Ene
5
¿Habeis pensado por qué hay vida en el Universo?
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (3)
Astronomos dirigidos por expertos de la Universidad de California han descubierto un quásar dsistante que ilumina una gran nebulosa de gas difusa.
“Toda vida en la Tierra requiere de elementos químicos, hidrógeno, oxígeno, nitrógeno, azufre, fósforo, así como de otros muchos en menores cantidades, como ciertos minerales; requiere además de agua como solvente en el cual las reacciones tienen lugar. Cantidad suficiente de carbono y demás elementos constituyentes de la vida, junto con el agua, harían posible la formación de organismos vivientes en otros planetas con una química, presión y temperatura similares a la Tierra. Como la Tierra y otros planetas están hechos de “polvo estelar”, es muy probable que otros planetas se hayan formado con semejante composición de elementos químicos que los terrestres. La combinación de carbono y agua en la forma de carbohidratos, como el azúcar, puede ser una fuente de energía química de la que depende la vida, mientras que a la vez provee elementos de estructura y codificación genética[cita requerida]. El agua pura es útil, pues tiene un pH neutro debido a la continuada disociación entre sus iones de hidronio e hidróxido. Como resultado, puede disolver ambos tipos de iones, positivos (metálicos) y negativos (no metálicos) con igual habilidad.
Debido a su relativa abundancia y utilidad en el sostenimiento de la vida, muchos han hipotetizado que todas las formas de vida, donde quiera que se produzcan, se valdrían también de estos materiales básicos. Aun así, otros elementos y solventes pueden proveer una cierta base de vida. Se ha señalado al silicio como una alternativa posible al carbono; basadas en este elemento, se han propuesto formas de vida con una morfología cristalina, teóricamente capaces de existir en condiciones de alta temperatura, como en planetas que orbiten muy cercanos a su estrella.
También se han sugerido formas de vida basadas en el otros solventes, pues existen compuestos químicos capaces de mantener su estado líquido en diferentes rangos de temperatura, ampliando así las zonas habitables consideradas viables. Así por ejemplo, se estudia el amoníaco como solvente alternativo al agua. La vida en un océano de amoníaco podría aparecer en un planeta mucho más lejano a su estrella.
Técnicamente, la vida es básicamente una reacción que se replica a sí misma, por lo que bajo esta simple premisa podría surgir la vida bajo una amplia gama de condiciones e ingredientes diferentes, si bien la vía carbono-oxígeno parece la más óptima y conductiva. Existen incluso teorías sobre reacciones autorreplicantes que podrían ocurrir en el plasma de una estrella, aunque éste sería un tipo de vida altamente extremo y nada convencional.”
La Tierra primigenia se fue enfriando poco a poco y en ella estaban presentes todos los materiales necesarios para el surgir de la vida con la ayuda de la radiación solar, la atmósfera, los océanos… La Nebulosa primordial de la que surgió el Sistema Solar contenía todos los elementos químicos necesarios y, hace 3.850 millones de años surgieron las primeras formas elementales de vida que con el paso del tiempo evolucionaron hacia los cientos de miles de especies que poblaron el planeta-
Mucho tiempo ha pasado desde que la imagen de arriba era el presente, y, sin embargo, para el Universo supone una ínfima fracción marcada por el Tic Tac cósmico de las estrellas y galaxias que conforman la materia de la que provenimos. Es un gran misterio para nosotros que sean las estrellas las que fabrican los materiales que, más tarde, llegan a conformar a seres vivos que, en algunos caso, tienen consciencia. Planck decía:
“La ciencia no puede resolver el misterio final de la Naturaleza. Y esto se debe a que, en el último análisis, nosotros somos del misterio que estamos tratando de resolver”.
“La creciente distancia entre la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.” Nos decía Planck. Su intuición le llevaba a comprender que, con el paso del tiempo, nosotros estaríamos adquiriendo por medio de pequeñas mutaciones, más amplitud en nuestros sentidos, de manera tal que, sin que nos diéramos cuenta nos estábamos acercando más y más al mundo real.”
Aquí cada día, elegimos una cuestión distinta que se relaciona, de alguna manera, con la ciencia que está repartida en niveles del saber denominados: Matemáticas, Física, Química,Astronomía, Astrofísica, Biología, Cosmología… y, de vez en cuando, nos preguntamos por el misterio de la vida, el poder de nuestras mentes evolucionadas y hasta dónde podremos llegar en nuestro camino, y, repasamos hechos del pretérito que nos trajeron hasta aquí.
Robert Henry Dicke (6 de mayo de 1916 – 4 de marzo de 1997) fue un físico experimental estadounidense, que hizo importantes contribuciones en astrofísica, física atómica, cosmología y gravitación. Hombre inquieto, muy activo y, sobre todo, curioso por saber todo aquello que tuviera alguna señal de misterio.
Me referiré ahora aquí al extraño personaje que arriba podeis ver. Se sentía igualmente cómodo como matemático, como físico experimental, como destilador de toda clase de ideas que le llevara a descubrir los misterios de la Naturaleza.
Paul Adrien Maurice Dirac (8 de agosto de 1902 – 20 de octubre de 1984) fue un físico teórico británico que contribuyó de forma fundamental al desarrollo de la mecánica cuántica y la electrodinámica cuántica. Sus trabajos sobre el electrón, en nada tiene que envidiar a los de Einstein.
Estéticamente es elegante y simple… ¡Pero nos dice tanto!
“Es una ecuación muy poderosa por lo que significa y su papel en la historia de la física del siglo XX”.
La ecuación fue descubierta a finales de los años 20 por el físico Paul Dirac, y juntó dos de las ideas más importantes de la ciencia: la mecánica cuántica, que describe el comportamiento de objetos muy pequeños; y la teoría especial de Einstein de la relatividad, que describe el comportamiento de objetos en movimiento rápido.
Por lo tanto, la ecuación de Dirac describe cómo las partículas como electrones se comportan cuando viajan a casi la velocidad de la luz.”
Dirac, que predijo la existencia del positrón, le dedicó un estudio a la Gravedad al hilo de una serie de números y teorías propuestas por Eddintong en aquellos tiempos y decidió abandonar la constancia de la constante de gravitación de Newton, G. Sugirió que estaba decreciendo en proporción directa a la edad del universo en escalas de tiempo cósmicas. Es decir, la Gravedad en el pasado era mucho más potente y se debilitaba con el paso del tiempo.
Así pues, en el pasado G era mayor y en el futuro será menor que lo que mide hoy. Veremos que la enorme magnitud de los tres grandes números (1040, 1080 y 10120) es una consecuencia de la gran edad del universo: todas aumentan con el paso del tiempo.
La propuesta de Dirac provocó un revuelo un grupo de científicos vociferantes que inundaron las páginas de las revistas especializadas de cartas y artículos a favor y en contra. Dirac, mientras tanto, mantenía su calma y sus tranquilas costumbres, escribió sobre su creencia en los grandes números cuya importancia encerraba la comprensión del universo con palabras que podrían haber sido de Eddington, pues reflejan muy estrechamente la filosofía de la fracasada “teoría fundamental”.
Siempre hemos estado obsesionados con algunos números en los que creímos ver significados ocultos
“¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de Gran 1040 y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día”.
La propuesta de Dirac levantó controversias los físicos, y Edward Teller en 1.948, demostró que si en el pasado la gravedad hubiera sido como dice Dirac, la emisión de la energía del Sol habría cambiado y la Tierra habría mucho más caliente en el pasado de lo que se suponía normalmente, los océanos habrían estado hirviendo en la era precámbrica, hace doscientos o trescientos millones de años, y la vida tal como la conocemos no habría sobrevivido, pese a que la evidencia geológica entonces disponible demostraba que la vida había existido hace al menos quinientos millones de años.
Las constantes de la Naturaleza han sido medida de mil maneras
Dicke, ya podéis imaginar que fue uno de los que de inmediato se puso manos a la obra para dilucidar si la Naturaleza encerraba el secreto de una G variable como decía Dirac.
A lo largo del Siglo XX se observó que algunas de las cifras que se dan en la naturaleza coinciden de manera sorprendente, y más extraño aún resultó el hecho de que se refieren a ámbitos físicos aparentemente independientes. Otro elemento insólito consistía en que todas ellas giraban alrededor de unos números (1040, 1080 y 10120).
“El problema del gran tamaño de estos números es ahora fácil de explicar… Hay un único número adimensional grande que tiene su origen estático. Este es el número de partículas del Universo. La edad del Universo “ahora” no es aleatoria sino que está condicionada por factores biológicos… [porque cambio en los valores de grandes números] impedirían la existencia del hombre para considerar el problema”.
La Alquimia estelar está presente en “infinitos” lugares del universo
La evolución del Universo, sus transiciones de fases, la construcción natural de elementos pesados y más complejos en el seno de las estrellas y en las explosiones supernovas, todo ello, nos llevó a que la materia pudiera adquirir la capacidad químico biológica necesaria para la vida.
Dicke, cuatro años más tarde desarrolló esta importante intuición con más detalle, con especial referencia a las coincidencias de los Grandes Números de Dirac, en una breve carta que se publicó en la revista Nature. Dicke argumentaba que formas de vidas bioquímicas como nosotros mismos deben su propia base química a elementos tales como el carbono, nitrógeno, el oxígeno y el fósforo que son sintetizados tras miles de millones de años de evolución estelar en la secuencia principal. (El argumento se aplica con la misma fuerza o cualquier forma de vida basada en cualesquiera elementos atómicos más pesados que el helio.) Cuando las estrellas mueren, las explosiones que constituyen las supernovas dispersan estos elementos biológicos “pesados” por todo el espacio, de donde son incorporados en granos, planetesimales, planetas, moléculas “inteligentes” auto replicantes como ADN y, finalmente, en nosotros mismos que, en realidad, estamos hechos de polvo de estrellas.
El polvo de las estrellas, ahí se guarda el secreto de la vida y de la energía del Universo
Esta escala temporal está controlada por el hecho de que las constantes fundamentales de la Naturaleza sean:
t(estrellas) ≈ (Gmpr 2/ћc)-1 ћ/mprc2 ≈ 1040 ×10-23 segundos≈ 10.000 millones de años (se necesita ese tiempo de evolución en las estrellas para que, la vida, pueda aparecer en el Universo). No esperaríamos estar observando el Universo en tiempos significativamente mayores que t (estrellas), puesto que todas las estrellas estables se habrían expandido, enfriado y muerto. Tampoco seríamos capaces de ver el Universo en tiempos muchas menores que t (estrellas) porque no podríamos existir. No había estrellas ni elementos pesados como el carbono. Parece que estamos amarrados por los hechos de la vida biológica para mirar el Universo y desarrollar teorías cosmológicas una vez que haya transcurrido un tiempo t (estrellas) desde el Big Bang.
Creo que las constantes de la Naturaleza permiten la presencia de la Vida en el Universo
Sería necio pensar que la Vida, solo está presente en la Tierra. Las leyes del Universo son las mismas en todas partes, todas las regiones del Universo, por muy alejadas que se puedan encontrar, se rigen por las fuerzas fundamentales y las constantes universales, y, no podemos dudar de que un átomo lo es “aquí” como lo será “allí”. Y siendo así (que lo es), ¿por qué la vida estaría presente un un diminuto planeta de un diminuto Sistema solar en una Galaxia esperial como existen miles de millones en todo el Universo?
Cadenas de ADN en el Universo
Como antes se explicaba, todos los procesos de la Naturaleza, requieren su tiempo. Desde un ambarazo a la evolución de las estrellas t(estrellas) ≈ (Gmp2 / hc)-1 h/mpc2 ≈ 1040 ×10-23 segundos ≈ 10.000 millones de No esperaríamos estar observando el universo en tiempos significativamente mayores que t(estrellas), puesto que todas las estrellas estables se habrían expandido, enfriado y muerto. Tampoco seríamos capaces de ver el universo en tiempos mucho menores que t(estrellas) porque no podríamos existir; no había estrellas ni elementos pesados como el carbono. Parece que estamos amarrados por los hechos de la vida biológica para mirar el universo y desarrollar teorías cosmológicas una vez que haya transcurrido un tiempo t(estrellas) Big Bang.
La escena de una estrella moribunda fue necesaria para que los materiales biológicos que nos conformaron a los seres vivos, pudieran estar presentes en el Universo. Sin que llegara a producirse tal acontecimiento, no existirían en el universo los elementos necesarios para la vida. Así no pocas veces hemos oido decir que estamos hechos de polvo de estrellas y, aunque no literal, si es una buena metáfora de lo que somos. Es fácil suponer que la vida pulula por todo el Universo. Pero, siempre se nos viene una pregunta a la mente: ¿Por qué no hemos contactado ya con otros seres inteligentes de otros planetas?
Claro que los procesos de la alquimia estelar necesitan tiempo: miles de millones de años de tiempo. Y debido a que nuestro universo se está expandiendo, tiene que tener un tamaño de miles de millones de años-luz para que durante ese periodo de tiempo necesario pudiera haber fabricado los componentes y elementos complejos para la vida. Un universo que fuera sólo del tamaño de nuestra Vía Láctea, con sus cien mil millones de estrellas resultaría insuficiente, su tamaño sería sólo de un mes de crecimiento-expansión y no habría producido esos elementos básicos para la vida.
Los precesos siguen, las cosas cambian, el Tiempo inexorable transcurre, si hay vida vendrá la muerte, lo que es hoy mañana no será. De la matería inerte surgirá la vida mediante procesos inevitables que son normales en las reglas que el Universo impone, en su ritmo y en sus constantes que hacen posible, al fin, la presencia de una bioquímica que permite la diversidad de seres vivos que a lo largo de la historia de la Tierra estuvieron aquí, los que están ahora en el presente y, los que, posiblemente, estarán máñana… ¡En ese futuro que no conocemos! Pero sabemos que…
El universo visible contiene sólo:
1 Estrella por (103 años luz)3
1 “Universo” por (1010 años luz)3
El cuadro expresa la densidad de materia del universo de varias maneras diferentes que muestran el alejamiento que cabría esperar entre las galaxias y lo difícil que será que podamos, algún día, conocer a seres de otras galaxias cada vez más lejos de nosotros. Sin embargo, en nuestra Vía Láctea existen miles de millones de mundos y, siendo así (que lo es), no podemos perder la esperanza de que algún día… podamos ir a otros mundos habitados, o, recibir, una inesperada visita.
Ene
4
¿Mundos habitados? ¡Ni se pueden contar!
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (4)
Chloe Agnew – Nella Fantasia
Chloe Agnew – Panis Angelicus
Chloe Agnew sings ”The Prayer”
De vez en cuando debemos dedicar algún tiempo a sentir sensaciones que nos eleven a otros mundos sin salir de este nuestro.
Con las condiciones de la Tierra y similares, existen en las galaxias mundos que ofrecen todas las posibilidades de habitabilidad necesarias para una gran diversidad de formas de vida, en ellos está presente la química necesaria para ellos y, también, las condiciones de distancias adecuadas de su estrella que les suministra la luz y el calor necesarios para que germine la semilla de la vida.
Es imposible abstraerse de la posibilidad de pensar en cuántos mundos de nuestra propia Galaxia, y, del resto de las galaxias del Universo, podrían estar habitados por seres inteligentes o no (dependiendo de la fase en la que se encuentre en su evolución planetaria). Si lo más normal es que las estrellas tengan sus propios sistemas planetarios y, sólo en la Vía Láctea existen cien mil millones de estrellas… ¡Cuántos planetas no estarán en la zona habitable!
Es cierto que los esfuerzos realizados hasta el momento por hallar vida en otros mundos, ha sido infructuosa. Sin embargo, no nos debe extrañar tal resultado si pensamos que, siendo difícil hallar esos mundos, mucho más resultarán las dificultades de saber si contienen vida y si ésta es inteligente. Las distancias que nos separan de ellos hacen “casi” imposible que pueda existir una comunicación si pensamos que, la velocidad a la que se puede transmitir la información es de 1.080 millones de Km por hora, y, si esos planetas están situados a decenas o miles o millones de años luz de nosotros…
Sabemos que existen planetas de todo tipo, algunos poseen condiciones casi imposibles para la vida. Sin embargo, no podemos asegurar nada, toda vez que, aquí mismo en la Tierra, la Vida, se abrió paso en regiones y situaciones “imposibles”, sabemos de las proezas de esas diminutas formas de vida que llamamos extremófilas y que consiguen vivir en lugares extremos que nunca pudimos imaginar que pudieran exisitr. Sin embargo, ahí están.
Nuestra imaginación no0s llevar a recrear mundos que pudieran ser, y criaturas que estarían, como nosotros en la Tierra, habitándolos y tendrían sus propias normas sociales y costumbres y ciudades que se adaptarían al clima, al terreno y a las condiciones atmosféricas del lugar. Incluso no habría que descartar mundos en los que, la vida, esté en el subsuelo del planeta.
Como nunca pudimos estar en ninguno de esos planetas que imaginamos, tendemos a dibujar escenarios que en ellos podrían ser reales, nos inventamos lugares y situaciones, y, también, a los seres que allí podrían vivir. Eso siempre ha estado con nosotros, el poder inventar partiendo de lo que imaginamos, así que, los mundos, no han sido una excepción y desde hace mucho que los hemos plasmado en comics y películas, o, en novelas de ciencia ficción que, al fin y al cabo, serán las precursoras del futuro.
Cualquier cosa que imaginemos podría ser una realidad en otros mundos
Muchas son las sorpresas que nos podremos encontrar llegado el momento tantas veces soñado de ese primer contacto. ¿Cómo serán ellos? Bueno, eso dependerá de mil factores que no podemos prever. Si nos fijamos en la cantidad de especies que existen en la Tierra, podemos imaginar las que pueden estar presentes en planetas de otros sistemas planetarios distintos al nuestro.
Es cierto que en el Universo, por lo general, todo se repite una y otra vez: Las estrellas, los mundos, las galaxias… De la misma manera (creo), también la vida, será una repetición en cualquier mundo de la que vemos aquí en la Tierra. Seguramente, estará basada en el Carbono como la nuestra y la de todos los seres que pueblan la Tierra. Sin embargo… ¡Nunca se sabe!
En cuestión de mundos extraterrestres y la vida que en ellos pudiéramos encontrar, nada debería asombrarnos y tenemos que mantener la Mente bien dispuesta a cualquier cosa por muy extraña que nos pueda parecer.
Civilizaciones adelantadas a la nuestra en miles de años, otras que aún no han salido de la Edad de Piedra, y, algunas que, estarán en la fase de la vida incipiente que evoluciona hacia los pensamientos, es decir, hasta la conciencia de Ser.
emilio silvera
Dic
20
¿Cómo pudo surgir la Vida? ¡Es todo tan complejo!
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (1)
Podemos leer en las piedras… ¡Cuentan tantas historias!
Con sus tres mil quinientos millones de años de edad, las rocas sedimentarias dispersas por algunas regiones del mundo, por ejemplo, en Australia Occidental (Grupo Warrawoona), nos regalan uno de los primeros atisbos e vida y el en la infancia de la biosfera. Esas rocas contienen estromatolitos y estructuras microscópicas que han sido interpretados como bacterias fósiles, aunque ese extremo aún siga en pleno debate. No obstante, las signaturas químicas proporcionan evidencias sólidas de la antigüedad de la vida, aunque el tipo de biología responsable de ellas siga siendo incierto. En las investigaciones geológicas de la vida primigenia de la Tierra seguimos mirando a través de un cristal oscuro.
Muchas veces pasamos junto a sistemas rocosos sin pensar que, en ellos, están presentes un sin fin de del pasado que nos hablan de la vida y, son los geólogos los que, pacientemente se internan por lugares perdidos del mundo en busca de esa huella que nos hable del surgir de la vida.
El vestigio geológico, como dijo James Hutton, no presenta “ni vestigios de un principio ni perspectiva de un futuro”. Las perspectivas de un futuro siguen siendo remotas, pero durante las últimas décadas los paleontólogos han desenterrado lo que verdaderamente considerar los vestigios del principio de la vida.
Insectos fosilizados de millones de años de edad
Fósiles de cascarones (a la izquierda) y de manto bacteriano (a la derecha) en los sedimentos de Pilbara, Grupo Warrawoona, 3.446 Ga-© Frances Westall.
Estas estructuras han sido atribuidas a bacterias fosilizadas. La cantidad de carbono restante unida a estos microfósiles es generalmente muy débil ( 0,01-0,5% con puntas excepcionales hasta el 1%) lo que hace particularmente difícil el análisis del carbono orgánico. No obstante, se han podido determinar los isótopos de carbono y presentan un enriquecimiento variable pero así y todo significativo en carbono 12, lo que habitualmente se traduce en un origen biológico. En general, las moléculas biológicas producidas por fotosíntesis se caracterizan por un enriquecimiento en 12C en relación con los carbonatos minerales. Así, la relación 12C/13C pasa de 88,99 en los carbonatos minerales de referencia a valores comprendidos entre 90,8 y 91,7 en las moléculas orgánicas biológicas.
Aunque no son plantas, las cianobacterias son uno de los principales seres vivos capaces de realizar la fotosíntesis, y están sujetos al mismo intercambio de gases. En ellos los gases fluyen a través de la membrana y la pared celular por transporte pasivo.
Arguyendo un parecido entre las cianobacterias modernas y los microfósiles de Pilbara, William Schopf, de la Los Angeles, ha descrito estos últimos como fósiles de cianobacterias. Estas bacterias ancestrales, pues, ya habrían practicado la fotosíntesis oxigenada. Interpretación muy importante ya que situaría la fotosíntesis oxigenada muy atrás en los tiempos geológicos, mientras que los indicios bioquímicos más antiguos de la fotosíntesis oxigenada encontrados en esquistos carbonados, también en Australia, sólo se remontan a 2.700 millones de años. Según el inglés Martin Brasier, de la Universidad de Oxford, las estructuras contendrían efectivamente carbono orgánico enriquecido en isótopo 12, pero la materia orgánica sería de origen puramente químico y no biológico. Podría proceder de la reacción del hidrógeno con el monóxido de carbono (reacción llamada de Fischer-Tropsch), dos gases presentes en los fluidos de las fuentes hidrotermales. La acumulación de materia orgánica en microestructuras sería debida a la cristalización del cuarzo en la vena hidrotermal, y el importante enriquecimiento en carbono 12 sería el resultado de procesos puramente químicos. La explicación de Brasier, no obstante, no es totalmente convincente porque no es probable que la reacción de Fischer-Tropsch produjera moléculas tan complejas como los kerógenos (materia orgánica compleja, insoluble en los disolventes habituales) depositados en las venas hidrotermales.
Sedimento de Isua, Groenlandia, de una antigüedad de 3.800 millones de donde se han encontrado Bacterias fósiles de una antigüedad aproximada de 3.500 millones de años.
Muchas veces hemos opido hablar de la datación del Carbono y, el sistema de datación radiométrica más conocido es el proporcionado por el 14C, o Carbono 14, un isótopo raro de Carbono que se produce en natural por acción de los rayos cósmicos y antropogénicamente por bombas nucleares. Se desintegra en Nitrogeno (14N) con una vida media de 5.730 años. Como el Carbono 14 es tan poco común (menos de uno de mil átomos de Carbono) y su vida media es tan corta, la datación con radio carbono queda limitada a los últimos cien mil años, aproximadamente.
Las trazas de vida primitiva han sido borradas por la geología, el fluir de las aguas, los UV y por la propia evolución de la vida, los cambios…del Oxígeno, de la atmósfera, etc.
En los materiales más antiguos simplemente no queda suficiente 14C que pueda medirse con precisión. Por consiguiente, el 14C proporciona una herramienta de datación valiosa para egiptólogos o para paleontólogos interesados en Mamuts lanudos, pero no sirve para desentrañar la historia profunda de la Tierra que sus secretos muy bien guardados en lo más profundo de los tiempos.
Escenas que nos llevan hacia atrás en el tiempo (65 millones de años) y, la otra, que nos devuelve al presente
Conforme estudiamos los restos fósiles vamos sabiendo más de tiempos pretéritos. Cada descubrimiento nos retrotrae un poco más en el pasado y nos dice, por ejemplo, que el primer ojo o el primer ser fotosintético se remontan aún más en el tiempo de lo que pensábamos.
Frances Westall, del CNRS francés, y sus colaboradores han analizado unos tapetes microbianos fósiles encontrados en el cinturón Barberton Greenstone sudafricano y llegado a la conclusión de que la fotosíntesis ya existía al menos hace 3300 millones de años.
Estas capas de microbios crecían en una Tierra en la que no había oxígeno libre, una Tierra muy distinta a la que conocemos ahora. Probablemente su hábitat era la línea costera a muy baja profundidad bajo la superficie. Un sitio en el que había agua y la luz del Sol llegaba sin dificultad. Esa tonalidad, probablemente verde-azulada, sería la que cambiaría el planeta gracias a la luz y la evolución.
¡La Vida! Que estuvo presente en el pasado… ¡De tántas maneras!
Las trazas de vida primitiva han sido borradas por la geología, el fluir de las aguas, los UV y por la propia vida (oxígeno) © B. Barbier |
También aquí hay que rendirse a la evidencia: la esperanza de encontrar pequeños autómatas químicos fosilizados desde hace 4.000 millones de años, o incluso moléculas orgánicas constitutivas de tales autómatas, es prácticamente nula. De hecho, tres factores han contribuido a borrar sus indicios sobre la Tierra: la historia geológica accidentada de la Tierra (y en particular la tectónica de placas), la erosión debida a la presencia permanente de agua líquida y la propia vida, que produce enormes cantidades de oxígeno, un veneno para las moléculas orgánicas reducidas. Por lo tanto, podemos temer que las primeras páginas del libro de la historia de la vida queden para siempre en blanco.
Los microorganismos fósiles más antiguos fueron encontrados en los sedimentos de Barberton, en África del Sur, y de Pilbara, en Australia. Estos sedimentos, de una antigüedad de entre 3.200 y 3.500 millones de años, son ligeramente más jóvenes que las rocas de Groenlandia. Los sedimentos se han conservado bien y muestran la existencia de abundante vida en las aguas litorales de poca profundidad, y quizá incluso cerca de la superficie del agua (algunos biofilms tienen una estructura laminada que parece indicar una vida bacteriana que ya utilizaba energía ). Los microfósiles identificados comprenden estructuras filamentosas con una longitud de entre diez y algunos cientos de micras, bastoncillos de algunas micras de largo y estructuras esféricas y ovoides de aproximadamente 1 micra de diámetro.
Los trabajos realizados en Orleans, en el Centro de biofísica molecular del CNRS, por Frances Westall podrían aportar una explicación intermedia. Se han observado al electrónico morfologías de microfósiles tales como biofilms, polímeros, cascarones, filamentos, bastoncillos, en las muestras de sílice tomadas en Pilbara en zonas limítrofes con las venas hidrotermales de Schopf, pero nunca en el interior mismo de las venas. Estas morfologías contienen carbono identificado por microanálisis con el microscopio electrónico. Parece, en efecto, que las bacterias ancestrales vivían, y posteriormente fueron fosilizadas, en rocas sedimentarias cercanas a venas hidrotermales. Las venas hidrotermales pueden muy bien haber arrastrado la materia orgánica de las bacterias muertas y/o fosilizadas (por lo tanto, enriquecidas en carbono 12), materia orgánica que habría sido depositada nuevamente más arriba en las venas hidrotermales, para formar las famosas estructuras carbonadas complejas descritas por Schopf. Las estructuras de Schopf, pues, sólo serían restos de materia orgánica bacteriana y no bacterias fosilizadas. Esta explicación, por lo tanto, es intermedia entre el todo bacteriano de Schopf y el todo químico de Brasier. No obstante, afirma la presencia de vida bacteriana hace unos 3.500 millones de años.
Izquierda: Sedimento de Isua, Groenlandia, de una antigüedad de 3.800 millones de años.
Derecha: Bacterias fósiles de una antigüedad de aproximadamente 3.500 millones de años
Las rocas más antiguas susceptibles de presentar trazas de vida son sedimentos de una antigüedad aproximada de 3.750 millones de años descubiertos en el sudoeste de Groenlandia.
Estos sedimentos demuestran la presencia permanente de agua líquida, de gas carbónico en la atmósfera y contienen kerógenos, moléculas orgánicas complejas. La relación isotópica del carbono está comprendida entre 90,2 y 92,4 en lo referente a la materia orgánica de los sedimentos de Groenlandia. Estos valores sugieren, pero no demuestran de manera cierta, la existencia de actividad fotosintética, y por lo tanto de vida primitiva, hace 3.800 millones de años. En efecto, materia orgánica muy antigua (a veces reducida a cristales de grafito) ha sufrido importantes modificaciones en el curso de la diogénesis.
Muchos son los lugares en los que podemos encontrar moléculas orgánicas complejas
El producto final de degradación, los kerógenos, se compone de macromoléculas complejas estables resistentes, que pueden incluso ser transformadas en grafito puro durante el metamorfismo. Todos estos tratamientos pudieron muy bien generar los enriquecimientos en 12C observados. También hay que desconfiar mucho de la contaminación eventual de estas rocas por microorganismos más recientes, contaminación que, evidentemente, falseará los análisis. A causa de las múltiples transformaciones sufridas por estas rocas, hay muy pocas probabilidades de encontrar en ellas vestigios de microfósiles. En efecto, en los sedimentos de Groenlandia no se ha descubierto ninguna estructura parecida a bacterias fósiles.
También aquí hay que rendirse a la evidencia: la esperanza de encontrar pequeños autómatas químicos fosilizados hace 4.000 millones de años, o incluso moléculas orgánicas constitutivas de tales autómatas, es prácticamente nula. De hecho, tres factores han contribuido a borrar sus indicios sobre la Tierra: la historia geológica accidentada de la Tierra (y en particular la tectónica de placas), la erosión debida a la presencia permanente de agua líquida y la propia vida, que produce enormes cantidades de oxígeno, un veneno para las moléculas orgánicas reducidas. Por lo tanto, podemos temer que las primeras páginas del libro de la historia de la vida queden para siempre en blanco.
Mapa de Australia con la región de Pilbara coloreada en rojo.
El grupo Warrawoona
En el Cinturón de Pilgangoora el Grupo Coonterunah de 3.517 millones de años y las granulitas de Carlindi (3.484-3.468 millones de años son la razón fundamental del Grupo Warrawoona bajo un desajuste de erosión, aportando así pruebas de la antigua corteza continental . La Cúpula del Polo Norte (NPD) se encuentra a 10 kilómetros del Grupo Warrawoona.
Son células que se agrupan en colonias formando rocas sedimentarias. Estas rocas se encuentran en mares calidos y son el resultado de la union de seres uni- celulares, cianobacterias. Las rocas se forman muy lentamente, capa sobre capa y una capa se muere se deposita el carbonato de calcio de sus paredes sobre la capa anterior.
En el Grupo Warrawoona (3.400-3.500 millones de años) se encontraron estructuras sedimentarias que se identificaron como producidas por la actividad de organismos por William Schopf. Debido a identificación, se consideraron esos restos como la huella de vida más antigua de la que se tiene constancia. Son poco comunes (sólo se han encontrado, además de en Warrawoona, en el Supergrupo Pongola , de 2.700-2.500 millones de años, y en el Grupo de Bulawayan de Rhodesia, de 2.800 millones de años), por lo que no se puede estar seguro de que los organismos que los formaran fueran fotosintéticos y tampoco se pueden sacar conclusiones claras acerca de los ambientes en que se formaron. Ciertas bacterias no fotosintéticas forman estructuras similares a estromatolitos en fuentes termales de Yellowstone, por lo que existe la posibilidad de que bacterias similares formaran las estructuras estromatolíticas arcaicas.
Estos restos de Warrawoona incluyen microfósiles filamentosos y cocoides muy parecidos a cianobacterias, lo que ha inducido a pensar en la existencia de organismos fotosintéticos aeróbicos. Actualmente, estos restos están cuestionados tanto por su origen biológico por su edad.
Puede parecer sorprendente que las bacterias puedan dejar fósiles. Sin embargo, un grupo particular de bacterias, las cianobacterias o “algas azul-verdosas”, han dejado un fósil que se extiende en el Precámbrico – las cianobacterias más viejas, como fósiles conocidos tienen casi 3.500 millones años, son los fósiles más antiguos actualmente conocidos. El grupo muestra lo que probablemente es el conservacionismo más extremo de morfología de cualquier organismo. Aparte de las cianobacterias, las bacterias fósiles identificables no son muy frecuentes. Sin embargo, bajo ciertas condiciones del medio químico, pueden reemplazarse células bacterianas con minerales, muchas veces pirita o siderita (carbonato férrico), formando réplicas de las células que una vez estuvieron vivas.
decíamos, en la datación de objetos más antiguos situados en las profundidades de la historia de la Tierra, el 14C no sirve, y, nos tenemos que valer de otros materiales cuya vida media sea más larga. ello, necesitamos un reloj mucho más imponente: un radioisótopo cuya vida media se mida en muchos millones de años o incluso, en miles de millones de años. El Potasio 40 (40k) se identificó inicialmente como un candidato prometedor para la geocronología. Este isótopo inestable se desintegra formando o bien Calcio 40 (40 Ca), que desafortunadamente no distinguierse de los iones de Calcio ya presentes en el mineral, o bien Argón (40 Ar), que só piede distinguierse. La Vida Media del 40K es de 1250 millones de años. Además, el Potasio es abundante y está ampliamente distribuido en los minerales que forman las rocas.
Mineral de Circón
Sin embargo, lo que realmente necesitamos para datar las rocas muy antiguas es un sistema que funcione como las “cajas negras” de los aviones: un isótopo que no se pierta fácilmente en un mineral que no se altere fácilmente. Los circones, unos minerales que contienen uranio y se encuientran en los granitos y otras rocas igneas, son las cajas negras de la geología precámbrica. De hecho, el uranio enlazado a los cristales de circón en el de su formación nos proporcionan dos cronómetros fiables: el 238U se desintegra en Plomo 206 (206Pb) con una vida media de unos cuatro mil quinientos millones de años (la edad de la Tierra), mientras el osotopo 235U, abundante ( un 7 por mil), se desintegra en 207Pb con una vida media de algo más de setecientos millones de años. peculiaridad nos permite verificar por dos métodos las edades medidas en las rocas más antiguas de la Tierra y, podemos saber la edad de los fósiles hallados en ellas.
En la actualidad, nuestro conocimiento de la vida en ambientes arcaícos es a un tiempo drustrante y emocionante: frustrante porque tenemos muy pocas certezas, emocionante porque sabemos algo, por poco que esto sea. Además, es estimulante, pues el compañero de la ignorancia es la oportunidad. Así que nos quedan preguntas importantes que realizar sobre las rocas de Warrawoona y las de otros lugares que nos muestran fósiles que, no siempre sabemos descifrar. Si las rocas más antiguas que hemos podido identificar nos indican la presencia de organismos complejos, ¿queé clase de células vivían en tiempos aún más lejanos? Y, en última instancia, ¿cómo pudieron surgir? ¿Cuál es el origen de la vida?
¿Quién puede contestar esa pregunta?
La vida fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Nosotros (creo), junto con la inmensa diversidad de clases de vida que en la Tierra han sido, estábamos presentes en las que el Universo tenía impresas en la evolución de Gaia. Sin embargo, la vida es muy distinta a todo lo demás porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un papel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida, y, esa evolución bioquímica de la materia para hacer posible la vida, se gestó, primero en las estrellas, más tarde en las explosiones supernovas que hicieron posible la transmutación de materiales sencillos en más complejos y, finalmente, en las Nebulosas donde se formaron nuevas estrellas y planetas que, cargados con estos materiales prebióticos, sólo tuvieron que esperar que, en algún plameta como la Tierra, situado en la Zona habitable de su estrella (el Sol) dejara que el Tiempo, con su transcurrir, hiciera el trabajo.
Muchos son los planetas situados en la zona habitable de “sus estrellas”
A grandes rasgos entendemos como pueden haber evolucionado las moléculas biológicas a partir de precursores simples presentes en la Tierra joven. Sin embargo, sigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de forma tan compleja hasta llegar a “fabricar” una “máquina” tan maravillosa como nuestro cerebro de cuyas funciones, simplemente conocemos una muy superficial.
Si pensamos en cómo se pudo conformar el cerebro humano, una estructura de tal complejidad que, posiblemente, nada en el Universo se le pueda igualar, toda vez que, llegar a transiciones de fase que pasan por sucesos que parten la materia inerte y llegan hasta los pensamientos y los sentimientos…, no existe nada que se le pueda igualar.
¿Conoceremos algún día la verdadera Historia? Esperemos que, al menos, en su mayor parte sí.
emilio silvera
Dic
19
¿Estará la Mente predestinada?
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (4)
Algunas veces, mirando la historia evolutiva de la vida, uno tiende a pensar que, de todas las estructuras complejas producidas por la biología terrestre (es lo único que conocemos), ninguna es más importante que el cerebro, el más complejo de todos los órganos. Lo que nos lleva a plantearnos una prgunta: ¿Son los cerebros sólo accidentes aleatorios de la evolución, o son los inevitables productos derivados de un proceso de complejificación que sigue unas leyes? Una hipótesis muy generalizada es que si surge la vida en otros planetas, ésta tendrá un desarrollo muy similar al de la vida en nuestro planeta, la Tierra. Los defensores de SETI, la búsqueda de inteligencia extraterrestre, argumentan que en el curso de miles de años la vida extraterrestre se hará más compleja para formar plantas y animales, y finalmente descubrirá su cognición y la inteligencia, como sucedió aquí. Eso en los planetas que estén en evolución y, en otros, evolucionados como la Tierra, la vida ya estará presente.
Hablamos del cerebro humano por ser el “desconocido” mejor conocido, muchas son las inteligencias que están presentes en nuestro planeta y que, no hemos podido llegar a conocer. De algunos animales, podemos haber vislumbrado alguna clase de inteligencia y, si me apuran, hasta de sentimientos pero, lo que se dice conocer lo que se puede fraguar en sus cerebros…, es una gran incógnita para nosotros que, somos los seres predominantes en el planeta y, además de ser conscientes hemos llegado a presentir que tenemos “Alma”, algo tan complejo que, siendo portadora de los sentimientos y los pensamientos, es, sin embargo, inmaterial y eterea. Eso que llamamos Alma es en realidad la sabiduría, la que nos lleve a comprender sobre las cosas, sobre el mundo, sobre el Universo y, también sobre la misma condición humana.
El cerebro es de una complejidad tal que, no hemos podido llegar a comprender toda su grandeza, y, sabemos que rige todo lo que acontece en nuestros cuerpos, desde él se emiten las ordenes necesarias para hacer los precisos movimientos, para hablar o correr, o, en otros casos, para pensaqr y generar pensamientos y…
También sentimientos que, en realidad y a través del Amor y la Familia, es el verdadero motor que mueve el mundo en el que vivimos, es el mayor incentivo que tenemos para luchar y seguir adelante en la dura batalla que, la Naturaleza y la Vida, nos plantea cada día.
Decíamos que en otros planetas (al menos en una fracción de todos los planetas presentes en las galaxias), también habrá surgido y evolucionado la vida inteligente que, como la nuestra, habrá avanzado y desarrollado su propia tecnología, e incluso algunas de esas comunidades tecnológicos pueden estar en este preciso momento tratando (como hacemos nosotros) de entrar en contacto con nosotros y con otras inteligencias dispersas a lo largo y a lo ancho del vasto Universo. Así pues, los investigadores de SETI suscriben generalmente la idea de la escala de progreso, al aceptar que no sólo la vida, sino también la mente, están en cierto sentido predestinadas a aparecer en el universo.
Las firmas de vida que nos podemos encontrar en otros mundos (cuando sea posible viajar a las estrellas), son impredecibles. Como pasa en la Tierra la diversidad será grande. Sin embargo, creo que todas estarán basadas en el Carbono como todas las especies que pueblan nuestro planeta, esa debe ser una condicion ineludible por las condiciones de este elemento.-
Así, el recipiente puede ser diferente pero, el cerebro portador de la mente, será parecido o similar al nuestro y se regirá por los mismos parámetros y funciones. Un inmenso entramado de neuronas y cogniciones que reciben, controlan y envían información que procesa para conocer el mundo exterior y comprender, su lugar en el Cosmos.
Claro que, este punto de vista, aunque dominante, esconde de nuevo una hipótesis enorme acerca de la naturaleza del Universo. Significa aceptar, de hecho, que las leyes de la naturaleza están “amañadas” no sólo a favor de la complejidad, o sólo a favor de la vida, sino también a favor de la Mente. Dicho de otra manera, creo que la Naturaleza misma es MENTE, de otra manera a mí me resulta muy difícil copmprender que la mente no esté inscrita de una fiorma fundamental en esas leyes naturales que todo lo rigen y hacen que las cosas ocurran como vemos que pasan. Es,así, altamente significativo, por supuesto, que los productos de la tendencia de complejjficación de la naturaleza -seres inteligentes como el Homo Sapiens- sean capaces de entender lass propias leyes que han dado lugar al “entendimiento” si, esos sujetos, fueran totalmente ajenos a ella.
En cierta manera, tales pensamientos son visiones inspiradoras. Pero, ¿es verosímil? ¿Podemos que creer que el universo no sólo es bioamigable, sino también menteamigable. ¿Son tantos los mundos que, como la Tierra, tendrán las condiciones precisas para la vida? y, ¿Será la vida, toda la vida del Universo, basada, como la de la Tierra en el Carbono?
Claro que, en este apartado del saber humano, son muchas las versiones que, a lo largo de nuestra historia han sido vertidas. En 1964, el biólogo George Simpson escribió un artíoculo escéptico titulado “Sobre la no predominancia de los humanoides”, en el que relataba la futilidad de la búsqueda de vida extraterrestre avanzada. Lo calificaba como “una apuesta contra las probabilidades más adversas de la historia”. Señalando que los seres humanos son el producto de innumerables incidentes históricos especiales, concluía:
“La hipótesis hecha tan abiertamente por astrónomos, físicos y algunos bioquímicos, según la cual una vez que la vida se pone en marcha en alguna parte, los humanoides aparecerán final e inevitablemente, es lisa y llanamente falsa”. En un famoso debate con el defensor de SETI Carl Sagan, el Biólogo Ernst Mayr se hacía eco del escepticismo de Simpson: “En la Tierra entre millones de linajes u organismos y quizá 50.000 millones de sucesos de especiación, sólo uno condujo a una alta inteligencia; eso me hace creer en su completa improbabilidad”.
¿De qué manera podría ser la vida en otros mundos? De haberla, podría ser ¡de tántas maneras! que no debemos descartar aquella que teniendo la condición de vida, incluso esté fuera de nuestro alcance de visión y, estando a nuestro lado, sea totalmente ajena a nuestros sentidos. Las formas que la vida pueda tomar (aquí mismo en la Tierra somos testigos), son de múltiples fasetas, de diversas maneras y, hasta desconocidas. ¿quién conoce a todos los seres vivos que conviven con nosotros en la Tierra?
Por otra parte, el especialista Jay Gould denuncia análogamente la idea de que la vida está destinada a producir mente. Imaginemos, dice él, que una catástrofe barriera toda la vida avanzada sobre la Tierra, dejando sólo microbios. Si se repitiera el drama evolutivo, ¿qué sucedería? ¿Cabría esperar una pauta de desarrollo básicamente similar, en la que volverían a emerger peses, vertebrados, mamíferos, reptiles y bípedos inteligentes? Nada de eso, concluye él. La historia de la vida sobre la Tierra es una loteria gigantesca, con muchos más perdedores que ganadores.
Muchas formas de vida pasada, ya no están aquí con nosotros. De hecho, sólo el 1% de las epecies que han poblado la Tierra viven actualmente y, tenemos que tener claro que, la única manera de evolucionar es mutar, sin mutaciones no hay evolución, dado que la dinámica del planeta es cambiante y nos exige una adaptación, aunque a lo largo de miles de años, nosotros y otros seres vivos mutan para sobrevivir.
La vida contiene tantos accidentes del destino, tántas carambolas arbitrarias que la pauta de cambnio es esencialmente aleatoria. Los millones de pasos fortuitos que construyen nuestra propia historia evolutiva nunca sucederían por segunda vez, ni siquiera en lineas generales. La historia recorrería “otro camino” , de modo que, “la enorme mayoría de las repeticiones nunca produciría…una criatura con autoconsciencia… La probabilidad de que este escenario alternativo (por ejemplo, repetición) contenga algo remotamente parecido a un ser humano debe ser practicamente nula”.
Si eso fuera así (que lo podría ser, ningún dato tenemos a favor de lo contrario), ¿qué seres surgirían a la vida? o, quizás, no surgiera ninguno. Es difícil refutar la lógica del argumento de Simpson y Gould. Si la evolución mno es otra cosa que una lotería, una caminata de borracho, entonces hay pocas razones por las que la vida debiera ir más allá del nivel de los microbios, ninguna expectativa que avanzara obligatoriamente hacia la inteligencia, el cerebro, la conciencia y al “Alma” y, mucho menos, que pudiera desarrollar características humanoides. Nos veríamos entonces obligados a coincidir con la melancólica conclusión de Monod: “El hombre sabe que finalmente está solo en la inmensidad del universo, del que ha emergido sólo por azar”.Sólo si hay más que azar en ello, , sólo si la Naturaleza tiene un sesgo ingeniosamente incorporado hacia la vida y la muerte, esperaríamos ver repetido en otros mundos, lo que con la vida ocurrió en el nuestro.
La búsqueda de la vida en otros lugares del Universo es, por consiguiente, el terreno de prueba para dos visiones del mundo diametralmente opuestas. Por una parte, está la ciencia ortodoxa, con su filosofía nihilista del universo sin sentido, leyes impersonales carentes de finalidad, un cosmos en el que la vida y la mente, la ciencia y el arte, la esperanza y el miedo son sólo embellecimientos accidentales y casuales en un tapiz de corrupción cósmica irreversible.
Por otra parte, hay una versión alternativa innegablemente romántica, pero posiblemente cierta de todas formas, la visión de un universo auto-organizador y auto-complejificador, gobernado por leyes ingeniosas que animan a la materia para que ésta alcance una evolución predeterminada que la lleva hacia la consciencia y la mente. Un Universo en el que la emergencia de seres pensantes sería una parte fundamental e integral del esquema global de las cosas. Es decir, un Universo en el que no estamos solos y en el que, esa misma complejidad de la que hablamos, nos lleva a través de la mutación hacia la evolución necesaria para la adaptación al ritmo que el Universo nos marca.
Particularmente me quedo con la segunda opción. De no ser así, si el Universo nos trajo por razones fortuítas y sólo se debe al azar nuestra presencia aquí, entonces, ¿para qué tantos mundos?, ¿para qué tanto sufrimiento y dolor?, ¿para qué, en definitiva, tanto Amor y sacrificio? ¡Sería todo un sinsentido tan grande!
emilio silvera
PD. Mucho de lo que aquí habeis leido ha sido tomado del Libro “El Quinto milagro” de Paul Davies
Dic
14
Todo lo que existe está en el Universo: Los pensamientos también
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (0)
Constituido por innumerables galaxias de estrellas que se erigen en el centro de sistemas planetarios, multitud de Nebulosas de las que “nacen” nuevas y brillantes estrellas y mundos, multitud de objetos exóticos como los la variedad que encierran las estrellas de neutrones como púlsares y magnétares, o, los agujeros negros misteriosos y, todo ello, en un espacio de una magnitud inimaginable para nuestras mentes que, rodeados de los objetos y las cosas cotidianas, no se paran a pensar en esas inmensas verdades que están ahí, en la lejanía del espacio-tiempo inconmensurable.
La Humanidad, nuestra especie, siempre miró hacia los confines del cielo estrellado y se hacía preguntas que no podía contestar. En muchos de los trabajos que aquí se han expuesto quedaron reflejadas aquellas Civilizaciones antiguas que nos hablaban, con sus grabaciones en la piedra de los lejanos confines del cosmos que ellos imaginaban. Hemos podido llegar un nivel de tecnología que nos permite otear horizontes muy lejanos y captar, con nuestros ingenios, galaxias que se podría decir, sin temor a equivocarnos, que están situados en los confines del Universo.
Podemos examinar la radiación que emiten las estrellas jóvenes, estudiar nebulosas lejanas y captar los extraños átomos y moléculas que las conforman y, al mismo tiempo, observar como se van creando las condiciones precisas de gravitación, vientos estelares y otros fenómenos cósmicos para que, los nuevos mundos y las nuevas estrellas surjan a la vida. Somos testigos de un carrusel cosmológico que gira y gira “eternamente” envuelto en ciclos de destrucción y creación que se suceden en presencia de energías inimaginables, para que todo siga igual al mismo tiempo que todo cambia.
Lo cierto es que hemos encontrado mundos muy parecidos a la Tierra
Nuestro Universo ofrece las mejores condiciones para que la Vida, hiciera acto presencia en él. Sin embargo, siempre habrá dos bandos que discrepan en ese sentido: Por un lado están aquellos que creen en la presencia de la vida en múltiples mundos en las galaxias que pueblan el espacio del universo inmenso, y, por la otra parte, están aquellos que niegan tal posibilidad y se aferran a que, para que surgiera la vida en la Tierra, se tuvieron que dar tal cúmulos de condiciones que es imposible que se vuelvan a repetir en ningún otro lugar.
También es cierto que otros muchos mundos no podrían albergar la vida ni en el extremo de las posibilidades conocidas por nosotros y que denominamos extremófila por estar presente en condiciones que nunca, antes de ser descubierta, pudimos imaginar que pudiera existir. Existen regiones del Universo que son extremadamente peligrosas donde la radiación y las energías extremas están presentes y, ningún mundo que pudiera existir por sus alrededores tendría la posibilidad de albergar ninguna clase de vida.
Somos conscientes de que no podemos vivir aislados y desde siempre hemos tratado de saber qué ocurría más allá, en la lejanía de las estrellas donde algunos imaginativos pensaban que otras criaturas habitaban un sin fín de mundos que, como la Tierra, tendrían las condiciones necesarias para ello. Para ellos, el Universo ofrecía todas las posibilidades a favor y en contra, su diversidad era tanta que mundos llenos de vida pululaban alrededor de estrellas situadas a decenas, cientos, miles o millones de años-luz de nosotros y, también, había mundos imposibles donde nada podía surgir a la vida.
Ni afirmar ni negar podemos. En lo referente a la vida en otros mundos, todo podría ser posible y la vida tanto inteligente como vegetativa en múltiples formas y con distintos metabolismos, como ocurre aquí en nuestro planeta, es posible que esté presente en aquellos mundos que como el nuestro tengan aquellos requisitos necesarios para su sustento. Atmósfera calentada por una estrella benigna que caliente el planeta, océanos y bosques, y, en defintiiva, todo aquellos que es necesario para mantener latente formas de vida que como la nuestra, parecida o totalmente diferentes, se desarrollen en un ambiente adecuado a las condiciones que cada especie pudiera requerir.
Charles Darwin con la imagen de Io, la luna de Júpiter misteriosa. Creo que hasta el los lugares más inhóspitos, la vida podría estar presente, su actividad volcánica y la presencia de agua, así lo posibilitan.
La vida más resistente que se conoce es la vida invisible: los microoganismos y las bacterias. Los seres vivos capaces de sobrevivir en condiciones extremas se llaman extremófilos. Sobreviven en condiciones que serían letales para cualquier otra forma de vida. Resisten temperaturas extremas, por encima del grado de ebullición del agua y por debajo del de congelación, condiciones de acidez, de falta de luz solar y de oxígeno, de presión, de salinidad… Pueden permanecer en estado de letargo durante miles de años y volver a reanimarse al contacto con el agua.
Lo único que necesitan los extremófilos es: materia orgánica, agua y una fuente de energía. La materia orgánica abunda por todo el Cosmos. Pueden emplear una fuente de energía distinta a la luz solar. De hecho, a comienzos de los 90, se descubrió una bacteria que vivía en el subsuelo, a 7 kms de profundidad, y se alimentaba a base de petróleo. Lo que sí necesita la vida extremófila es agua en estado líquido. O, al menos, así lo creemos. Hasta hoy, no hay pruebas de que ninguna forma de vida pueda sobrevivir sin agua líquida. Pero podemos estar equivocados.
Hasta ahora, la Tierra es el único lugar del universo donde está confirmada la existencia de agua en estado líquido. Pero en el propio Sistema Solar hay planetas y satélites con agua helada. Si se demostrara que los extremófilos pueden sobrevivir con agua helada, se abrirían nuevas posibilidades en la búsqueda de vida extraterrestre.
L
Líquenes, hongos y bacterias que pueden estar presentes en cualquier lugar inhóspito de alguna luna
Y, no me extrañaría que cuando se haga el primer viaje a Marte, encuentren ésta clase de vida en los túneles que dejaron las correntías de lava en el pasado volcánico de aquel planeta, ya que, el el subsuelo, las temperaturas son más altas y el agua líquida discurrirá por los vericuetos rocosos.
En el planeta rojo se detectaron focos de metano y, las Arquea son productora de metano. Se han encontrado microorganismos productores de metano en dos ambientes extremos en la Tierra: enterrados bajo kilómetros de hielo en Groenlandia y en los suelos cálidos del desierto. Estos descubrimientos hacen más plausible la esperanza que tenemos sobre la existencia de vida en Marte.
Han pasado más de 150 años desde que Darwin publicara su famosa obra El origen de las especies. Sus ideas han prevalecido en el transcurrir del tiempo y ni los nuevos descubrimientos ni los muchos avances logrados han podido dejar de lado la idea de la evolución. Más de doscientos años después de su nacimiento, sus ideas siguen en el candelero de la Biología y nos habla de que, la vida, como el decía, puede surgir en cualquier charca embarrada y caliente. Sus ideas han sido profundamente analizadas por los mejores especialistas en biología que han tenido que reconocer su influencia en el mundo científico de los distintos campos de la biología, en general, y de la biología evolutiva, en particular.
Pero es interesante ejemplarizar su capacidad sintetizadora y premonitoria en el por aquel entonces, campo novedoso de la biología, la extremofila, a partir de la exploración de los lagos salobres del río negro en Argentina. A finales de 1831, Darwin se embarcó en el Beagle (ya contamos aquí aquella historia), tardaron meses en atravesar el Atlántico. Desembarcaron el Maldonado y recorrieron las costas de Uruguay y Argentina realizando numerosas observaciones geológicas, botánicas, zoológicas y antropológicas. Ciertamente, aquella “excursión” investigadora por méritos propios pasó a los anales de la Historia.
La imagen está referida a la Misión Planck de la ESA
En cada tiempo hemos hecho las cosas como hemos podido, siempre en busca del saber y queriendo descubrir los secretos que la Naturaleza esconde. Darwin partió en el Beagle hacia lo desconocido en un viaje peligroso y aventurero en busca de lo desconocido. Ahora, nosotros mucho más adelantados, buscamos lo mismo: Saber. Sin embargo, utilizamos otros medios que, como la Misión Planck de la Esa, por ejemplo, vamos a la búsqueda del origen del Universo.
La misión que data de 2.009, no es algo improvisado que se hizo a la ligera, estuvo planificándose y preparándose durante dos décadas de manera muy cuidadosa y con exquisito esmero para cuidar hasta el último detalle dentro de las más avanzadas técnicas que la ciencia actual podía permitirse. El telescopio espacial Planck nos ha ayudado a comprender mejor la historia del Universo, desde una fracción de segundo después del Big Bang a la evolución de las estrellas y de las galaxias a lo largo de estos 13.700 millones de años. Aunque la fase de observaciones científicas ya haya terminado, el legado de esta misión sigue vivo. Planck se lanzó en el año 2009 y pasó 4.5 años observando el firmamento para estudiar cómo evolucionó la materia cósmica con el paso del tiempo.
Los científicos que trabajan con los datos de Planck presentaron la imagen más precisa de la radiación cósmica de microondas (CMB, los restos de la radiación del Big Bang que quedaron grabados en el firmamento cuando el Universo tenía apenas 380.000 años.
La señal CMB es la imagen más precisa de la distribución de masa en el Universo primitivo. En ella se pueden detectar minúsculas fluctuaciones de temperatura que se corresponden con regiones que, en un principio, presentaban densidades ligeramente diferentes, y que constituyen las semillas de todas las estructuras, estrellas y galaxias que podemos ver hoy en día. Jan Tauber, científico del proyecto Planck para la ESA, declaraba:
“Planck nos ha proporcionado la imagen a cielo completo de la señal CMB más precisa de la historia, con la que podremos poner a prueba una gran variedad de modelos sobre el origen y la evolución del cosmos”
El objetivo principal de Gaia es crear un mapa en 3D de alta precisión de nuestra galaxia, la Vía Láctea, observando repetidamente mil millones de estrellas para determinar su posición precisa en el espacio y sus movimientos a través de él. La sonda espacial Gaia es otro de los muchos proyectos que tratan de investigar dónde estamos situados en el contexto de nuestra Galaxia, la Vía Láctea.
La Agencia Espacial Europea (ESA) ha dado luz verde a la misión Euclides, que se lanzará en 2020 con el objetivo de estudiar la misteriosa energía oscura que compone el 73% del Universo. La misión Euclides contará con un telescopio de 1,2 metros de diámetro que nutrirá una cámara de 576 millones de píxeles con imágenes en muy alta resolución de 2.000 millones de galaxias, equivalente a las del Telescopio Espacial Hubble. Con esos datos, y mediante tecnología de infrarrojos, los científicos desarrollarán una cartografía de las grandes estructuras del Universo y medirán la distancia entre las galaxias captadas por la cámara.
El telescopio WISE ha llegó al final de su fase de mapear en infrarrojo, pero continuó con la misión de realizar el seguimiento de los más cercanos cometas y asteroides, además de enanas marrones. Se ideó un telescopio infrarrojo que orbitar
ala Tierra y que ha sido empleado para mapear objetos fríos, polvorientos o lejanos que los telescopios de luz visible no pueden observar. Durante 2010 ha tomó más de 1,8 millones de fotografías utilizando su telescopio de 16 pulgadas y cuatro detectores de longitudes de onda infrarrojas, observando el cielo una vez y media, descubriendo estrellas, cometas y más de 33.500 asteroides en el proceso.
“Un sistema de cinco planetas, de los cuales dos tienen un radio 1,41 y 1,61 veces superior al de la Tierra y están en la zona habitable”. Este es el título de un estudio que investigadores internacionales publican esta semana en Science. El hallazgo ha sido posible gracias a las observaciones del telescopio espacial Kepler de la NASA. La estrella anfitriona es Kepler-62 y los dos planetas protagonistas se han bautizado como Kepler-62 e y f, orbitando más lejos que sus compañeros b, c y d. A Kepler-62 e y f llega un flujo solar desde su estrella parecido al que reciben Venus y Marte por parte de nuestro Sol. Respectivamente, los dos exoplanetas reciben alrededor de 1,2 y 0,41 veces la radiación solar que alcanza la Tierra. Basándose en modelos y simulaciones computacionales, los científicos consideran que el tamaño de estos dos nuevos planetas sugiere que podrían ser rocosos, como la Tierra, o estar compuestos de agua sólida.
Ante tal inmensidad nos podemos sentir insignificantes pero… ¡No lo somos! Desde que generamos ideas y pensamientos y con nosotros están los sentimientos… ¡Dejamos de serlo!
Si miramos al cielo en una noche oscura y estamos en el lugar adecuado, podremos contemplar, la inmensidad en la que estamos inmersos y situados en un pequeño planeta apto para albergar la vida, podemos admirar parte de nuestra Galaxia, la Vía Láctea que nunca hemos podido contemplar en su totalidad al estar confinados en el planeta y no tener los medios para salir fuera y poder tomar una imagen completa del lugar en el que vivimos. Podemos hacerlo con otras galaxias lejanas y, de la nuestra, sólo la conocemos por datos parciales que podemos ir juntando en los diversos estudios que para ello hemos llevado a cabo y seguimos llevando con misiones que, como las que más arriba se reseñan, nos facilitan datos precisos para que podamos saber, de nuestro lugar en el Universo desde esta Galaxía que es sólo una de entre cien mil millones.
Desde un lugar minúsculo, un pequeño terrón de roca y agua que orbita una estrella mediana que le suministra la luz y el calor necesario para que podamos estar aquí, sin pararnos a pensar en nuestra ínfima medida en el contexto del Universo, lo cierto es que lo queremos conquistar.
¡Ilusos!
emilio silvera