier forma de vida basada en cualesquiera elementos atómicos más pesados que el helio). Cuando las estrellas mueren, las explosiones que constituyen las supernovas dispersan estos elementos biológicos “pesados” por todo el espacio, de donde son incorporados en granos, planetesimales, planetas, moléculas “inteligentes” auto replicantes como ADN y, finalmente, en nosotros mismos que, en realidad, estamos hechos de polvo de estrellas.

Esta escala temporal está controlada por el hecho de que las constantes fundamentales de la naturaleza sean

Imagen relacionada

Hicieron falta 10.000 M de años para que la vida surgiera en el planeta Tierra

t(estrellas) ≈ (Gmp2 / hc)-1 h/mpc2 ≈ 1040 ×10-23 segundos ≈ 10.000 millones de años

No esperaríamos estar observando el universo en tiempos significativamente mayores que t(estrellas), puesto que todas las estrellas estables se habrían expandido, enfriado y muerto. Tampoco seríamos capaces de ver el universo en tiempos mucho menores que t(estrellas) porque no podríamos existir; no había estrellas ni elementos pesados como el carbono. Parece que estamos amarrados por los hechos de la vida biológica para mirar el universo y desarrollar teorías cosmológicas una vez que haya transcurrido un tiempo t(estrellas) desde el Big Bang.

Imagen relacionada

¿Cómo podremos saber si la vida surgió en la Tierra (como en otros planetas), o pudo llegar del Espacio Exterior

Así pues, el valor que del gran número nos dio Dirac N(t) no es en absoluto aleatorio. Debe tener un valor próximo al que toma N(t) cuando t esta cercano el valor t(estrella).

Todo lo que la coincidencia de Dirac dice es que vivimos en un tiempo de la Historia Cósmica posterior a la formación de las estrellas y anterior a su muerte. Esto no es sorprendente. Dicke nos está diciendo que no podríamos dejar de observar la coincidencia de Dirac: es un requisito para que exista vida como la nuestra.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

A medida que se expandía a partir de su estado primordial uniforme, el universo se enfriaba. Y con las temperaturas más bajas vinieron nuevas posibilidades. La materia fue capaz de agregarse en enormes estructuras amorfas: las semillas de las galaxias actuales. Empezaron a formarse los átomos allanando el camino para la química y la formación de objetos físicos sólidos.

Imagen relacionada

Comparado con los patrones actuales, el universo en dicha época era sorprendentemente homogéneo. El material cósmico estaba presente por todo el espacio con una uniformidad casi perfecta. La Temperatura era la misma en todas partes. La materia, descompuestas en sus constituyentes básicos por el tremendo calor, estaba en un estado de extraordinaria simplicidad. Ningún hipotético observador hubiera podido conjeturar a partir de este estado poco prometedor que el universo estaba dotado de enormes potencialidades. Ninguna clave podía desvelar que, algunos miles de millones de años más tarde, billones de estrellas refulgentes se organizarían en miles de millones de galaxias espirales; que aparecerían planetas y cristales, nubes y océanos, montañas y glaciares; que uno de esos planetas (al menos que sepamos) sería habitado por árboles y bacterias, por elefantes y peces. Ninguna de estas cosas podía predecirse.

La Tierra se formó hace aproximadamente 4550 millones de años y la vida surgió unos mil millones de años después. Es el hogar de millones de especies, incluyendo los seres humanos y actualmente el único cuerpo astronómico donde se conoce la existencia de vida.18 La atmósfera y otras condiciones abióticas han sido alteradas significativamente por la biosfera del planeta, favoreciendo la proliferación de organismos aerobios, así como la formación de una capa de ozono que junto con el campo magnético terrestre bloquean la radiación solar dañina, permitiendo así la vida en la Tierra.

La historia de la vida en la Tierra pretende narrar los procesos por los cuales los organismos vivos han evolucionado,  desde el origen de la vida en la Tierra, hace entre  3800 millones de años y 3500 millones de años, hasta la gran diversidad y comp`lejidad biológica presente en las diferentes formas de los organismos, su fisiología y comportamiento que conocemos en la actualidad; así como la naturaleza que, en forma de catástrofes globales, cambios climáticos o uniones y separaciones de continentes y océanos, han condicionado su desarrollo. Las similitudes entre todos los organismos actuales indican la existencia de un ancestro común universal del cual todas las especies conocidas se han diferenciado a través de los procesos de la evolución

Muchos fenómenos maravillosos han emergido en el universo desde aquella época primera: agujeros negros monstruosos tan masivos como miles de millones de soles, que engullen estrellas y escupen chorros de gas; estrellas de neutrones y púlsares que giran miles de veces por segundo y cuyo material está comprimido hasta una densidad de mil millones de toneladas por centímetro cúbico; partículas subatómicas tan esquivas que podrían atravesar una capa de plomo sólido de años-luz de espesor y que, sin embargo, no dejan ninguna traza discernible; ondas gravitatorias fantasmales producidas por la colisión de dos agujeros negros que finalizan su danza de gravedad fusionando sus terribles fuerzas de densidades “infinitas”. Pese a todo, y por sorprendentes que estas cosas nos puedan parecer, el fenómeno de la vida es más notable que todas ellas en conjunto.

           ¿De dónde surgieron con su gracia y colorido, su agilidad de movimiento y su sentido de orientación?

En realidad, la Vida, no produjo ninguna alteración súbita o espectacular en la esfera cósmica. De hecho, y a juzgar por la vida en la Tierra, los cambios que han provocado han sido extraordinariamente graduales. De todas formas, una vez que la vida se inició, el universo nunca sería el mismo. De manera lenta pero segura, ha transformado el planeta Tierra. Y al ofrecer un camino a la consciencia, la inteligencia y  la tecnología, ella tiene la capacidad de cambiar el universo.

Si mramos esa Nebulosa que abre este trabajo, podemos pensar en qué materiales están ahí presentes sometidos a fuerzas de marea de estrellas jóvenes y de inusitadas energías de radiación ultravioleta que, junto con la fuerza de gravedad, conformar el lugar y hacen que se distorsionen los materiales en los que inciden parámetros que los hacen cambiar de fase y transmutarse en otros distintos de los que, en principio eran. Ahí, en esa nubes inmensas productos de explosiones supernovas, están los materiales de los que se forman nuevas estrellas y mundos que, si se sitúan en el lugar adecuado…pueden traer consigo la vida.

Resultado de imagen de Especies de vida  en nuestro planeta

¡Han sido y son tantas formas de vida las que se han extinguido  y las que están en la Tierra! Dicen los expertos que sólo el uno por ciento de las especies que han existido viven actualmente en nuestro planeta y, teniendo en cuenta que son millones, ¿cuántas especies han pasado por aquí?

Claro que no podemos hacer caso de todo lo que los científicos puedan decir alguna que otra vez que, en realidad, va encaminado a producir el asombro de la gente corriente, alimentar el consumo público y, sobre todo, conseguir subvenciones para nuevos proyectos. Es curioso que, la ignorancia, proporcione mejor situación para seguir investigando que la certeza, toda vez que, con la incertidumbre del qué será, se despierta la curiosidad y nos proporciona una motiviación, en cambio, la certeza nos relaja.

Resultado de imagen de Una Colonia en el planeta Marte

Está claro que debemos apoyar con fuerza el programa de Astrobiología de la NASA y de las otras naciones. Si queremos que, finalmente, se lleve a cabo un Proyecto de cierta entidad, tendremos que aunar las fuerzas y, las distintas Agencias Espaciales del Mundo Occidental tendrán que poner sobre la mesa lo que tienen para que, de una vez por todas podamos, por ejemplo, hacer realidad una colonia terrestre en el Planeta Marte.

Todos sabemos que resolver el problema de biogenesis está en la mente de muchos. Los astrónomos consideran que planetas como Júpiter y Saturno y, también sus lunas, son inmensos laboratorios prebióticos, en donde los pasos que trajeron la vida a la Tierra podrían estar ahora mismo allí presentes y, de ahí, la enorme importancia que tendría poder investigarlos en la forma adecuada.

¿Qué sorpresas nos aguarda en Titán con su atmósfera y acéanos de metano?

Resolver el misterio de la biogénesis no es sólo un problema más de una larga lista de proyectos científicos indispensables. Como el origen del Universo y el origen de la Consciencia, representa algo en conjunto  mucho más profundo, puesto que pone a prueba las bases mismas de nuestra ciencia y de nuestra visión del mundo. Un descubrimiento que promete cambiar los principios mismos en los que se basa nuestra comprensión del mundo físico merece que se le de una prioridad urgente.

El misterio del origen de la vida ha intrigado a filósofos, teólogos y científicos durante dos mil quinientos años. Durante los próximos siglos tendremos la oportunidad de ahondar más en ese misterio grandioso que es la Vida, una oportunidad dorada que no debemos, de ninguna manera desechar, ahí tendremos la oportunidad, con los nuevos medios tecnológicos y de todo tipo que vendrán, los avances en el saber del mundo, la nueva manera de mirar las cosas, la nueva física…Todo ello, nos dará la llave para abrir esa puerta durante tanto tiempo cerrada. Ahora parece un poco entreabierta pero, no podemos conseguir que se abra de par en par para poder mirar dentro del misterio central.

Imagen relacionada

Árbol filogenético mostrando la divergencia de las especies modernas de su ancestro común en el centro. Los tres dominios están coloreados de la siguiente forma; las Bacterias en azul, las Archeas en verde, y las Eucariotas en color rojo. Puede parecer mentira que a partir de estos minúsculos seres puediera comenzar la fascinante aventura de la Vida en la Tierra.

Aquellos primeros tiempos fueron duros y de una larga transición para nuestro planeta, las visitas de meteoritos, el inmenso calor de sus entrañas, la química de los materiales fabricados en las estrellas que allí estaban presentes…Todo ello, contribuyó, junto a otros muchos y complejos sucesos, fuerzas e interacciones, a que, hacde ahora unos cuatro mil millones de años, surgiera aquella primera célula replicante que, con el tiempo, nos trajo a nosotros aquí.

Los protobiontes fueron los precursores evolutivos de las primeras células procariotas. Los protobiontes se originaron por la convergencia y conjugación de microesferas de proteínas, carbohidratos, lípidos y otras substancias orgánicas encerradas por membranas lipídicas. El agua fue el factor más significativo para la configuración del endo plama de los protobiontes.

Como físico teórico hecho así mismo, algo ingenuo y con un enorme grado de fantasía en mis pensamientos, cuando pienso acerca de la vida a nivel molecular, la pregunta que se me viene a la mente es: ¿Cómo saben lo que tienen que hacer todos estos átomos estúpidos? La complejidad de la célula viva es inmensa, similar a la de una ciudad en cuanto al grado de su elaborada actividad. Cada molécula tiene una función específica y un lugar asignado en el esquema global, y así se manufacturan los objetos correctos. Hay mucho ir y venir en marcha. Las moléculas tienen que viajar a través de la célula para encontrarse con otras en el lugar correcto para llevar a cabo sus tareas de forma adecuada.

Imagen relacionada

Todo esto sucede sin un jefe que dé órdenes a las moléculas y las dirija a sus posiciones adecuadas. Ningún supervisor controla sus actividades. Las moléculas hacen simplemente lo que las moléculas tienen que hacer: moverse ciegamente, chocar con las demás, rebotar, unirse. En el nivel de los átomos individuales, la vida es una anarquía: un caos confuso y sin propósito. Pero, de algún modo, colectivamente, estos átomos inconscientes se unen y ejecutan, a la perfección, el cometido que la Naturaleza les tiene encomendados en la danza de la vida y con una exquisita precisión.

File:A-B-Z-DNA Side View.png

Ya más recientemente, evolucionistas tales como el inglés Richard Dawkins, han destacado el paradigma del “gen egoista”, una imagen poderosa que pretende ilustrar la idea de que los genes son el objetivo último de la selección natural. Los teóricos como Stuart Kauffman, asociado desde hace tiempo al famoso Instituto de Santa Fe, donde los ordenadores crean la llamada vida artificial, insisten en la “autoorganización” como una propiedad fundamental de la vida.

¿Puede la ciencia llegar a explicar un proceso tan magníficamente autoorquestado? Muchos son los científicos que lo niegan al estimar que, la Naturaleza, nunca podrá ser suplantada ni tampoco descubierta en todos sus secretos que, celosamente nos esconde. Sin embargo…Tengo mis dudas. Ellos piensan que la célula viva es demasiado elaborada, demasiado complicada, para ser el producto de fuerzas ciegas solamente y, que debajo de esa aleatoriedad y de un falso azar, deben estar escondidas otras razones que no llegamos a alcanzar. La Ciencia podrá llegar a dar una buena explicación de esta o aquella característica individual, siguen diciendo ellos, pero nunca explicará la organización global, o cómo fue ensamblada la célula original por primera vez.

Imagen relacionada
Arriba sección transversal a través de un liposoma.

    = Sección captor de agua de moléculas lípidas

    = Colas repelentes de agua

 

 

Las «alfombras» microbianas son múltiples capas, multi-especies de colonias de bacterias y otros organismos que generalmente sólo tienen unos pocos milímetros de grosor, pero todavía contienen una amplia gama de entornos químicos, cada uno de ellos a favor de un conjunto diferente de microorganismos. Hasta cierto punto, cada alfombra forma su propia cadena alimenticia, pues los subproductos de cada grupo de microorganismos generalmente sirven de “alimento” para los grupos adyacentes.

Los estromatolitos (arriba) son pilares rechonchos construidos como alfombras microbianas que migran lentamente hacia arriba para evitar ser sofocados por los sedimentos depositados en ellos por el agua. Ha habido un intenso debate acerca de la validez de fósiles que supuestamente tienen más de 3000 millones de años, con los críticos argumentando que los llamados estromatolitos podrían haberse formado por procesos no biológicos.En 2006, otro descubrimiento de estromatolitos fue reportado en el mismo lugar de Australia, como los anteriores, en las rocas de hace 3500 millones de años.

En las modernas alfombras bajo el agua, la capa superior consiste a menudo de cianobacterias fotosintéticas  que crean un ambiente rico en oxígeno, mientras que la capa inferior es libre de oxígeno y, a menudo dominado por el sulfuro de hidrógeno emitido por los organismos que viven allí.  Se estima que la aparición de la fotosíntesis oxigénica por las bacterias en las alfombras, aumentó la productividad biológica por un factor de entre 100 y 1.000. El agente reductor utilizada por la fotosíntesis oxigénica es el agua, pues es mucho más abundante que los agentes geológicos producidos por la reducción requerida de la anterior fotosíntesis no oxigénica. A partir de este punto en adelante, la «vida» misma produce mucho más los recursos que necesita que los procesos geoquímicos. El oxígeno, en ciertos organismos, puede ser tóxico, pues éstos no están adaptados a él, así mismo, en otros organismos que sí lo están, aumenta considerablemente su eficiencia metabólica.  El oxígeno se convirtió en un componente importante de la atmósfera de la Tierra alrededor de hace 2400 millones de años.

 Al igual que muchas esponjas, hay cianobacterias fotosintéticas que viven dentro de sus células.

¿Cuál es el secreto de esta sorprendente organización? ¿Cómo puede ser obra de átomos estúpidos? Tomados de uno en uno, los átomos solo pueden dar empujones a sus vecinos y unirse a ellos si las circunstancias son apropiadas. Pero colectivamente consiguen ingeniosas maravillas de construcción y control, con un ajuste fino y una complejidad todavía no igualada por ninguna ingeniería humana. De algún modo la Naturaleza descubrió cómo construir intrincadas máquinas que llamamos célula viva, utilizando sólo todas las materias primas disponibles, todas en un revoltijo. Repite esta hazaña cada día en nuestros propios cuerpos, cada vez que se forma una nueva célula. Esto ya es un logro fantástico. Más notable incluso es que la Naturaleza construyó la primera célula a partir de cero. ¿Cómo lo hizo?

Una célula es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo. De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano.. Las células suelen poseer un tamaño de 10 μm y una masa de 1 ng, si bien existen células mucho mayores.

Resultado de imagen de Los seres vivos se reproducen

Algunas veces he pensado que el secreto de la vida puede proceder de sus propiedades de información; un organismo es un completo sistema de procesos de información. La complejidad y la información pueden ser iluminadas por la disciplina de la termodinámica. La vida es tan sorprendente que, de algún modo, debe haber podido sortear las leyes de la termodinámica. En particular, la segunda ley que puede considerar como la más fundamental de todas las leyes de la naturaleza, describe una tendencia hacia la desintegración y la degeneración que la vida, ¡claramente evita! mediante la reproducción.

¿Cómo es posible tal cosa?

Si alguno de ustedes sabe contestar esa pregunta…que nos lo exponga, así sabremos un poco más.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando pensamos en la edad y el tamaño del universo lo hacemos generalmente utilizando medidas de tiempo y espacio como años, kilómetros o años-luz. Como ya hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿Por qué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

 A medida que examinamos volúmenes cada vez mayores del Universo, la densidad de material que encontramos sigue disminuyendo hasta que salimos de las dimensiones de los cúmulos de galaxias. Cuando llegamos a dicha escala, la acumulación de materia empieza a desvanecerse y se parece cada vez más a una minúscula perturbación aleatoria de un mar uniforme de materia, con una densidad de aproximadamente un átomo por cada metro cúbico.

cumulos galaxias 05 1280x800 La jerarquía del Universo: a mayor tamaño, menor densidad.

 A medida que buscamos en las mayores dimensiones visibles del Universo, encontramos que las desviaciones de la uniformidad perfecta de la materia y la radiación se quedan en un bajo nivel de sólo una parte en cien mil. Esto nos muestra que el Universo no es lo que se ha llegado a conocerse como un fractal, en donde la acumulación de materia en cada escala parece una imagen ampliada de la escala superior siguiente.

Que el Universo posea una densidad muy baja no es un accidente. La expansión del Universo relaciona su tamaño y su edad con la atracción gravitatoria del material que contiene. Para que el Universo se expanda el tiempo suficiente para permitir que los ladrillos de la vida se formen en los interiores de las estrellas debe tener una edad de miles de millones de años. Esto significa que debe tener una extensión de de miles de millones de años luz y poseer una densidad de materia promedio muy pequeña y una temperatura muy baja.

Imagen relacionada

Siempre hemos tratado de crear una teoría nueva para describir la naturaleza cuántica de la gravedad y por el camino ha emergido un nuevo significado para las unidades naturales de Planck: Masa de Planck, Energía de Planck,  Longitud de Planck, Tiempo de Planck, Temperatura de Planck.

Mp = (hc/G)½ = 5’56 × 10-5 gramos
L= (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032 ºKelvin

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G(constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.

La constante de Planck racionalizada (la más utilizada por los físicos), se representa por ћ que es igual a h/2π que vale del orden de 1’054589×10-34 Julios segundo.

Un estudio reveló que la complejidad de los universos siempre aumenta con el tiempo y que nunca se reduce, independientemente de cómo se desarrollan los modelos. Si consideramos el Universo como un Sistema cerrado, su entropía aumentará y el Caos se irá haciendo el dueño de la situación.

En las unidades de Planck, una vez más, vemos un contraste entre la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos.”

 

 

Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales”; la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es fácil caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

http://apod.nasa.gov/apod/image/0310/galaxies_sdss_big.jpg

Después de identificar las galaxias en imágenes bidimensionales como la mostrada arriba a la derecha, se mide la distancia para crear el mapa tridimensional. El SDSS actualmente reporta información en tres dimensiones para más de 200 000 galaxias, rivalizando con el conteo de galaxias en 3D del mapa celeste de Campo en Dos Grados.

C:\Enviar\fondoastro.gif

La edad actual del universo visible ≈ 1060 tiempos de Planck

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

La masa actual del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

Densidad actual del universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

Temperatura actual del Universo visible ≈ 10-30 de la Planck

En una sencilla y simple mirada, podemos encontrar la Belleza de todo un universo y, adentrarnos en ese brillo sugerente de la pupila que nos adentra hacia el interior de un Cosmos de inusitados misterios y lleno de promesas de cosas maravillosas que, como en el universo, allí podemos encontrar. Se puede dar la paradoja de que, allí, dentro de una simple mirada, podamos encontrar el infinito.

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.

Pero, pese a la enorme edad del universo en “tics” de Tiempo de Planck,  hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

         La vida que surgió en el planeta Tierra a partir de los materiales “fabricados” en las estrellas de los que se formaron los mundos que, situados en el lugar adecuado, con agua líquida, océanos y atmósfera, pudieron darse las condiciones adecuadas para la formación de esa “sopa primordial” o, protoplasma vivo del que surgiría aquella primera célula replicante que dio el primer paso a la aventura de la Vida.

¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

                En lugares como este se forman los elementos de la vida

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

Esta marca oscura y estirada es la última cicatriz de impacto de Júpiter, un penacho de restos creado mientras un pequeño asteroide o un cometa se desintegraba tras zambullirse en el interior de la atmósfera del gigante gaseoso.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta. La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución.

Cuando comento este tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.

La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Se desarrolló la diversidad una vez desaparecidos los grandes depredadores. Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros. Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros, en comparación, llevamos tres días y, desde luego, ¡la que hemos formado!

Despues de los Dinosaurios surgieron otras formas de vida que, evolucionadas, llegaron hasta aquí (arriba la muestra).

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales; el t(bio) – tiempo biológico para la aparición de la vida – algo más extenso.

       La atmósfera actual requirió un largo proceso

Muchos son los parámetros a tener en cuenta para llegar a la formación de nuestra atmósfera planetaria y todo el ecosistema que tenemos y del que podemos disfrutar. Claro que, nadie cae en la cuenta de que, eso lo tenemos y es posible, gracias a unos “seres” infinitesimales,los procariotas que realizan el “milagro”.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida, y en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

aurora_australis_20050911

                                              Aurora boreal

Formacion de Auroras Boreales y Australes, Cinturones de Van Allen, Ciclo del Agua, Formacion de Nubes, Tipos de Nubes, Cristales de Hielo y Nieve, Niebla, Vientos, Ciclones y Anticlones, Formacion de Tornados, Formacion de Huracanes, Relampagos, Refraccion de la Luz, Corrientes Oceanicas, Capa de Ozono, Patrones de Temperatura, Patrones Precipitacion, Origen de la Atmosfera, Termometro, Termimetro, Barometro, Pluviometro.

Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.

Bacteriofagos: la forma de vida más común de la Tierra

Múltiples formas de vida, tanto macro como microscópicas, están presentes en nuestro planeta, y, de la misma manera, lo estarán en otros que, estando en la zona habitable de su estrella, tengan condiciones similares o parecidas a las nuestras.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del universo, hay también una aparente coincidencia entre la edad del universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

Human.svg

Desde la extinción del Homo hace 45 000 años, el Homo sapiens es la única especie conocida del género Homo que aún perdura. La imagren de arriba estaba en una placa llevada a bordo de la Pioneer 11 y Vyager I y II,  representando a un hombre y una mujer con la intención de darnos a conocer a posibles inteligencias que existan en otros mundos fuera de nuestro Sistema solar.

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo Sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el universo, se hablará de miles de millones de años.

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

                            Como decía Peter Kolosimo… “Hay otros mundos pero están en este”

A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero,  en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos que pudieran estar presentes en otros mundos lejanos que, como el nuestro…posibilito la llegada de la vida.

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y la vida no sería posible en ellos. Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina. Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes. Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades. Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, no se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

Las constantes de la naturaleza ¡son intocables!

Un equipo de astrónomos ha conseguido encontrar una vasta reserva de gas intergaláctico situada a unos 400 millones de años luz de la Tierra en la que podría encontrarse la “materia perdida” del Universo que los científicos llevan años buscando.

          Miles de millones de galaxias formadas a lo largo de miles de millones de años

Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y la gravitación nos dice que la edad del universo esta directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del universo es hoy de poco más que 1 átomo por mde espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existen en el universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

La expansión del universo es precisamente la que ha hecho posible que el alejamiento entre estrellas, con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotros. Diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión permitieron que, con la temperatura ideal y una radiación baja, los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es sólo una mota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el universo.

El ser humano ha hecho un largo recorrido para ahora sentirse insignificante.

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos. Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad, ni en ellas está el poder de ahondar en el porqué de las cosas. Nosotros sí podemos hacer todo eso y más.

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, b, que es aproximadamente igual a 1/1.836, y la constante de estructura fina, a, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos  β demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de beta el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.

Si en lugar de a versión b, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de a, entonces, a menos que  a> 0,3 a½, los elementos como el carbono no existirían.

átomo de carbono

La molécula de Carbono que hace posible la Vida en nuestro mundo

No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón →  helio-2.

Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida.

¡Es todo tan complejo! Sin embargo, una cosa tengo clara: ¡El destino de la materia es evolucionar hacia la Vida!

emilio silvera