A pesar del tiempo transcurrido, la Vida, nos sigue asombrando. ¿Qué pasó para que surgiera?
Nuevas estrellas, vientos estelares, radiación, energías, púlsares, agujeros negros, enanas rojas y blancas, mundos…¿Civilizaciones? ¡Nos queda tanto por saber que, ni nosotros mismos nos conocemos-
Aquellos primeros intentos del hombre por conocer el Universo y el lugar que ocupaba en él, convertía ese misterio de la Naturaleza en una poderosa historia que, desde épocas remotas, ha estado siempre desafiando nuestro intelecto. Cuando llegamos a un aceptable nivel de conocimientos, pudimos buscar los fósiles de animales como los dinosaurios siguen causando el asombro del público en general y nos transportan a un tiempo en los que reinaban en aquellos frondosos bosques mesozoicos por los que bullía la vida de aquellas bestias prodigiosas.
Cráneo de Lucy, el fósil de un niño de hace 3,3 millones de años de la especie Astrolopithecus afarensis. El cráneo de Lucy y unos huesos diminutos, cuidadosamente dispuestos en una vitrina, nos transportan hasta la cálida sabana africana en la que se gestó hace unos tres millones de años, la aventura de la especie humana.
Los más antiguos son los trilobites, esos monarcas de los mares cámbricos que, con sus extremidades articuladas, deambulaban por los arrecifes tropicales hace unos quinientos millones de años.
Pocos especímenes inspiran una mayor emoción entre los coleccionistas de fósiles que un trilobite completo. Estos antiguos artrópodos, parientes evolutivos de las langostas, arañas e insectos, se extinguieron hace muchos millones de años, pero a veces se les encuentra magníficamente conservados.
Una cepa de la bacteria beta-proteobacteria, una clase bastante común, interactúa con el uranio como parte de su proceso metabólico, dejándolo inerte.
Los fósiles de animales, reclamados por la cultura popular tanto como por la ciencia, nos ofrece una crónica biológica de importante envergadura. Sin embargo, los fósiles sólo registran los capítulos más recientes de la colosal épica evolutiva de la Tierra. La historia completa de la vida abarca nada menos que cuatro mil millones de años, desde los extraños mundos de los océanos sulfurosos que se extendían bajo una atmósfera asfixiante, pasando por bacterias que respiraban hierro y quimeras microscópicas, hasta llegar por fin a nuestro familiar mundo de Oxígeno y Ozono, de valles boscosos, de animales que nadan, corren o vuelan. Sheherazade no habría imaginado un cuento más fascinante que esa realidad que nos cuenta la historia de la vida en el planeta Tierra.
Siendo mucho lo que, sobre la vida, hemos podido saber, no es suficiente para dar una explicación convincente. Cada nuevo dato, cada nuevo descubrimiento de los científicos especialistas, nos viene a plantear nuevas preguntas que no sabemos contestar.
Acordaos de lo que decía Jhon Archibal Wheeler, aquel gran Físico:
“Vivimos en una isla rodeada por un mar de ignorancia” Y, cada día, tenemos la obligación de buscar las respuestas que nos lleven a saber, de forma tal que, cada vez la isla se haga más grande y ese mar…, al menos se reduzca en una buena proporción.”
La historia científica de la vida es una narración apasionante que, correctamente explicada, nos ayuda a comprender no sólo nuestro pasado biológico sino también la Tierra y toda la vida que nos rodea en la actualidad. Esa diversidad biológica es el producto de casi cuatro mil millones de años de evolución. Somos parte de ese legado; al intentar comprender la historia evolutiva de la vida, comenzamos a entender nuestro propio lugar en el mundo y nuestra responsabilidad como administradores de un planeta que nos dio cobijo y al que nos tuvimos que adaptar lo mismo que él, el planeta, se adaptó a la presencia de la vida que, de alguna manera cambió su entorno climático, precisamente debido, a esa presencia viviente que generó las precisas condiciones para poder estar aquí.
La historia de la vida tiende a relatarse (no pocas veces) al estilo de la genealogía de Abraham: las bacterias engendraron a los protozoos, los protozoos engendraron a los invertebrados, los invertebrados engendraron a los peces, y así sucesivamente. Tales listas de conocimientos adquiridos pueden memorizarse, pero no dejan mucho espacio para pensar. La cuestión no es tan sencilla y los descubrimientos de la paleontología, la más tradicional de las empresas científicas, se entrelazan con nuevas ideas nacidas de la biología molecular y la geoquímica.
Ha sido en la Antártida donde una misión científica conjunta de Australia, Estados Unidos y Sudáfrica, formada por doce científicos, han encontrado casi una tonelada de huesos de dinosaurios con una edad estimada en 71 millones de años.
Los huesos de los Dinosaurios son grandes y espectaculares y hacen que los que los contemplan (niños y mayores), abran los ojos como platos, asombrados de tal maravilla. Pero, aparte del tamaño de sus habitantes, el mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutiles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hacia el mundo que conocemos hoy.
Colonias de estromatolitos
Pero, ¿Cómo podemos llegar a comprender acontecimientos que se produjeron hace mil millones de años o más? Una cosa es aprender que en las llanuras mareales de hace mil quinientos millones de años vivían bacterias fotosintéticas, y otra muy distinta cómo se infiere que unos fósiles microscópicos pertenecen a bacterias fotosintéticas, cómo se averigua que las rocas que los rodean se formaron en antiguas llanuras mareales y cómo se estima su edad en mil quinientos millones de años.
Las rocas australianas se han convertido en el lugar más idóneo del planeta para buscar indicios del origen de la vida en la Tierra. Ha sido en la formación Strelley Poll, al oeste del país, en Pilbara, donde un equipo de científicos, australianos en su mayoría, ha descubierto los fósiles microscópicos de unas bacterias que vivieron hace 3.400 millones de años y que aparecen asociados a diminutos cristales de pirita.
El leitmotiv epistemológico de cómo sabemos lo que creemos que sabemos, en realidad, aparece de manera espontánea a base de mucho estudio de campo, investigación exhaustiva en los más dispares rincones de la Tierra y, un profundo estudio concatenado en el tiempo de todo aquello que, en cada exploración pueda ir apareciendo. En tanto que empresa humana, estamos inmersos también en un relato de exploración que se extiende desde el espacio interior de las moléculas al espacio literalmente exterior de Marte y otros planetas.
Uno de los temas más claros de la historia evolutiva es el carácter acumulativo de la diversidad biológica. Las especies individuales (al menos las de los organismos nucleados) aparecen y desaparecen en una sucesión geológica de extinciones que ponen de manifiesto la fragilidad de las poblaciones en un mundo de competencia y cambio ambiental –de formas de vida con una morfología y fisiología características- es una historia de acumulación. La visión de la evolución a gran escala es indiscutiblemente la de una acumulación en el tiempo gobernada por las reglas de funcionamiento de los ecosistemas. La serie de sustituciones que sugieren los enfoques al estilo de la genealogía de Abraham no consigue captar este atributo básico de la historia biológica.
Así, creemos saber que la vida nació por mediación de procesos físicos en la Tierra primigenia. Estos mismos procesos –tectónicos, oceanográficos y atmosféricos- sustentaron la vida era tras era al tiempo que modificaban continuamente la superficie de la Tierra. Por fin la vida se expandió y se diversificó hasta convertirse en una fuerza planetaria por derecho propio, uniéndose a los procesos tectónicos y físico-químicos en la transformación de la atmósfera y los océanos.
Dondequiera que choquen las relativamente rápidas placas tectónicas oceánicas con las enormes placas continentales, se forman cadenas montañosas en continua elevación. Los ejemplos más espectaculares se subducción y formación montañosa son, respectivamente, la placa del Pacífico sumergiéndose en las profundas fosas del Asia oriental, y el Himalaya, que se eleva por el choque de las placas índica y euroasiática. Todo forma parte del proceso que llevó a la vida.
Para mí y para cualquiera que emplee la lógica de la ciencia que se guía por los hechos probados, el surgimiento de la vida como una característica definitoria –quizá la característica definitoria- de nuestro planeta es algo extraordinario.
¿Cuántas veces ha ocurrido lo mismo en la vastedad del Universo? Es lo primero que se me viene a la mente cuando (en la noche silenciosa, oscura y tranquila lejos del bullicioso ambiente de las ciudades y de su molesta contaminación lumínica), miro hacia las estrellas brillantes del cielo que, muy lejanas en regiones remotas, también como nuestro Sol, están rodeadas de mundos que, como el nuestro, habrán tenido la misma posibilidad que la Tierra para que la vida, pudiera surgir.
Hacer aquí un recorrido pormenorizado del largo camino que la vida ha tenido que recorrer, y dibujar un esquema a modo de un árbol de la vida, es imposible. El presente trabajo trata simplemente, de dejar una idea básica de cómo la vida llegó aquí, al planeta Tierra, y, de cómo pudo evolucionar con el paso del tiempo y dentro de su rica diversidad.
En todos estos escenarios está presente la vida
Los expertos si han construido un árbol de la vida a partir de comparaciones ente secuencias de nucleótidos de genes de diversos organismos, las plantas y los animales quedan reducidos, en ese árbol, a brotes en la punta de una sola de las ramas. La mayor diversidad de la vida y, por extensión, la mayor parte de su historia, es microbiana. Así lo atestiguan todos y cada uno de los hallazgos encontramos en las rocas precámbricas que contienen fósiles de aquellas primeras formas de vida.
Y, una cosa está muy clara y no se presta a ninguna clase de dudas: Las Bacterias y las Arqueas, son los arquitectos de los ecosistemas terrestres.
Biólogos expertos indiscutibles de probada valía y reconocido prestigio, han llegado a sugerir que los genes de los organismos actuales contienen el relato completo de la historia evolutiva. Pero, de ser así se trataría, como en las historias de Shakespeare, de relatos limitados a los vencedores de la vida. Sólo la paleontología nos puede hablar de los trilobites, los dinosaurios y otras maravillas biológicas que ya no adoran la faz de la Tierra.
Para comprender la historia de la vida, tenemos que urdir en una misma tela los descubrimientos de la geología y de la biología comparativa, utilizando los organismos vivos para reanimar a los fósiles y a los fósiles para averiguar cómo ha llegado a formarse la diversidad de nuestra propia era.
Tras descubrir el mundo de las bacterias pudimos saber que, la vida en la Tierra, estaba representada de muchas maneras además de la que podíamos contemplar a nuestro alrededor. Otro “mundo” oculto a la vista, contenía una inmensidad de “criaturas” que, también contaban.
La similitud jerarquizada de las especies era bien conocida por aquellos antiguos naturalistas de los que, en su momento, ya hablamos aquí y dejamos una bonita reseña. Linneo la codificó hasta finales de la década de 1730 al proponer un sistema jerárquico de clasificación taxonómica que, prácticamente, sigue utilizándose en nuestros días. Pero fue Charles Darwin quien reconoció explícitamente la naturaleza genealógica de este patrón.
Podemos explicar las similitudes entre humanos y chimpancés atribuyéndolas a su descendencia de un antepasado común que poseía las distintas características que los dos grupos comparten. En realidad, el registro fósil de la descendencia humana es notablemente incompleto, pero los restos de esqueletos hallados en África y Asia, conforman esta predicción: Los Humanos no descienden de los chimpancés, divergieron a partir de un antepasado común que no era ni Homo ni Pan.
Está claro que, la especie Humana (por muchas razones), se cree muy superior a todos los demás seres vivos sobre la Tierra. Puesto que somos grandes animales (algo racionales), se nos podría perdonar que tengamos una visión del mundo que tiende a celebrar lo nuestro, pero la realidad es que nuestra perspectiva es errónea. Somos nosotros los que hemos tenido que evolucionar para encajar en el mundo microbiano, y no al revés. Que esto sea así se debe, en parte, a una cuestión histórica, pero también tiene una explicación en términos de diversidad y funcionamiento del ecosistema. Si los animales son la guinda de la evolución, las Bacterias son el pastel.
Anabaena (cyanobacterium)
Las plantas, los animales, los hongos, las algas, y los protozoos son todos organismos eucariotas, genealógicamente vinculados por un modo de organización celular en el que el material genético aparece encerrado en el interior de una estructura membranosa llamada núcleo. Las Bacterias y los Procariotas son distintos: sus células carecen de núcleo. Por lo que respecta a su importancia biológica, los eucariotas parecen jugar con una clara ventaja; los organismos eucariotas se presentan en una gran variedad de tamaños y formas que van desde los escorpiones, los elefantes y las setas hasta los geranios, las luminarias y las amebas. Los procariotas, en cambio, son en su mayoría esferas diminutas, cilindros o espirales. Algunas bacterias forman filamentos sencillos de células unidas por sus extremos, pero son muy pocas las que llegan a construir estructuras multicelulares más complejas.
El tamaño y la forma sin duda dan la ventaja a los eucariotas, pero la morfología es sólo uno de los criterios posibles para medir la importancia ecológica. El metabolismo –el modo como un organismo obtiene materia y energía- es otro criterio, y de acuerdo con este son los procariotas los que destacan por su diversidad. Los organismos eucariotas básicamente viven de tres maneras sencillas, algunos, como nosotros mismos, somos heterótrofos, es decir, obtenemos tanto el Carbono como la energía que necesitamos para el crecimiento de ingerir moléculas orgánicas producidas por otros organismos. Para obtener energía, nuestras células utilizan oxígeno para descomponer azúcares en dióxido de carbono y agua mediante el proceso denominado respiración aeróbica (utilizamos oxígeno).
En caso de necesidad, podemos conseguir un poco de energía por medio de un segundo tipo de metabolismo llamado fermentación, un proceso anaeróbico (sin oxígeno) por el que una molécula orgánica se descompone en dos (sólo las levaduras y unos pocos eucariotas más viven fundamentalmente con este metabolismo.)
El tercer tipo principal de metabolismo energético que se encuentra en los eucariotas es la fotosíntesis que realizan las plantas y las algas: la clorofila y otros pigmentos asociados captan la energía del Sol, y ésta permite a las plantas fijar dióxido de carbono en forma de materia orgánica. Para convertir la luz en energía bioquímica las plantas necesitan un electrón, que proporciona el agua, y en el proceso se libera oxígeno como producto secundario.
Claro que, si comparamos las formas de metabolismo de los eucariotas con las de los procariotas, perdemos por goleada. La diversidad metabólica de los microorganismos procariotas, son el aspecto clave para estudiar la vida primigenia. Sus numerosas y asombrosas formas de metabolismo a las que se han adaptado para vivir son, en verdad, una maravilla de la Naturaleza.
Algunas, como nosotros mismos, utilizan oxígeno pero otras, para la respiración utilizan Nitrato disuelto (NO₃¯) en lugar de oxígeno, y aún otras usan iones sulfato (SO₄²¯) u óxidos metálicos de hierro p manganeso. Unos pocos procariotas pueden incluso utilizar CO₂ de forma muy parecida a como lo hacen las algas y plantas terrestres eucariotas. Sin embargo, cuando en el medio hay sulfuro de hidrógeno (H₂S), bien conocido por su característico olor a “huevos podridos” (en las Nebulosas es un material muy abundante), muchas cianobacterias utilizan este gas en lugar del agua para obtener los electrones que requiere la fotosíntesis. Como producto secundario se forma entonces azufre y sulfato, no oxígeno.
Las Cianobacterias constituyen sólo uno de los cinco grupos distintos de bacterias fotosintéticas. En los otros grupos, el aporte de electrones por H₂S, gas hidrógeno (H₂) o moléculas orgánicas es obligado y nunca se produce oxígeno. Estas bacterias fotosintéticas captan la luz con bacterio-cloforila en lugar de la clorofila, más familiar. Otras usan vías metabólicas muy distintas, y un tercer grupo se sirve de una fuente de Carbono orgánico en lugar de CO₂.
Las variaciones bacterianas sobre temas metabólicos de la respiración, la fermentación y la fotosíntesis son, pues, impresionantes, pero los organismos procarióticos han desarrollado todavía otro modo de crecer que es completamente desconocido en los eucariotas: la quimio-síntesis. Como los organismos fotosintéticos, los microbios quimiosintéticos toman el carbono del CO₂. Pero obtienen la energía de reacciones químicas y no de la radiación solar, lo que consiguen utilizando oxígeno o nitrato (o, de forma menos frecuente, el sulfato, el hierro hoxidizado o el manganeso) se combina con hidrógeno, metano o formas reducidas de hierro, sulfuro o nitrógeno de tal modo que la célula capta la energía desprendida por la reacción. Los procariotas metanogénicos resultan de particular interés para la ecología y la evolución, estas diminutas células extraen energía de una reacción entre hidrógeno y dióxido de carbono en la que se libera metano (aquí, nos podemos acordar del foco de metano detectado en Marte).
Se ha descubierto que la Atmósfera de Marte pudo haber contenido agua en abundancia, que ahora el agua está allí presente, que existen focos de metano que no se está seguro si su procedencia pudiera ser…de “seres vivos” microscópicos de los llamados metanógenos.
Las vías metabólicas de los procariotas sustentan los ciclos biológicos que mantienen la Tierra en su condición de planeta habitable.
Fijémonos por ejemplo en el dióxido de Carbono. Los Volcanes aportan CO₂ a los Océanos y la Atmósfera, pero la fotosíntesis lo sustrae a un ritmo más rápido. Tan rápido de hecho, que los organismos fotosintéticos podrían proveer de CO₂ a la atmósfera actual en poco menos de una década. Naturalmente no ocurre así, y ello se debe sobre todo a que esencialmente la respiración realiza la reacción fotosintética en sentido inverso. Mientras que los organismos fotosintéticos hacen reaccionar CO₂ con agua para producir azúcares y oxígeno los seres vivos que respiran (entre los que nos incluimos todos nosotros) hacen reaccionar azúcar con oxígeno y en el proceso liberan agua y dióxido de carbono. Conjuntamente, la fotosíntesis y la respiración reciclan el carbono en la biosfera y sostiene así la vida y su ambiente a largo tiempo.
Así son los extremófilos, los organismos que podrían habitar Marte
Estaría bien dejar aquí una reseña de ese otro dominio microscópico al que llamamos extremófilos y que, por sus metabolismos increíbles, podrían vivir, en cualquier parte que nos podamos imaginar: Una Nebulosa, las profundidades de la Tierra, en las Salinas, en aguas pesadas, en capas altas de la atmósfera, en las profundidades oceánicas y, en fin, en cualquier sitio que nos pudiera parecer un infierno inhabitable, allí, para nuestro asombro, podrían estar ellas ricamente instaladas. Sin embargo, el trabajo se hace muy largo ya, y, lo que menos quisiera es que, el personal, comenzara a bostezar, aunque durante todo el recorrido, he procurado siempre plasmar las ideas de manera que despertara la curiosidad y, sobre todo, que dejara una idea clara de lo que la vida ha sido en la Tierra desde su aparición.
¿Qué nos queda mucho por saber de la historia de la vida en la Tierra? Claro que sí. Sin embargo, es bueno estar al día de las cosas que ya sabemos.
emilio silvera
Fuente: Recopilación de textos diversos escritos por autores de reconocido prestigio. Aquí quedan párrafos de “La Vida en un joven Planeta”, de “Así de Simple”, o, de “La vida en Evolución” y, desde luego, nos da una idea básica de lo que la vida es y de cómo ha podido ir adaptándose al medio incidiendo en él para que, el ecosistema se convirtiera en el ideal para ella.
Son muchas las cosas que no sabemos y, de cada una de ellas, nosotros los humanos, creamos hipótesis y hacemos conjeturas, construimos modelos y, con los datos que hemos podido reunir, dejamos expuesta una teoría de lo que pudo ser. De esa manera hemos creado la “historia” de cómo se formó nuestro Sistema solar a partir de una explosión de supernova que creando una nebulosa sería el origen, hace algunos miles de millones de años, de todo el sistema planetario en el que está la Tierra y nos cobijamos nosotros.
A mayor escala y viajando mucho más lejos en el Tiempo, también hemos “recreado” el escenario que suponemos que pudo existir cuando “nació” el universo, cuando dio comienzo la existencia del Tiempo y apareció el Espacio, se creó la materia y comenzaron a formarse los objetos que hoy podemos contemplar por todo el inmenso Cosmos. De todo ello, de manera “misteriosa” (nadie sabe a ciencia cierta como fue), apareceron los primeros signos de vida, primero en forma de rústicas criaturas y más elaboradas después, cuando con el paso de los años, pudieron evolucionar.
En nuestra región, situada en el interior del brazo de Orión a unos 30.000 años-luz del centro galáctico, las cosas se pudieron suceder, más o menos, como nos dicen al margen de la imagen, con algunas dudas y algunas preguntas sin contestar, así pudieron suceder, a grandes rasgos las cosas. Sin embargo, no es ese el tema que el título nos señala, nos vamos a centrar en la “vida” esa explosión de imaginación que ha tenido el universo para que, al menos en nuestro caso, haya alguien que comente sobre él y también, sobre esa maravilla que representamos: Seres Conscientes en un universo de materia, de explosiones y cambios, de energías sin fin.
Lo cierto es que, el recuerdo de los miles de millones de años de la historia de la vida, no ha podido ser inscrito en la memoria de los seres que la representan, al igual que los últimos millones de años no están grabados en la memoria de los seres humanos, los primeros naturalistas que se sintieron intrigados por los fósiles que encontraban, no pudieron presentir de qué manera aquello que estaban sacando a la luz del día, acabaría por servir para reconstruir el pasado a través de los archivos sedimentarios de la tierra.
De nada sirvieron los razonamientos poéticos y religiosos que les habían preparado para lo contrario. La realidad nos hizo descubrir un mundo distinto, una cronología distinta y una historia distinta. Resulta fácil comprender, en qué medida, los primeros descubrimientos paleontológicos les pudieron parecer (en aquellos tiempos), por tanto, maravillosos y también, desconcertantes, hasta que punto aquella extraordinaria diversidad de formas de vida desaparecidas, su frecuente extravagancia y rareza y el encadenamiento asombroso que parecían ir revelando poco a poco, les debieron fascinar, pero también confundir.
Y, de esa manera, nuestra innata curiosidad, nos llevó a descubrir muchas clases de vida que existió en el pasado, incluso de seres monstruosamente grandes que extinguidos, sirvieron para que todos, antes sus descomunales restos, dejaran volar la imaginación y pudieran construir escenarios ya desaparecidos hacia millones de años. Claro que, todos aquellos descubrimientos, vinieron a ensanchar la mente de lo posible y la concepción de la historia de la vida en la Tierra y también, de manera paralela, hemos ido creando una historia más profunda, de unos 13.750.000 millones de años para la historia del propio universo. Pero, la historia que nos interesa, la de la vida, se remonta a unos 4.000 millones de años (al menos en nuestro planeta), que es el tiempo que tienen los fósiles más antiguo hallados en las rocas más viejas del planeta.
Ya el hombre de Neanderthal se interesaba por los fósiles.
El descubrimiento de edades anteriores a la aparición del hombre tuvo una enorme repercución, a finales del siglo XIX, mucho más allá de los círculos científicos, en buena parte porque reveló paisajes desaparecidos y poblados por criaturas extrañas, predominantemente mostruosas. Incluso en nuestros días los grandes vertebrados del pasado ejercen a menudo una especie de fascinación: ¿no se ha convertido acaso el mamut en el emblema de una cadena de supermercados y no resultan los nombres de muchos dinosaurios mucho más familiares, incluso para los niños, que los numerosos animales actuales?.
Esa familiaridad relativa con criaturas que hasta hace dos siglos, su existencia era inimaginable, es así mismo, un gran logro de la paleontología de los vertebrados sacados a la luz por la ciencia. Claro que, si hablamos de vida, no sólo de grandes animales se compone la gran relación que podríamos hacer de todas aquellas especies que poblaron nuestro planeta y de las que, el 99% están desaparecidas. Ahora, sólo el 1% de todas las especies vivientes siguen presentes y, las demás, por una u otra causa, quedaron extinguidas al no poder adaptarse, al ser eliminadas en las grandes extinciones… ¡y vaya usted a saber cómo!
Cuentan que, durante uno de sus viajes por el Mediterráneo, san Pablo, según la leyenda que circula, naufragó ante las costas de Malta. Habiendo logrado llegar a esa isla, fue mordido por una vibora. Encolerizado, maldijo entonces a todas las serpientes maltesas, por lo que sus lenguas bífidas se transformaron en piedra. Esas lenguas petrificadas, llamadas a veces “lenguas de san pablo”, son muy comunes en Malta; no son otra cosa que los dientes de los tiburones del período mioceno, cuyas formas evocan las lenguas bífidas de las serpientes.
El relato ilustra muy bien la fascinación que han ejercido desde tiempos inmemoriales ciertos fósiles sobre la imaginación humana y la forma en que pueden ser explicados los orígenes de esos objetos misteriosos, más allá de toda hipótesis científica, en los sistemas de pensamientos tradicionales. Sin embargo, jamás conoceremos las más antiguas de esas leyendas explicativas, ya que el interés por los fósiles se remonta a la prehistoria lejana, tal como nos lo demuestran los diversos descubrimientos arqueológicos.
En el transcurso de sus excavaciones en las cuevas de Arcy-sur-Cure, en Borgoña, el célebre prehistoriador francés André Leroi Gourhan descubrió en un estrato correspondiente al paleolítico medio una pequeña pero muy antigua “colección paleontológica” ; se trataba de un polípero y de un gasterópodo fósiles, y habían sido llevados a esa cueva por un hombre de Neardenthal. Hará más de 50.000 años posiblemente, que la atención de un “hombre fósil” se vio atraída por esos objetos curiosos, hasta el punto de que se los llevó consigo. No cabe duda de que nunca sabremos cuáles eran las interpretaciones que los hombres prehistóricos daban a los fósiles que recogían. En todo caso, ciertas conchas profundamente enterradas, le pudieron recordar a sus conchas actuales, y bien pudiera ser que se hubieran preguntado en aquel entonces qué hacían sobre las rocas unos animales que se encuentran habitualmente en el agua.
Es cierto que siempre, a lo largo de la Historia, hemos tenido pensadores y naturalistas. La Historia natural es un término cuya definición es problemática, en tanto que diversas disciplinas la abordan de manera diferente. Muchas de estas concepciones incluyen el estudio de las cosas vivientes (por ejemplo, la biología, incluyendo botánica, zoología y ecología); otras concepciones extienden el término al campo de la paleontología, la geografía y la bioquímica, así como a la geología, astronomía y la física. Lo cierto es que, al final del camino, todas esas disciplinas se encuentras, es decir, están de una u otra manera relacionadas. Todo en el Universo tiene una conexión que no siempre podemos ver o comprender.
Claro que, algunos pensadores griegos ya especularon con las viejas conchas fósiles que se hallaban dentro de las piedras y que eran el orgien de especulaciones “geológicas” de algunos que, como Jenófanes o Heródoto, quiénes habían comprendido la naturaleza auténtica de ciertas conchas fósiles y habían sacado conclusiones pertinentes, aquellos restos de organismos marinos, encontrados tierra adentro, demostraba que los mares, se extendían en otras épocas mucho más allá de sus límites actuales.
Lo cierto es que, hacer historia de la vida en nuestro planeta es imposible, sólo podemos ir atando cabos a medida que se encuentran huellas de ella en las viejas rocas, y, como la vida consciente tardó mucho más en llegar… ¡Carece de historia, toda vez que no existieron cronistas para escribirla! Así, nos vemos abocados a especular juntando todos los datos que hemos podido reunir y, de esas especulaciones, hemos formado un conjunto, si no plausible en su totalidad, sí aceptable mientras no encontremos más respuestas a la gran pregunta: ¿Cómo surgió la vida en la Tierra, y, es nuestro planeta el único lugar del Universo que la contiene?
Claro que, si creemos que la vida es ciudadana del universo sin fronteras, no debemos perder de vista la Panspermia, esas esporas viajeras que llegan a los mundos y en ellos, se posan y dejan pasar el tiempo para que, las condiciones locales, las radiaciones exteriores y propias del lugar, hagan su trabajo para que, con el tiempo suficiente por delante, puedan emerger y crecer hasta llegar a conformar seres con ideas y pensamientos.
Los animales unicelulares han descubierto el método más corto para comer las plantas. La muerte y el sexo han de crearse para que los organismos pluricelulares sean capaces de envejecer y dejar de funcionar como una cooperativa colonial de células. Los animales han descubierto como comerse a otros animales. Por encima de todo, ha evolucionado una especie inteligente, una especie tan lista que ha llegado a descubrir una vía para poder salir de la Tierra y llevar todo el proceso de la evolución hasta el extremo.
Nunca nadie ha sabido explicar lo que es la Vida a pesar de que también siempre nos lo hemos preguntado. Cuál es su origen y cómo surgieron los seres vivos que conocemos y que tenemos a nuestro alrededor, así como aquellos que con el paso de tiempo no supieron adaptarse y se extinguieron. La especie humana, la única que en nuestro planeta alcanzó la plenitud de conciencia, siempre ha tratado de responder a esa pregunta: ¿Qué es la Vida? Pero siempre también, resultó un gran problema el poder responderla y las Ciencias Naturales nunca pudo confeccionar una respuesta plausible. Hemos podido llegar a saber que sin los materiales fabricados en las estrellas, la vida no sería posible en nuestro Universo. Así muchos, dicen que somos… ¡Polvo de estrellas!
La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.
Los astrofísicos se devanan los sesos queriendo saber si hay vida fuera de la Tierra
Nadie ha sabido responder a la pregunta de si las constantes de la naturaleza son realmente constantes o llegará un momento en que comience su transformación. Hay que tener en cuenta que para nosotros, la escala del tiempo que podríamos considerar muy grande, en la escala de tiempo del universo podría ser ínfima. El universo, por lo que sabemos, tiene 13.700 millones de años.
Si la carga del electrón, o, la masa del protón, variara aunque solo fuera una diezmillonésima… ¡La Vida no podría existir! No se formarían los átomos de la materia.
Antes que nosotros, el reinado sobre el planeta correspondía a los dinosaurios, amos y señores durante 150 millones de años, hace ahora de ello 65 millones de años. Mucho después, hace apenas 2 millones de años, aparecieron nuestros antepasados directos que, después de una serie de cambios evolutivos desembocó en lo que somos hoy. En cualquier sitio que miremos podremos leer:
Toda vida en la Tierra requiere de los elementos “creados” en las estrellas
Elementos químicos como: El hidrógeno, oxígeno, nitrógeno, azufre, fósforo, Carbono, así como de otros muchos en menores cantidades, como ciertos minerales; requiere además de agua como solvente en el cual las reacciones tienen lugar.
Cantidad suficiente de carbono y demás elementos constituyentes de la vida, junto con el agua, harían posible la formación de organismos vivientes en otros planetas con una química, presión y temperatura similares a la Tierra. Como nuestro mundo y otros planetas están hechos de “polvo estelar”, es muy probable que muchos de ellos se hayan formado con semejante composición de elementos químicos que los terrestres.
Mundos parecidos a la Tierra y situados en la zona habitable de sus estrellas… ‘Los hay a cientos de miles solo en nuestra Galaxia.
Detectan carbohidratos y azúcar en las Nebulosas
La combinación de carbono y agua en la forma de carbohidratos, como el azúcar, puede ser una fuente de energía química de la que depende la vida, mientras que a la vez provee elementos de estructura y codificación genética. El agua pura es útil, pues tiene un pH neutro debido a la continuada disociación entre sus iones de hidronio e hidróxido. Como resultado, puede disolver ambos tipos de iones, positivos (metálicos) y negativos (no metálicos) con igual habilidad.”
¿Quién puede decir lo que habrá en otros mundos, en otros ecosistemas?
“Debido a su relativa abundancia y utilidad en el sostenimiento de la vida, muchos han conjeturado que todas las formas de vida, donde quiera que se produzcan, se valdrían también de estos materiales básicos. Aun así, otros elementos y solventes pueden proveer una cierta base de vida. Se ha señalado al silicio como una alternativa posible al carbono; basadas en este elemento, se han propuesto formas de vida con una morfología cristalina, teóricamente capaces de existir en condiciones de alta temperatura, como en planetas que tengan órbitas muy cercanas a su estrella.
También se han sugerido formas de vida basadas en elementos distintos y otros solventes, pues existen compuestos químicos capaces de mantener su estado líquido en diferentes rangos de temperatura, ampliando así las zonas habitables consideradas viables. Así por ejemplo, se estudia el amoníaco como solvente alternativo al agua. La vida en un océano de amoníaco podría aparecer en un planeta mucho más lejano a su estrella.
Se baraja la Posibilidad de que en Titán, la luna de Saturno, pudiera existir alguna clase de vida en sus océanos de metano.
Técnicamente, la vida es básicamente una reacción que se replica a sí misma, por lo que bajo esta simple premisa podría surgir la vida bajo una amplia gama de condiciones e ingredientes diferentes, si bien la vía carbono-oxígeno parece la más óptima y conductiva. Existen incluso teorías sobre reacciones auto-replicantes que podrían ocurrir en el plasma de una estrella, aunque éste sería un tipo de vida altamente extremo y nada convencional.”
Mucho tiempo ha pasado que esta imagen era el Presente, y, sin embargo, para el Universo supone una ínfima fracción marcada por el Tic Tac cósmico de las estrellas y las galaxias que conforman la materia de la que provenimos. Es un gran misterio para nosotros que sean las estrellas las que fabrican los materiales que, más tarde, llegan a conformar a seres vivos que, en algunos caso, tienen consciencia. Planck decía:
“La ciencia no puede resolver el misterio final de la Naturaleza. Y esto se debe a que, en el último análisis, nosotros somos parte del misterio que estamos tratando de resolver”.
Max Planck
Nos queda mucho por descubrir y aún no tenemos ni los medios ni los conocimientos para hacerlo, el futuro nos depara sorpresas inimaginables, lo que vendrá es mucho más de lo que podemos suponer.
“La creciente distancia entre la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.” Nos decía Planck. Su intuición le llevaba a comprender que, con el paso del tiempo, nosotros estaríamos adquiriendo por medio de pequeñas mutaciones, más amplitud en nuestros sentidos, de manera tal que, sin que nos diéramos cuenta nos estábamos acercando más y más al mundo real.”
Aquí cada día, elegimos una cuestión distinta que se relaciona, de alguna manera, con la ciencia que está repartida en niveles del saber denominados: Matemáticas, Física, Química, ,Astronomía, Astrofísica, Biología, Cosmología… y, de vez en cuando, nos preguntamos por el misterio de la vida, el poder de nuestras mentes evolucionadas y hasta dónde podremos llegar en nuestro camino, y, repasamos hechos del pretérito que nos trajeron hasta aquí.
Robert Henry Dicke (6 de mayo de 1916 – 4 de marzo de 1997) fue un físico experimental estadounidense, que hizo importantes contribuciones en astrofísica, física atómica, cosmología y gravitación. Hombre inquieto, muy activo y, sobre todo, curioso por saber todo aquello que tuviera alguna señal de misterio.
“Es una ecuación muy poderosa por lo que significa y su papel en la historia de la física del siglo XX”.
La ecuación fue descubierta a finales de los años 20 por el físico Paul Dirac, y juntó dos de las ideas más importantes de la ciencia: la mecánica cuántica, que describe el comportamiento de objetos muy pequeños; y la teoría especial de Einstein de la relatividad, que describe el comportamiento de objetos en movimiento rápido.
Por lo tanto, la ecuación de Dirac describe cómo las partículas como electrones se comportan cuando viajan a casi la velocidad de la luz.
Dirac, que predijo la existencia del positrón, le dedicó un estudio a la Gravedad al hilo de una serie de números y teorías propuestas por Eddintong en aquellos tiempos y decidió abandonar la constancia de la constante de gravitación de Newton, G. Sugirió que estaba decreciendo en proporción directa a la edad del universo en escalas de tiempo cósmicas. Es decir, la Gravedad en el pasado era mucho más potente y se debilitaba con el paso del tiempo.
Así pues, en el pasado G era mayor y en el futuro será menor que lo que mide hoy. Veremos que la enorme magnitud de los tres grandes números (1040, 1080 y 10120) es una consecuencia de la gran edad del universo: todas aumentan con el paso del tiempo.
La propuesta de Dirac provocó un revuelo un grupo de científicos vociferantes que inundaron las páginas de las revistas especializadas de cartas y artículos a favor y en contra. Dirac, mientras tanto, mantenía su calma y sus tranquilas costumbres, escribió sobre su creencia en los grandes números cuya importancia encerraba la comprensión del universo con palabras que podrían haber sido de Eddington, pues reflejan muy estrechamente la filosofía de la fracasada “teoría fundamental”.
Siempre hemos estado obsesionados con algunos números en los que creímos ver significados ocultos
“¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades del Gran 1040 y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día”.
La propuesta de Dirac levantó controversias entre los físicos, y Edward Teller en 1.948, demostró que si en el pasado la gravedad hubiera sido como dice Dirac, la emisión de la energía del Sol habría cambiado y la Tierra habría sido mucho más caliente en el pasado de lo que se suponía normalmente, los océanos habrían estado hirviendo en la era precámbrica, hace doscientos o trescientos millones de años, y la vida tal como la conocemos no habría sobrevivido, pese a que la evidencia geológica entonces disponible demostraba que la vida había existido hace al menos quinientos millones de años.
Las constantes de la Naturaleza han sido medida de mil maneras
Dicke, ya podéis imaginar que fue uno de los que de inmediato se puso manos a la obra para dilucidar si la Naturaleza encerraba el secreto de una G variable como decía Dirac.
A lo largo del Siglo XX se observó que algunas de las cifras que se dan en la naturaleza coinciden de manera sorprendente, y más extraño aún resultó el hecho de que se refieren a ámbitos físicos aparentemente independientes. Otro elemento insólito consistía en que todas ellas giraban alrededor de unos números (1040, 1080 y 10120).
“El problema del gran tamaño de estos números es ahora fácil de explicar… Hay un único número adimensional grande que tiene su origen estático. Este es el número de partículas del Universo. La edad del Universo “ahora” no es aleatoria sino que está condicionada por factores biológicos… [porque cambio en los valores de grandes números] impedirían la existencia del hombre para considerar el problema”.
La Alquimia estelar está presente en “infinitos” lugares del universo
La evolución del Universo, sus transiciones de fases, la construcción natural de elementos pesados y más complejos en el seno de las estrellas y en las explosiones supernovas, todo ello, nos llevó a que la materia pudiera adquirir la capacidad químico biológica necesaria para la vida.
Dicke, cuatro años más tarde desarrolló esta importante intuición con más detalle, con especial referencia a las coincidencias de los Grandes Números de Dirac, en una breve carta que se publicó en la revista Nature. Dicke argumentaba que formas de vidas bioquímicas como nosotros mismos deben su propia base química a elementos tales como el carbono, nitrógeno, el oxígeno y el fósforo que son sintetizados tras miles de millones de años de evolución estelar en la secuencia principal. (El argumento se aplica con la misma fuerza o cualquier forma de vida basada en cualesquiera elementos atómicos más pesados que el helio.) Cuando las estrellas mueren, las explosiones que constituyen las supernovas dispersan estos elementos biológicos “pesados” por todo el espacio, de donde son incorporados en granos, planetesimales, planetas, moléculas “inteligentes” auto replicantes como ADN y, finalmente, en nosotros mismos que, en realidad, estamos hechos de polvo de estrellas.
El polvo de las estrellas, ahí se guarda el secreto de la vida y de la energía del Universo
Esta escala temporal está controlada por el hecho de que las constantes fundamentales de la Naturaleza sean:
t(estrellas) ≈ (Gmpr 2/ћc)-1 ћ/mprc2 ≈ 1040 ×10-23 segundos≈ 10.000 millones de años (se necesita ese tiempo de evolución en las estrellas para que, la vida, pueda aparecer en el Universo). No esperaríamos estar observando el Universo en tiempos significativamente mayores que t (estrellas), puesto que todas las estrellas estables se habrían expandido, enfriado y muerto. Tampoco seríamos capaces de ver el Universo en tiempos muchas menores que t (estrellas) porque no podríamos existir. No había estrellas ni elementos pesados como el carbono. Parece que estamos amarrados por los hechos de la vida biológica para mirar el Universo y desarrollar teorías cosmológicas una vez que haya transcurrido un tiempo t (estrellas) desde el Big Bang.
Creo que las constantes de la Naturaleza permiten la presencia de la Vida en el Universo
La escena de una estrella moribunda fue necesaria para que los materiales biológicos que nos conformaron a los seres vivos, pudieran estar presentes en el Universo. Sin que llegara a producirse tal acontecimiento, no existirían en el universo los elementos necesarios para la vida. Así no pocas veces hemos oído decir que estamos hechos de polvo de estrellas y, aunque no literal, si es una buena metáfora de lo que somos. Es fácil suponer que la vida pulula por todo el Universo. Pero, siempre se nos viene una pregunta a la mente: ¿Por qué no hemos contactado ya con otros seres inteligentes de otros planetas?
Claro que los procesos de la alquimia estelar necesitan tiempo: miles de millones de años de tiempo. Y debido a que nuestro universo se está expandiendo, tiene que tener un tamaño de miles de millones de años-luz para que durante ese periodo de tiempo necesario pudiera haber fabricado los componentes y elementos complejos para la vida. Un universo que fuera sólo del tamaño de nuestra Vía Láctea, con sus cien mil millones de estrellas resultaría insuficiente, su tamaño sería sólo de un mes de crecimiento-expansión y no habría producido esos elementos básicos para la vida.
Los procesos siguen, las cosas cambian, el Tiempo inexorable transcurre, si hay vida vendrá la muerte, lo que es hoy mañana no será. De la materia “inerte” surgirá la vida mediante procesos inevitables que son normales en las reglas que el Universo impone, en su ritmo y en sus constantes que hacen posible, al fin, la presencia de una bioquímica que permite la diversidad de seres vivos que a lo largo de la historia de la Tierra estuvieron aquí, los que están ahora en el presente y, los que, posiblemente, estarán mañana… ¡En ese futuro que no conocemos! Pero sabemos que…
Existen inesperadas conexiones entre los cuerpos celestes y los patrones que rigen la Vida en el Planeta Tierra, No pocas de las secuencias que podemos observar, son la consecuencia directa de dichas conexiones, a las que, la mayoría de las veces, no le prestamos la menor atención.
Merece la pena examinar esos vínculos que, situados a niveles diferentes, pueden comenzar en puntos temporales subyacentes en el entorno terrestre y terminar con las respuestas que los seres vivos, donde sólo los Humanos, aprendieron a dar al reino astronómico el valor y la conexión que en todo ello tenían.
Estas respuestas (aunque a veces nos parezcan ancestrales), aún se manifiestan en nuestra organización social, y también subyacen a muchas de nuestras respuestas metafísicas y emocionales del Universo.
Hemos estado tentados a ver las estrellas como dioses, como demonios, como la mejor guía para la naves viajeras, como la profecía de la mala suerte, o, lo que es peor, como gobernantes de cada una de nuestras acciones.
Descubrimos también que hemos sido tremendamente afortunados por el simple hecho de que, la forma de vida que representamos, vino a caer, por razones del Azar, dentro de un entorno celeste que influye significativamente en el alcance y dirección de cualquier investigación científica del Universo que, en nuestra pacífica Región, se hace totalmente posible al estar alejados de lugares turbulentos y emisiones de inmensas energías que impedidirían cualquier clase de observación y estudio fiable.
Si en nuestro entorno explotaran Supernovas y estuvieran presentes Agujeros Negros masivos… ¡Las cosas serían muy diferentes para nosotros, o, incluso, no serían!
Nuestros primeros pasos preconscientes, es decir, los de nuestros ancestros primitivos a lo largo del Sendero Evolutivo, se produjeron en un mundo de alternancia diaria de la noche y el día, una crecida y bajada mensual de las mareas y una variación en las horas diurnas y en el clima. Todos estos cambios de escenarios dejaron su impronta sobre nosotros, los actores en el serial de la Vida.
Plantas y algas, animales inimaginables, estromatolitos, chimeneas marinas….
Algunos seres vivos pudieron sobrevivir mejor porque variaciones fortuitas les dieron ritmos corporales que reflejaban con precisión el pulso de cambios ventajosos en el entorno que pudieron ser aprovechados por ellos, tanto en las plantas como en los animales de todo tipo. Unos pudieron adaptarse y otros no.
Esos otros, sintieron directa y vivamente en su propios metabolismos aquellos cambios que los ritmos celestes imponían y a los que ellos, no se pudieron adaptar, y, de esa manera, sus especies perecieron y dejaron de existir.
El mundo está lleno de Plantas y Animales que han crecido sensibles al ciclo de la noche y el día, el cielo estacional del calor del Sol y la variación mensual de las mareas. Las mareas oceánicas provocadas por las fases de la Luna influyeron en la evolución de los crustáceos y los anfibios.
La formación de regiones con grandes diferencias entre mareas vivas y muertas, con alternancia de períodos de inmersión y períodos secos, puede haber animado la disfunción de la vida del mar a la tierra. Las condiciones cambiantes estimulan la evolución de un tipo de complejidadque lleva a la vida porque crea condiciones en las que la variación supone una diferencia en las perspectivas de supervivencia (adaptarse o morir).
Existen huellas claras de un período anual en los ciclos vitales de las plantas y de los demás seres vivos de que, han favorecido su adaptación evolutiva y han hecho posible la supervivencia y crecimientos de las especies y sus “relojes” innatos que hace coincidir, en no pocos casos, el nacimiento de sus crías con momentos en los que la posibilidad de supervivencia es mayor, especialmente, en las regiones templadas, donde las estaciones cambian de manera más abruptas.
En la manera que hemos podido llegar a descubrir, de cómo desovan algunos y como tienen en cuenta el momento de la Luna nueva o Luna llena , y los peces desoven después de enterrar la mitad de sus cuerpos en la arena. De esta manera les da tiempo a que las mareas no puedan arrastrarlos para evitar su puesta.
Los animales sienten el cambio de las Estaciones por una respuesta a la duración de la Luz diurna. Hay ejemplos notables de la precisión de esta sensibilidad, que optimiza la fertilidad de las hembras para que coincida con el equinoccio de primavera.
Parece que la actividad de apareo se desencadena cuando la duración de la Luz diurna alcanza un valor crítico. Los experimentos muestran que pueden haber dos fases:
– Amor a la Luz
– Amor en la Oscuridad
En la primera fase, cuando la luz cae en el cuerpo estimula el crecimiento y la actividad; en la segunda fase, estas cosas se inhiben. En días largos, más luz estimula las respuestas bioquímicas más fuertes.
Pero la situación no es siempre tan sencilla. Las criaturas pueden poner a cero sus relojes internos exponiéndolos a entornos artificiales.
La rotación de la Tierra nos trae el día y la noche
El Año lo hemos adaptado al tiempo que tarda la Tierra en dar una vuelta alrededor del Sol
El día y el Año son las más simples de nuestras de nuestras divisiones temporales. La longitud del día está determinada por el Tiempo que tarda la Tierra en dar una vuelta alrededor de su eje. El día sería mucho más largo si la Tierra rotara más lentamente, y las variaciones diurnas no existirían en absoluto si la Tierra no tuviera rotación. En este caso, los seres vivos estarían, divididos entre tres poblaciones diferentes:
– Los que vivirían en el lado oscuro
– Los que vivirían en el lado luminoso
– Los que vivirían en la Zona Corpuscular intermedia
Está claro que hay un límite en lo que se refiere a que el día sea más corto o más largo, todo dependerá de los factores que en ello puedan intervenir. El día no podría ser mucho más corto porque hay un límite en la rápido que puede girar un cuerpo antes de que empiece a despedir a todos los objetos que estén sibre su superficie y, más tarde, a desintegrarse. De hecho, la longitud del día está alargándose muy lentamente, aproximadamente dos milésimas de segundo cada siglo, debido a la atracción de la Luna.
Seguramente, algunos de ustedes, al leer “…dos milésimas de segunda cada siglo…”, hayan podido pensar: Qué tontería, y, qué puedo eso influir en nada.
Lo cierto es que, durante los enormes períodos necesarios para un cambio Geológico o Biológico destacable, ese infinitesimal aumento adquiere una importancia vital.
Algunos de estos fósiles tienen más de 3.000 millones de años
El día habría sido 11 horas más corto hace ahora 2.000 millones de años, cuando vivían las antiguas bacterias fósiles conocidas y halladas en las rocas más antiguas de la Tierra en Warradona (Australia). Se han hallado pruebas directas de este cambio impresos en los seres vivos en algunas arrecifes de las Bahamas.
Teoría de una Tierra joven
En el coral se depositan bandas de crecimiento anual (similares a los anillos de los árboles), y contando cuantas bandas diarias hay en cada banda anual se puede determinar cuantos ciclos diarios había en un año. El crecimiento coral contemporáneo muestra unas trescientas sesenta y cinco bandas por cada año, aproximadamente lo que se esperaba, mientras que los corales de hace 350 millones de años, muestran unos cuatrocientos anillos diarios en cada banda anual, lo que nos indica que el día era entonces de sólo 21,9 horas.
Si hacemos un viaje al pasado, para tratar de contemplar la evolución terrestre desde su formación, podríamos contemplar cómo, la Tierra joven podría haber tenido días de tan sólo 6 horas. Así pues, si la Luna no existiera nuestro día sería (probablemente) de sólo un cuarto de su longitud actual. Esto también hubiera tenido consecuencias para el campo magnético de la Tierra. Con un día de sólo 6 horas, la rotación más rápida de partículas cargadas dentro del planeta produciría un campo terrestre tres veces más intenso que el actual.
La sensibilidad magnética sería una adaptación más económica para los seres vivos de un mundo semejante. Sin embargo, los efectos ambientales de más largo alcance de un día más corto serían seguidos de vientos más fuertes, mucho más fuertes que azotarían que azotarían la superficie en rotación del planeta.
El grado de erosión por el viento y las olas sería muy grande. Habría presión selectiva hacia árboles más pequeños y para que las plantas desarrollaran hojas más pequeñas y más fuertes que fueran menos susceptibles de ser arrancadas. Esto podría alterar el curso de la evolución de la atmósfera terrestres al retrasar la conversión de su primitiva atmósfera de dióxido de Carbono en Oxígeno por acción de la Fotosíntesis.
El año está determinado por el Tiempo que tarda la Tierra en completar una órbita alrededor del Sol. Este período de Tiempo no es en modo alguno aleatorio. Las temperaturas y emisiones de energía de las estrellas estables están fijadas por las intensidades invariantes de las fuerzas de la naturaleza.
En un planeta sólo puede haber una actividad Biológica si su temperatura superficial no es extrema. Demasiado calor y las moléculas se asan; demasiado frío, y se congelan; pero en medio, hay un rango de temperaturas en el que pueden multiplicarse y crecer en complejidad los seres vivos.
Existe un estrecho rango dentro del cual el agua puede mantenerse líquida y ese estado es el óptimo para la evolución espontánea de la vida. El agua ofrece un ambiente maravilloso para la evolución de la Química compleja porque aumenta tanto la movilidad como la acumulación de grandes concentraciones de moléculas que se pueden transformar en estructuras complejas.
Estas limitaciones a las temperaturas garantizan a los seres vivos que su biología les exige estar situados en planetas que no estén demasiado cerca de su estrella madre, ni tampoco, demasiado lejos de su luz y su calor. Es lo que llamamos estar situados en la Zona habitable de una estrella para que, en los planetas allí situados, la vida pueda florecer.
Otra cuestión importe es que, esos planetas, tengan órbitas casi circulares, si queremos que dichos planetas permanezcan en esa Zona habitable, ya que, si la órbita es elíptica se saldría de ella y, la vida, tendría muchos problemas para poder mantenerse estable.
Esta animación muestra algunas órbitas elípticas con diferentes excentricidades. Así mismo, muestra cómo está el Sol durante el foco de una elipse, y algo de la matemática que hay tras las órbitas elípticas. Animación de Randy Russell (miembro del equipo de Ventanas al Universo).
Las órbitas elípticas llevarían al planeta a puntos con diferentes distancias y temperaturas con lo cual, la vida tendría muchos problemas para poder resistir cambios tan drásticos que, por lo general, serían mortales para los seres vivos de aquel planeta.
La Tierra en su deambular alrededor del Sol, describe una órbita elíptica pero, poco pronunciada. Su máxima distancia del Sol es de 1,017 veces la distancia media, y su mínima distancia es sólo de 0,983 veces la distancia media que sería la de 1 UA.
Como veréis, la ligera variación hace de la órbita “casi” un círculo perfecto y la variación anuela es aproximadamente de un 7% en el flujo de energía que la superficie de la Tierra recibe del Sol. La cercanía de la órbita de la Tierra a un círculo, tiene una importancia evidente.
La regularidad de la Tierra que viene dada por la intensidad de energía que nos envía el Sol, desde 150 millones de kilómetros, y, la intensidad está amortiguada por la rica y densa atmósfera terrestre, y, los seres vivos, tienen un escudo contra las radiaciones nocivas.
Dejemos aquí la primera parte.
En la segunda parte seguiremos hablando de la importancia que tiene la Luna para nosotros y explicaremos el por qué de las Estaciones en nuestro planeta.
La Fuente: “El Universo como Obra de Arte” JOHN D. BARROW.
Cada día que pasa encontramos nuevos mundos y, en esta ocasión, el que podemos ver en la imagen está acompañado por dos soles a los que orbita y de los que recibe luz y calor. Hemos descubierto más de mil mundos situados en el espacio exterior que dan vueltas alrededor de estrellas de diferentes pelajes, más pequeñas o grandes que nuestro Sol y, en alguno de esos mundos, la vida podría estar presente. En los comentarios de Kike y Adolfo (con mucho tino por cierto), nos hablan de la imposibilidad actual de encontrar vida en otros mundos, las distancias que de ellos nos separan y la rudimentaria técnica con la que podemos contar (de momento) para intentar esos inmensos desplazamientos, lo impiden.
El equipo del telescopio espacial Kepler de la NASA anunció no hace mucho el descubrimiento del primer exoplaneta que orbita simultáneamente dos estrellas de un sistema binario. La criatura se llama Kepler-16b -o mejor, Kepler-16 (AB)-b– y gira alrededor de dos estrellas más pequeñas que el Sol. Kepler A y Kepler B son dos astros con el 69% y el 20% de la masa del Sol respectivamente, mientras que Kepler-16b es un exosaturno que tiene 0,33 veces la masa de Júpiter. Posee un periodo de 229 días y se halla situado a 105 millones de kilómetros del par binario, la misma distancia que separa a Venus del Sol en nuestro Sistema Solar. Pero debido a que Kepler-16 AB son dos estrellas relativamente frías, la temperatura “superficial” de este gigante gaseoso ronda unos gélidos 170-200 K dependiendo de la posición orbital. Es decir, nada que ver con el infierno de Venus.
Una de las imágenes más recordadas de Star Wars es el momento en el que Luke Skywalker mira hacia la puesta de sol del desierto de Tatooine y vemos cómo se ven 2 soles. Aunque esta imagen forme parte de la historia del cine parece ser que podría ser una realidad; no es que la NASA haya descubierto la ubicación de Tatooine ni nada parecido sino que el telescopio Kepler ha localizado el planeta que orbita alrededor de dos estrellas, es decir, dos soles.
Científicos del observatorio espacial Kepler de la NASA halló un planeta que está inserto en un sistema con dos estrellas, a una distancia de 200 años luz de la Tierra.
El planeta, ubicado en la constelación del Cisne, fue bautizado con el nombre de Kepler 16b y es frío y gaseoso en vez de un tórrido desierto, por lo cual es el primer planeta circumbinario, es decir, dos estrellas, según señala el artículo en la revista Science.
Como podreis ver y leer, los medios de comunicación cuentan las noticias cientificas como mejor les parece y, no pocas veces distorsionan la realidad. Claro que, tener un científico “de verdad” en nómina y en cada especialidad…sería insoportable (económicamente hablando) para cualquier medio de comunicación y dan las noticias que les llegan de la mejor manera posible.
Las técnicas avanzan y cada vez es más fácil detectar nuevos mundos antes perdidos en el inmenso espacio interestelar y, la lejanía, las dificultades que añaden la luz emitida por la estrella que estos mundos orbitan, poco a poco, están siendo obviados por nuevas técnicas y formas nuevas que, pronto, nos llevarán a saber de mundos habitados por otros seres vivos.
Habrá que esperar un poco. Lo que pienso sobre:
La vida en otros mundos
^Quién sabe lo que ahí fuera podremos encontrar?
Todo lo que podamos imaginar… ¡Podría ser cierto! También lo que ni podemos imaginar lo podría ser. Son tantas las variantes que existen en ese sentido de diversidad de mundos y estrellas que los puedan calentar para hacer posible la vida que, no podemos hacer otra cosa que conjeturar lo que podría ser. Desde luego, científicamente hablando, lo más probable es que sí exista la vida extraterrestre y, de como ésta pueda ser, serían muchas las variantes que lo determinarían por lo que, solo podemos especular. Me decanto, de todas las maneras, por el hecho de que la vida estará también, en otros mundos, basada en el Carbono como en la Tierra. Si el Universo es igual en todas partes y sus leyes las mismas también, ¿por qué allí sería distinto? Otra cosa sería las formas en las que puedan estar constituidos que, serían humanoides o de cualquier otro tipo, como en la Tierra, si existe vida en otros mundos, será de diversa constitución.
¿Quién no ha soñado alguna vez con seres de otros mundos?
¿Quién no se preguntó en alguna ocasión cómo serían los extraterrestres?
¿Existe alguna posibilidad de que alguna vez podamos ver uno?
Y sobre todo, ¿hay vida en otros mundos?
Según todos los indicios y datos que hemos podido obtener, en los mundos hermanos del Sistema Solar y en sus lunas, no parece que pueda haber vida como la nuestra; no reúnen las condiciones requeridas para ello. Eso no impide que pueda haber otras formas de vida en forma de bacterias u otras similares.
Como la atmósfera de Venus es extraordinariamente densa y está formada en su mayoría por dióxido de carbono, con capas de ácido sulfúrico, se forman densas nubes que oscurecen la superficie, dificultando la visión desde el espacio. Por ello, sondas como Magallanes tuvieron que emplear un sistema de radar. Las temperaturas allí harían imposible la presencia de vida tal como la conocemos.
Las atmósferas de los planetas vecinos y las temperaturas que en ellos reinan, no son precisamente las más idóneas para que la vida germine en ellos. Sin embargo, en algún que otro satélite, como es el caso de la luna de Júpiter, Europa, que constituye un mundo completamente helado aunque debajo de la superficie (así se cree) podría existir un océano de agua no tan fría y calentada gracias a la influencia de las mareas de Júpiter, ¿Quién podría asegurar que allí, en presencia de agua líquida, no podría haber alguna forma de vida?
En la luna de Saturno Titán se cree que pueden existir algunas formas de vida extraterrestres, posiblemente basadas en el metano que fluye por ríos y que la atmósfera contiene provocando lluvias de metano. Según los datos obtenidos por la sonda Cassini los ríos de metano fluyen por la superficie de Titán, además la sonda Huygens que aterrizó en Titán en 2005 mostrando las primeras imagenes de la superficie de Titán, también aporto datos muy interesantes.
Titán, con una atmósfera de metano y nitrógeno y en cuya superficie podría haber nitrógeno líquido y compuestos orgánicos sólidos. Lo que también se puede decir de Tritón, el satélite de Neptuno. Así que, son tres satélites que podrían (es concebible) tener alguna forma de vida.
Sin embargo, hasta el momento, son sólo conjeturas. El único objeto del Sistema Solar que está a una distancia idónea del Sol, que tiene los elementos y condiciones precisas para la formación de la vida (temperatura, atmósfera, etc), es el planeta Tierra.
El número total de estrellas en el universo conocido se calcula que sobrepasan los 1.000 millones de millones (1.000.000.000.000.000.000.000). Nuestra propia galaxia, la Vía Láctea, contiene más de cien mil millones de estrellas. Si todas las estrellas se han desarrollado bajo los mismos parámetros que la nuestra (el Sol), es lógico pensar que casi todas ellas tendrán su propio sistema planetario.
Sin embargo, lo que no es tan probable, es que todas tengan un planeta con la composición, la atmósfera, la distancia idónea a su estrella y abundante agua y los productos químicos necesarios para la creación y surgimiento de la vida.
Son muchos los planetas descubiertos fuera de nuestro sistema solar, todos ellos muy grandes, incluso varias veces el volumen y la masa de Júpiter (no aptos para la vida inteligente tal como la conocemos).
Otros Sistemas planetarios, como el nuestro, tienen planetas situados en la zona habitable
Hay que esperar a que estén en funcionamiento las nuevas generaciones de telescopios, con técnicas superiores al Hubble, que nos podrán buscar nuevos planetas fuera del Sistema Solar y que a muchos años-luz de nosotros, podrían albergar vida inteligente.
El descubrimiento de planetas enormes situados en sistemas solares muy lejanos son una esperanza, ya que donde existen esa clase de planetas, es lógico pensar que existan otros más pequeños que, como la Tierra, puedan tener condiciones distintas y que permitan alguna clase de vida.
La imagen de Galileo mirando por su telescopio a las estrellas lejanas es sólo un símbolo del pasado. Ahora, los modernos astrónomos cuentan con sofisticados telescopios de última generación que dirigen por ordenador y sentados cómodamente las operaciones de investigación de las estrellas. Los datos son estudiados y normalizados por enormes y potentes computadoras que, en la pantalla de ordenador, les enseña lo que han detectado. Así es la astronomía moderna que contando con nuevas técnicas y muchos medios, pueden descifrar problemas antes irresolubles.
Hay estudios que favorecen la creencia de que los sistemas solares son tan comunes como las estrellas. Pero, aún suponiendo que la mayoría e incluso todas las estrellas posean sistemas planetarios, y que muchos de esos planetas sean similares a la Tierra en tamaño, debemos saber qué criterios han de satisfacer o qué requisitos deben tener o cumplir para que sean habitables.
Incluso en planetas que orbitan estrellas distintas al Sol, podría estar la vida presente
Se cree que una estrella debe tener cierto tamaño para poder poseer un planeta habitable. Cuanto más grande es la estrella tanto menor es su tiempo de vida, y si excede de ciertas dimensiones, no vivirá lo suficiente como para permitir que un planeta recorra las prolongadas etapas de su evolución química, antes de que se puedan formar y desarrollar en él formas de vida complejas.
Si la estrella es demasiado pequeña no puede calentar suficientemente a un planeta si este no está muy próximo a ella, y en tal caso, sufriría periódicos efectos perjudiciales. Se estima que sólo las estrellas de las clases espectrales F2 a Kl son adecuadas para el mantenimiento de planetas con nivel de habitabilidad suficiente para seres humanos: planetas que puedan ser colonizados (si algún día conseguimos el viaje -la forma- de desplazarnos entre las estrellas).
Si pensamos que en nuestra galaxia existen 100.000 millones de estrellas, y que tal ingente número de soles es la media de las galaxias, podemos suponer, aplicando la lógica, que estrellas del tipo idóneo para tener planetas como la Tierra o similares deben ser miles de millones. Lo que nos lleva a la conclusión de que, planetas como el nuestro también podrían ser unos cuantos.
Es probable que estos planetas portadores de la vida puedan estar distribuidos por el universo de manera uniforme; la dificultad es que el universo es demasiado grande. Si cada 100.000 años-luz cúbicos existiera un planeta como la Tierra, serían muchísimos los planetas con vida, lo que nos llevaría a tener que explorar a una distancia mínima de unos 30 años-luz para encontrar uno de esos planetas hermanos del nuestro.
Sería extraño que por esta región pudiera existir vida inteligente y que, a pesar de la cercanía con nuestro Sistema solar (4,3 años-luz), no tuviéramos ninguna prueba de su existencia. Claro que, también podría tratarse de formas de vida poco evolucionadas que no han conseguido aún la tecnología necesaria para las comunicaciones a tan largas distancias.
Algún especialista, no recuerdo ahora mismo su nombre, expuso la idea de que 14 estrellas distantes de nosotros a lo sumo 22 años-luz, pueden poseer planetas habitables y sopesó las probabilidades de que esto pueda ser así en cada caso. Llega a la conclusión de que la mayor probabilidad de planetas habitables se da precisamente en las estrellas más cercanas a nosotros, las dos estrellas similares al Sol del Sistema Alfa Centauro A y B. Según estimaba este señor, estas dos estrellas compañeras tienen, consideradas en conjunto, una posibilidad entre diez de poseer planetas habitables, la probabilidad total para el conjunto de 14 estrellas vecinas es de 2 entre 5.
Si todas las leyes del universo son las mismas que rigen aquí en la Tierra y en el Sistema Solar y en nuestra galaxia, entonces creo que para opinar sobre la posibilidad de vida extraterrestre, hay que conocer los trabajos de H. C. Urey, Stanley Lloyd Miller y otros estudiosos del origen de la vida en la Tierra, y aplicando sus estudios a planetas lejanos, tendremos la respuesta adecuada.
En los años 50, los bioquímicos Stanley Miller y Harold Urey llevaron a cabo un experimento que mostraba que varios componentes orgánicos se podían formar de forma espontánea si se simulaban las condiciones de la atmósfera temprana de la Tierra.
Diseñaron un tubo que contenía la mayoría de los gases, similares a los existentes en la atmósfera temprana de la Tierra, y una piscina de agua que imitaba al océano temprano. Los electrodos descargaron un corriente eléctrica dentro de la cámara llena de gas, simulando a un rayo. Dejaron que el experimento se sucediera durante una semana entera, y luego analizaron los contenidos en la piscina líquida. Se dieron cuenta de que varios aminoácidos orgánicos se habían formado de manera espontánea a partir de estos materiales inorgánicos simples. Estas moléculas se unieron en la piscina de agua y formaron coacervados.
Este experimento, junto a una considerable evidencia geológica, biológica y química, ayuda a sutentar la teoría de que la primera forma de vida se formó de manera espontánea mediante reacciones químicas. Sin embargo, todavía hay muchos científicos que no están convencidos.
Como nos dice Kike en uno de sus comentarios, está claro que las distancias nos impiden ese contacto con otras civilizaciones extraterrestres. El Espacio-tiempo que nos separa de ellas es demasiado grande para que podamos llegar a ellos o ellos hasta nosotros. Y, como bien apunta, será en el futuro lejano, cuando una vez en posesión de los conocimientos necesarios, podamos, al menos, intentar esquivar el espacio-tiempo y, por caminos ahora desconocidos, poder llegar hasta esos lejanos lugares donde habitan otros seres. Sin que consigamos conquistar esos conocimientos para poder burlar la velocidad de la luz, ese límite infranqueable en nuestro universo, no conseguiremos nunca llegar hasta ellos.
Otra cuestión será el coincidir, tanto en el espacio como en el tiempo, con otras civilizaciones inteligentes; no será fácil. Podría darse el caso de civilizaciones que existieron y desaparecieron antes de que apareciéramos nosotros, o que existan en este mismo momento y que estén tan atrasadas que no podamos detectar sus señales electromagnéticas inexistentes, o que estén tan adelantados que no quieran saber nada de nosotros y estén esperando el momento idóneo de nuestra evolución para contactar, ¿quien podría saber la verdad? Otra posibilidad es que nosotros nos destruyamos antes de que todo eso sea posible.
Soñamos con lo que pudiera ser en el futuro
Pensemos por un momento que existen planetas idóneos para la vida a 500 años-luz de la Tierra, y en ese tiempo, recorreríamos 4.730.400.000.000.000 Km si tuviéramos naves espaciales cuya velocidad igualara a la velocidad de la Luz. Pero como nuestros vehículos espaciales sólo alcanzan 50 o 60 mil Km/h, ¿qué materiales tendría que tener la nave viajera para que no se destruyera por el camino?, ¿Quién podría soportar tal viaje?, ¿Cuántas generaciones pasarían antes de llegar?, ¿Qué seres llegarían después de las mutaciones sufridas en la ingravidez durante tanto tiempo?
Una sola cuestión es segura: la vida existe fuera de nuestro Sistema Solar, lo contrario sería un milagro. No podemos ser tan ególatras y pensar que estamos solos, sería mucho espacio para tan pocos.