miércoles, 22 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR



RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando pensamos en la edad y el tamaño del universo lo hacemos generalmente utilizando medidas de tiempo y espacio como años, kilómetros o años-luz. Como ya hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿Por qué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

 

 

El telescopio James Webb revela al fin su impresionante primera imagen: así  se ve el cúmulo de galaxias SMACS 0723 en todo su esplendor

 

 A medida que examinamos volúmenes cada vez mayores del Universo, la densidad de material que encontramos sigue disminuyendo hasta que salimos de las dimensiones de los cúmulos de galaxias. Cuando llegamos a dicha escala, la acumulación de materia empieza a desvanecerse y se parece cada vez más a una minúscula perturbación aleatoria de un mar uniforme de materia, con una densidad de aproximadamente un átomo por cada metro cúbico.

 

Resultado de imagen de El más bello conjunto de galaxiasResultado de imagen de El más bello conjunto de galaxiasResultado de imagen de El más bello conjunto de galaxiasResultado de imagen de El más bello conjunto de galaxias

 

 A medida que buscamos en las mayores dimensiones visibles del Universo, encontramos que las desviaciones de la uniformidad perfecta de la materia y la radiación se quedan en un bajo nivel de sólo una parte en cien mil. Esto nos muestra que el Universo no es lo que se ha llegado a conocerse como un fractal, en donde la acumulación de materia en cada escala parece una imagen ampliada de la escala superior siguiente.

 

Resultado de imagen de La Densidad del UniversoResultado de imagen de La Densidad del Universo

 

Que el Universo posea una densidad muy baja no es un accidente. La expansión del Universo relaciona su tamaño y su edad con la atracción gravitatoria del material que contiene. Para que el Universo se expanda el tiempo suficiente para permitir que los ladrillos de la vida se formen en los interiores de las estrellas debe tener una edad de miles de millones de años. Esto significa que debe tener una extensión de miles de millones de años luz y poseer una densidad de materia promedio muy pequeña y una temperatura muy baja.

 

Resultado de imagen de La baja densidad del Universo

 

Siempre hemos tratado de crear una teoría nueva para describir la naturaleza cuántica de la gravedad y por el camino ha emergido un nuevo significado para las unidades naturales de Planck: Masa de Planck, Longitud de Planck, Tiempo de Planck, Temperatura de Planck.

 

Mp = (hc/G)½ = 5’56 × 10-5 gramos
L= (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ =

 

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G(constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.

La constante de Planck racionalizada (la más utilizada por los físicos), se representa por ћ que es igual a h/2π que vale del orden de 1’054589×10-34 Julios segundo.

 

 

El lado oscuro del Universo | ctxt.es

Si la entropía en el Universo siempre aumenta, ¿por qué han surgido  estructuras ordenadas como las que constituyen la vida? - Quora

            En todos los sistemas cerrados la Entropía siempre aumenta

 

Un estudio reveló que la complejidad de los “universos” siempre aumenta con el tiempo y que nunca se reduce, independientemente de cómo se desarrollan los modelos. Si consideramos el Universo como un Sistema cerrado, su entropía aumentará y el Caos se irá haciendo el dueño de la situación.

En las unidades de Planck, una vez más, vemos un contraste entre la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:

 

PPT - Propagación de la luz PowerPoint Presentation, free download -  ID:4126675Un medio sólido y rígido llena todo el espacio o la luz se transmite en el  vacío — Cuaderno de Cultura Científica

 

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos.”

 

Ciencias de bolsillo - ¡Unidades de Planck básicas! Al dar valor 1 a las  cinco constantes fundamentales, las unidades de tiempo, longitud, masa,  carga y temperatura se definen así: | Facebook

Resultado de imagen de El más bello conjunto de galaxias

Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales”; la masa, longitud y tiempo de Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es fácil caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

 

http://apod.nasa.gov/apod/image/0310/galaxies_sdss_big.jpg

 

Después de identificar las galaxias en imágenes bidimensionales como la mostrada arriba a la derecha, se mide la distancia para crear el mapa tridimensional. El SDSS actualmente reporta información en tres dimensiones para más de 200 000 galaxias, rivalizando con el conteo de galaxias en 3D del mapa celeste de Campo en Dos Grados.

 

C:\Enviar\fondoastro.gif

 

La edad actual del universo visible ≈ 1060 tiempos de Planck

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

La masa actual del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

Densidad actual del universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

Temperatura actual del Universo visible ≈ 10-30 de la Planck

El telescopio Webb de la NASA arroja luz sobre la evolución de las galaxias  y los agujeros negros - Madrid Deep Space Communications Complex

En una sencilla y simple mirada, podemos encontrar la Belleza de todo un universo y, adentrarnos en ese brillo sugerente de la pupila que nos adentra hacia el interior de un Cosmos de inusitados misterios y lleno de promesas de cosas maravillosas que, como en el universo, allí podemos encontrar. Se puede dar la paradoja de que, allí, dentro de una simple mirada, podamos encontrar el infinito.

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.

Pero, pese a la enorme edad del universo en “tics” de Tiempo de Planck,  hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

 

 

        La vida que surgió en el planeta Tierra a partir de los materiales “fabricados” en las estrellas de los que se formaron los mundos que, situados en el lugar adecuado, con agua líquida, océanos y atmósfera, pudieron darse las condiciones adecuadas para la formación de esa “sopa primordial” o, protoplasma vivo del que surgiría aquella primera célula replicante que dio el primer paso hacia la aventura de la Vida.

 

Resultado de imagen de Somos polvo de estrellas

 

¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

 

Resultado de imagen de Moléculas de la vida

                En lugares como este se forman los elementos de la vida

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

 

 

Esta marca oscura y estirada es la última cicatriz de impacto de Júpiter, un penacho de restos creado mientras un pequeño asteroide o un cometa se desintegraba tras zambullirse en el interior de la atmósfera del gigante gaseoso.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta. La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución.

 

Resultado de imagen de Meteorito que viene hacia la Tierra

Cuando comento este tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.

 

Resultado de imagen de Desaparición de los DinosauriosCretácico | Etapas | Clima | Dinosaurios - The Box Immersion

“Ellos” reinaron en la Tierra por más de 150 millones de años, nosotros llegamos, como el que dice antes de ayer

 

La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Se desarrolló la diversidad una vez desaparecidos los grandes depredadores. Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros. Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros, en comparación, llevamos tres días y, desde luego, ¡la que hemos formado!

 

Resultado de imagen de El amor de la familiaResultado de imagen de El Amor de toda una vida

Despues de los Dinosaurios surgieron otras formas de vida que, evolucionadas, llegaron hasta aquí (arriba la muestra).

 

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales; el t(bio) – tiempo biológico para la aparición de la vida – algo más extenso.

 

Resultado de imagen de La Tierra primigenia

                                           La atmósfera actual requirió un largo proceso

 

Muchos son los parámetros a tener en cuenta para llegar a la formación de nuestra atmósfera planetaria y todo el ecosistema que tenemos y del que podemos disfrutar. Claro que, nadie cae en la cuenta de que, eso lo tenemos y es posible, gracias a unos “seres” infinitesimales, los procariotas que realizan el “milagro”.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

 

Resultado de imagen de EstromatolitosResultado de imagen de Húmeros negros

Pudiera ser que, en lugares como este, comenzara todo. Estromatolitos y húmeros negros

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida, y en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

 

               aurora_australis_20050911

                                              Aurora boreal

Formación de Auroras Boreales y Australes, Cinturones de Van Allen, Ciclo del Agua, Formación de Nubes, Tipos de Nubes, Cristales de Hielo y Nieve, Niebla, Vientos, Ciclones y Anti-ciclones, Formación de Tornados, Formación de Huracanes, Relámpagos, Refracción de la Luz, Corrientes Oceánicas, Capa de Ozono, Patrones de Temperatura, Patrones Precipitación, Origen de la Atmósfera, Termómetro, Barómetro, Pluviómetro.

 

 

Resultado de imagen de Vida de SilicioResultado de imagen de Vida de Silicio

Resultado de imagen de Vida de SilicioResultado de imagen de Vida de Silicio

Podemos imaginar pero… ¡Saber que formas de vida pueden existir en el Universo…!

Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.

 

Bacteriofagos: la forma de vida más común de la Tierra

 

Múltiples formas de vida, tanto macro como microscópicas, están presentes en nuestro planeta, y, de la misma manera, lo estarán en otros que, estando en la zona habitable de su estrella, tengan condiciones similares o parecidas a las nuestras.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del universo, hay también una aparente coincidencia entre la edad del universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

 

                                                                        Human.svg

 

Desde la extinción del Homo hace 45 000 años, el Homo sapiens es la única especie conocida del género Homo que aún perdura. La imagren de arriba estaba en una placa llevada a bordo de la Pioneer 11 y Vyager I y II,  representando a un hombre y una mujer con la intención de darnos a conocer a posibles inteligencias que existan en otros mundos fuera de nuestro Sistema solar.

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo Sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el universo, se hablará de miles de millones de años.

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

 

Titilar de aurora, destello de meteoro |

Será la vida, un principio esencial para la coherencia del Universo? : Blog  de Emilio Silvera V.

                            Como decía Peter Kolosimo… “Hay otros mundos pero están en este”

 

A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero,  en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos que pudieran estar presentes en otros mundos lejanos que, como el nuestro… posibilitó la llegada de la vida.

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y la vida no sería posible en ellos. Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.

 

Guía completa sobre la primera letra del alfabeto griegoResultado de imagen de La constante de estructura fina

 

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina. Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes. Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades. Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, no se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

Las constantes de la naturaleza ¡son intocables! Si variara la carga del electrón o la masa del protón en sólo una diezmillonésima… ¡La vida no sería posible en el Universo!

Un equipo de astrónomos ha conseguido encontrar una vasta reserva de gas intergaláctico situada a unos 400 millones de años luz de la Tierra en la que podría encontrarse la “materia perdida” del Universo que los científicos llevan años buscando.

 

Nuestro rincón del universo se llama Laniakea, con 100.000 billones de  soles | Ciencia | EL PAÍS

          Miles de millones de galaxias formadas a lo largo de miles de millones de años

Nuestro rincón del universo se llama Laniakea, con 100.000 billones de soles. Un grupo de astrónomos ha definido el lugar en el universo en el que todos nosotros vivimos. Lo ha bautizado Laniakea y parece imposible no sentir vértigo tras conocer su magnitud. Miremos al Sol, la estrella que da calor a eso que llamamos casa. Parece un astro muy rimbombante, pero en realidad es sólo una más de las 100.000 billones (100.000.000.000.000.000) de estrellas que existen en Laniakea.

 

Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y la gravitación nos dice que la edad del universo esta directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del universo es hoy de poco más que 1 átomo por mde espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existen en el universo otras formas de vida avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

 

 

La expansión del universo es precisamente la que ha hecho posible que el alejamiento entre estrellas, con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotros. Diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión permitieron que, con la temperatura ideal y una radiación baja, los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es sólo una mota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el universo.

 

El ser humano ha hecho un largo recorrido para ahora sentirse insignificante

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos. Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad, ni en ellas está el poder de ahondar en el porqué de las cosas. Nosotros sí podemos hacer todo eso y más.

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, b, que es aproximadamente igual a 1/1.836, y la constante de estructura fina, a, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

 

 

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos  β demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de beta el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.

Si en lugar de a versión b, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de a, entonces, a menos que  a> 0,3 a½, los elementos como el carbono no existirían.

 

Resultado de imagen de Molécula de Carbono

La molécula de Carbono que hace posible la Vida en nuestro mundo

No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón →  helio-2.

Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida.

¡Es todo tan complejo!

Emilio Silvera V.

El Universo y la Vida… ¡Nuestra imaginación!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

El universo ¿hay vida?Extraterrestres: ¿Realmente hay vida en otros planetas o estamos ...Vida extraterrestre: Explicado para niños | Súper astros - YouTubeEl universo ¿hay vida?

 

    Los astrofísicos se devanan los sesos queriendo saber si hay vida fuera de la Tierra-  Sobre éste endiablado tema, lo único que podemos hacer es plantearnos el problema de manera que se tengan en cuenta las probabilidades.
https://youtu.be/YP4OlDsNAgo
¿Cuántas forma de vida diferentes existen en nuestro planeta? Aunque los cálculos del número total varían mucho, los científicos calculan que hay 7,77 millones de especies de animales, 298.000 especies de plantas y 611.000 especies de hongos. De ellas, solo han sido descritas y nombradas 1,3 millones.
Sabemos que en la Tierra existen múltiples formas de vida que abarca un inmenso abanico de especies con sus propias formas y morfologías. Sabemos que ello ha sido posible gracias a que, el planeta está situado  del Sol a una distancia (1 UA o 150.000.000 Km,) que llamamos habitable (ni mucho frío ni mucho calor en general), Que el planeta rota sobre sí mismo y tiene cuatro estaciones que va permitiendo su reciclaje y renovar energías. Tiene atmósfera y tiene océanos, y, lo más importante, el agua discurre líquida por manantiales y arroyos.
                             A la caza de un planeta gemelo de la Tierra | Ciencia | EL PAÍS

 “Cerca de uno de los bordes de la Vía Láctea existe una estrella pequeña, de color amarillo, que es el Sol, nuestra estrella. … El conjunto del Sol y los planetas constituye el SISTEMA SOLAR, nuestro sistema planetario, el único en el que conocemos la existencia de vida, nuestra vida.”

Una de cada cinco estrellas como el Sol, tiene planetas en la Zona habitable. Se ha estimado que solo en nuestra Galaxia, las estrellas medianas amarillas de la clase G2V (como el Sol) pueden ser de unos 30.000 millones, y, siendo así que lo es… ¿Cuanta vida habrá en otros mundos?

 

                     Descubierta la estrella más parecida al Sol hasta la fecha ...Hallan la estrella con mayor parecido al Sol de la historia y ...

        Si tiene un planeta a la distancia adecuada parecido a la Tierra… ¡La vida está servida!

“Uno de esos hallazgos  se debe a un grupo de investigadores internacionales dieron a conocer que encontraron una estrella con una similitud impresionante con el Sol de nuestro sistema planetario. Este cuerpo celeste tendría la misma edad la misma edad, nivel de metalicidad, abundancia química e incluso proporciones de isótopos de carbono que el Astro Rey y de hecho los científicos hicieron énfasis en que la estrella no es solo parecida, sino un auténtico “gemelo solar”.

Aproximación a la naturaleza de la mente humana

Hay cuestiones que van mucho más allá de nuestros pensamientos, sobrepasan la propia filosofía y entran en el campo inmaterial de la Metafísica, quizá el único ámbito que realmente pueda explicar lo que la Mente es. Allí reside la esencia de lo complejo, del SER. Ya sabéis:

 

 

El Universo y la Vida… ¡Nuestra imaginación! : Blog de Emilio ...BIGBANGBOOM!: RESPUESTAS DESDE EL CERN 6

 

Nuevas energías y nuevas partículas antes desconocidas. Ya están planificando el nuevo Acelerador de partículas que supere al LHC que, seguirá funcionando y buscando desvelar los secretos de la materia.

 

Secretos del Universo : Blog de Emilio Silvera V.

 

                                           

Nuestro Universo es grande, inmenso y, para nosotros se podría decir que infinito si pensamos en la imposibilidad que tenemos de poder recorrerlo, no ya en una nave espacial que no podríamos, sino mediante algún otro camino que acortara las distancias como, por ejemplo, los imaginados viajes por el Hiperespacio. Decir Universo es decir todo lo que existe: La materia conformada de mil maneras, el espaciotiempo, las fuerzas que actúan e interaccionan con todos los objetos que constituyen esa materia que podemos ver y detectar, las constantes universales que hace que nuestro mundo sea tal como lo conocemos y que hace posible la existencia de la vida. En él ocurren muchos sucesos que, unas veces podemos explicar y otras son un misterio.

El Universo y la Vida… ¡Nuestra imaginación!

 

 

 La Galaxia Vía Láctea tiene cien mil años-luz de diámetro y sería impensable recorrerlos para poder salir de ella y mirarla desde fuera, de tal manera que, ahora sí, la pudiéramos ver tal y como nos la imaginamos.

De la misma manera que nunca podremos ver nuestra Galaxia como observamos otras más lejanas, tampoco podemos ver el Universo entero. Somos demasiado pequeños y estamos condenados a observar una pequeña parte de nuestra región, aquella que nos circunda y, el todo al que pertenece esa región, siempre estará fuera de nuestra alcance y, sin embargo, sí podemos ver regiones y espacios mayores y más lejanos… ¡Curioso!

 

Las cuatro fuerzas mágicas de la naturalezaLas fuerzas fundamentales del Universo

“Una inteligencia que conociese, en un momento determinado, todas las fuerzas que operan en la Naturaleza, así como las posiciones momentáneas de todas las cosas que constituyen el universo, sería capaz de condensar en una sola fórmula los movimientos de los cuerpos más grandes del mundo y los de los átomos más ligeros, siempre que su intelecto sea bastante  poderoso para someter a análisis todos los datos; para él nada sería incierto, el pasado y el futuro estarían presentes ante sus ojos.”

 

El cielo es un oráculo", asegura Alexis Trigo - National Geographic en Español

 

Vía Láctea es captada en el Desierto de Atacama sobre el telescopio ALMA del Observatorio Espacial Europeo ESO

Inmensas galaxias cuajadas de estrellas, nebulosas y mundos. Espacios interestelares en los que se producen transmutaciones de materia que realizan el asombroso “milagro” de convertir unas cosas en otras distintas. Un Caos que lleva hacia la normalidad. Estrellas que explosionan y riegan el espacio de gas y polvo constituyentes de materiales en el que se forjarán nuevas estrellas, nuevos mundos y nuevas formas de vida

 

Las maravillas naturales más impresionantes del mundo - NIUS16 maravillas naturales del mundo que debemos proteger: ¡es ahora o nunca! | TravelerGrandes parques naturales, grandes maravillas del mundo

 

No pocas veces nos tenemos que maravillar ante las obras de la Naturaleza, en ocasiones, con pinceladas de las propias obras que nosotros mismos hemos sido capaces de crear. Así, no es extraño que algunos piensen que la Naturaleza nos creó para conseguir sus fines, que el universo nos trajo aquí para poder contemplarse así mismo.

 

 

                           Plantas carnívoras: una maravilla de la naturaleza que se alimenta de insectos - Clasificación Plantas carnivorasClasificación Plantas carnivoras

Plantas carnívoras: una maravilla de la naturaleza que se alimenta de insectos

Siempre hemos tratado de saber lo que el Universo es, lo que la Naturaleza esconde para conocer los mecanismos de que ésta se vale para poder hacer las maravillas que podemos contemplar tanto en la tierra como en el cielo. Valles, ríos y montañas, hermosos bosques de lujuriante belleza , océanos inmensos y llenos de formas de vida y, criaturas que, conscientes de todo eso, aunque algunas veces temerosas ante tanto poder, no por ello dejan de querer saber el origen de todo.

 

Somos instantes — La Mente es Maravillosa

    En realidad solo somos instantes con mentes prodigiosas que imaginan más de lo que comprenden

Es posible que nos creámos más de lo que en realidad somos. Queremos jugar con fuerzas que no hemos llegado a comprender y, desde las estrellas y las inmensas galaxias, hasta los mundos y las fuerzas que todo lo rigen en el Universo, hemos querido conocer para poder, con esos conocimientos, recrear la misma creación. Los científicos han dado ya el primer paso para la creación de la vida sintética, han sido capaces de crear un cromosoma completo a partir de una célula de levadura. El logro es considerado un gran hallazgo dentro de la biología sintética, que busca diseñar organismos desde sus principios más básicos.

¿Hasta dónde queremos llegar?

 

                             carteles naturaleza truth anndechocholate amo desmotivaciones

 

A veces, viendo como se desarrollan las cosas y cómo se desenvuelven los hechos a medida que el Tiempo transcurre, no tenemos más remedio que pensar que parece como sí, la Naturaleza, supiera que estamos aquí y, desde luego, nos tiene impuesto límites que no podemos traspasar hasta que “ella” no considera que estamos preparado para ello. Un amigo asiduo a éste lugar nos decía que la Naturaleza nos preserva de nosotros mismos. Nosotros, los humanos, no conocemos ninguna regla que nos prohíba intentar todo aquello que podamos imaginar y, de esa manera, a veces, jugamos a ser dioses.

 

                                               

 

Pero, ¿acaso no somos, nosotros mismos universo? Dicen que genio es aquel que puede plasmar en realidad sus pensamientos y, aunque nos queda mucho camino por recorrer, lo cierto es que, hasta el momento presente, mucho de eso se ha plasmado ya. Es decir, hemos sabido de qué están hechas las estrellas, conocemos la existencias de las grandes estructuras del Universo constituidas por cúmulos y supercúmulos de galaxias, sabemos de mundos en los que, con mucha probabilidad puedan existir criaturas diversas que, conscientes o no, piensen, como nosotros, en todos los secretos que el Universo esconde. Hemos viajado hasta el “universo” infinitesimal del átomo y hemos conocido de qué está hecho el ínfimo núcleo donde los protones y neutrones, esos hadrones conformados por tripletes de Quarks que están confinados en su interior por los Gluones, los mensajeros de la Fuerza Nuclear Fuerte.

De qué están hechos los gluones? ¿Por qué se les llama portadores de fuerza? - Quora

 

Sinceramente creo que, dentro de nosotros, están todas las respuestas a las preguntas que podamos plantear, toda vez que, como parte del Universo que somos, en nuestros genes, en lo más profundo de nuestras mentes están grabados todos los recuerdos y, siendo así, solo se trata de recordar para saber lo que pasó, para comprender los orígenes y, finalmente saber, el por qué estamos aquí y para qué. Nos hemos olvidado de que somos “polvo de estrellas”, los materiales que nos conforman se forjaron en los “hornos” nucleares de los astros que brillan en el firmamento lejano.

 

                                        Fusión nuclear: qué retos plantea, la seguridad de esta tecnología ...Energia nuclear de fusion

 

A temperaturas de millones de grados se pudieron fusionar los elementos que hoy están en nosotros. Una Supernova, hace miles de millones de años, hizo brillar el cielo con un resplandor cegador, una enorme región quedó sembrada de materiales en forma de Nebulosa que, con el paso de los eones, conformó un sistema planetario con un Sol central que le daba luz y calor a un pequeño planeta que, mucho después, llamaron Tierra. Los seres que allí surgieron y evolucionaron, eran el producto de grandes transiciones de fase y cambios que, desde el Caos hizo todo el recorrido necesario hasta la creación de la Vida consciente.

 

                     

 

De esa manera, sin lugar a ninguna duda, podemos hablar de un Universo viviente en el que, la materia evoluciona hasta la vida y los pensamientos. En el que en un carrusel sin fin surgen nuevas estrellas y nuevos mundos en los que, como en la Tierra, pasando el tiempo, también surgirá la vida que, podrá ser… ¡de tántas maneras! Una galaxia como la Vía Láctea puede tener más de cien mil millones de estrellas, en el universo pueden estar presentes más de cien mil millones de galaxias, los mundos que existen en una sola galaxia son cientos de miles de millones y, sabiendo todo eso, ¿Cómo poder pensar que la vida sea única en la Tierra?

 

Yellowstone, 150 años del primer parque nacional del mundo

                                       El origen de los colores de las pozas termales de Yellowstone ...

 

El telescopio Webb aclara cómo el universo se volvió transparente

              “La vida se abre paso… ¡imparable!” Pronto tendremos la confirmación

 

“…en alguna pequeña charca caliente, tendrían la oportunidad de hacer el trabajo y organizarse en sistemas vivos…” Eso comentaba Darwin sobre lo que podría ocurrir en la Naturaleza. Hemos podido constatar la persistencia con la que la vida, se abre paso en este mundo, la hemos podido hallar en lugares tan insólitos como fumarolas marinas a más de 100 ºC, o en aguas con una salinidad extrema, o, a varios kilómetros de profundidad bajo tierra, o, nutriéndose de metales, o metanógenas y alófilas y tantas otras infinitesimales criaturas que nos han causado asombro y maravilla.

 

http://4.bp.blogspot.com/_JlhvjWXE_Ik/TKO0LwU5O8I/AAAAAAAAAtY/IJ48OMDTWvY/s1600/Extremofilos.jpg

 

Si, amigos míos, en lo que a la vida se refiere, ésta se abre paso en los lugares más extremos e inesperados por muy malas condiciones que allí puedan estar presentes. De la misma manera, podrían estar situadas en mundos lejanos que, con unas condiciones distintas a las de la Tierra, se puedan haber creado criaturas que ni nuestra desbordante imaginación pueda configurar en la mente.

Astrónomos demuestran por primera vez que hay cuatro clases de sistemas planetarios | Diario Sur

 

Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo es difícil no conjeturar que, allí, junto a estos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas.

Es cierto que en todo el Universo rigen las mismas leyes y están presentes las mismas constantes universales que, ni con el paso del tiempo pueden variar, así la luz siempre irá a 300.000 Km/s, la carga del electrón será siempre la misma como la masa del protón y, gracias a que eso es así, podemos estar nosotros aquí para contarlo. Sin embargo, el Universo, no es uniforme y en el inmenso espacio interestelar impera la diversidad.

 

http://www.eso.org/public/archives/images/screen/eso1208a.jpg

 

Existe una amplia variedad de densidades dentro del medio interestelar. En la modalidad más ligera, la materia que está entre las estrellas es tan escasa que sólo hay un átomo por cada mil centímetros cúbicos de espacio: en la modalidad más densa, las nubes que están a punto de producir nuevas estrellas y nuevos planetas contienen un millón de átomos por centímetro cúbico. Sin embargo, esto es algo muy diluido si se compara con el aire que respiramos, donde cada centímetro cúbico contiene más de diez trillones de moléculas, pero incluso una diferencia de mil millones de veces  en densidad sigue siendo un contraste espectacular.

La cuestión es que, unos pocos investigadores destacaron allá por 1.990 en que todos estos aspectos -composición, temperatura y densidad- en el medio interestelar dista mucho de ser uniforme. Por decirlo de otra manera más firme, no está en equilibrio, y parece que lo que lo mantiene lejos del equilibrio son unos pocos de procesos asociados con la generación de las pautas espirales.

 

Aquí se crea entropía negativa. También nosotros, tenemos una manera de vencer a la inexorable Entropía que siempre acompaña al Tiempo, su transcurrir deja sentir sus efectos sobre las cosas que se hacen más viejas. Sin embargo, sabemos, como las galaxias, generar energía reproductora y, mientras que las galaxias crean estrellas nuevas y mundos, nosotros, recreamos la vida a partir de la unión entr hombre y mujer, y, de esa unión surgen otros seres que, perpetúan nuestra especie. Es la entropía negativa que lucha contra la extinción.

Esto significa que la Vía Láctea (como otras galaxias espirales) es una zona de reducción de la entropía. Es un sistema auto-organizador al que mantienen lejos del equilibrio, por una parte, un flujo de energía que atraviesa el sistema y, por otra, como ya se va viendo, la retroalimentación. En este sentido, nuestra Galaxia supera el test de Lovelock para la vida, y además prestigiosos astrofísicos han argumentado que las galaxias deben ser consideradas como sistemas vivos.

 

                                                      El hombre furente a una enorme galaxia en el espacio ilustra el sermón 'El origen del ser humano, su dignidad y su lugar en el universo'.

 

Puede que podamos ser más de lo que parece y que, seamos menos de lo que nosotros mismos nos podamos creer. No parece muy aconsejable que estemos situados en un plano de superioridad en el cual podamos mirarlo todo por encima del hombro. Precisamente por ser Naturaleza nosotros mismos, estamos supeditados a sus cambios y, por lo tanto, a merced de ellos.

El problema está, como dijo aquel hombre sabio:  “¡Somos parte del problema que tratamos de resolver!”

Emilio Silvera V.

¡La Naturaleza! ¿Será la misma en todas partes?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Estamos ahora en condiciones de comprender por qué, si existieran animales en otros planetas capaces de moverse a través de sus mares, de su atmósfera o de sus tierras, sería muy probable que, también ellos, tengan simetría bilateral? En otro planeta, igual que en la Tierra, atuarían los mismos factores que darían lugar a la mencionada simetría. La Gravedad produciría diferencias esenciales entre arriba y abajo, y la locomoción originaría marcadas diferencias entre frente y dorso. La ausencia de asimetrías fundamentales en el entorno permitiría que la simetría izquierda derecha de los cuerpos permaneciera inalterada.

 

 

                     No pocas veces contemplamos escenas que son dignas del mayor asombro

¿Podemos ir más allá? ¿Podemos esperar semejanzas más concretas entre la vida extraterrestre y la vida tal como la conocemos? Creo que sí, que de la misma manera que existen planetas como la Tierra que tendrán paisajes parecidos a los que podemos contemplar en nuestro mundo, de igual forma, dichos planetas podrán albergar formas de vida que, habiéndo surgido en condiciones similares a las nuestras de Gravedad, Magnetismo, Radiación… Habrán seguido el mismo camino que tomamos nosotros y los otros seres que en la fauna terrestre nos acompañan.

 

                                                  ¡Sorprendente Naturaleza!

En los extraños mares de otros planetas, sin tener en cuenta la composición química, es difícil imaginar que la evolución de lugar a una forma más sencilla de locomoción que la que se produce ondulando colas y aletas. Que la propia evolución encontraría este tipo de propulsión viene avalado por el hecho de que, incluso en la Tierra, esta evolución se ha produción de manera totalmente espontánea e independiente. Los peces desarrollaron la propulsión cola-aleta; después, ellos mismos evolucionaron hasta convertirse en tipos anfibios que se arrastraban por tierra firme hasta llegar a ser reptiles.

 

 

https://youtu.be/t1eFkr1rZWc

Ornitorrinco: ¿Mamífero, Ave o Reptil? Lo cierto es que, sin movernos de aquí, podemos ver los mismos extraños animales que nos podríamos encontrar en cualquier lugar situado en lejanos sistemas planetarios alumbrados por otras estrellas distintas a nuestro Sol. Allí como aquí en la Tierra, las mismas leyes, las mismas fuerzas, los mismos principios y los mismos ritmos que el Universo impone por el inmenso Cosmos, estarían presentes.

Algunos  reptiles fueron evolucionando y dieron lugar a a los mamíferos. Pero cuando algunos de estos últimos regresaron al mar (los que luego han sido ballenas y focas, por ejemplo), sus piernas volvieron a evolucionar hacia las formas de las aletas destinadas a la propulsión por el medio acuático y a la navegación.

De la misma manera, cuesta imaginarse una forma más sencilla de volar por el aire que no sea utilizando las alas. De nuevo, también en la Tierra ha habido una evolución independiente y paralela de las alas. Los reptiles las desarrollaron a causa de la evolución, y llegaron a volar.

 


Los Pterodáctilos desaparecieron hace unos 100 millones de años

La visión de los insectosLa aplicación que te permite saber cómo ven el mundo los ...Imágenes de Insecto Ojos - Descarga gratuita en Freepik

Lo mismo hicieron los insectos que los podemos encontrar conformados en las figuras más asombrosas y con essrremedides y ojos que nublan la imaginación, la Naturaleza los ha dotado para que se defiendan en el medio en el que se mueven y les otorgó los atributos necesarios para ello.. Algunos mamíferos, como la ardilla voladora, desarrollaron alas para planear. El murciélago, otro mamífero, desarrolló unas alas excelentes. Algunas especies de peces, que saltan por encima del agua para evitar ser capturadas, se han provisto de alas de planeo.

 

             ¡La Naturaleza! ¿Qué no será posible para ella?

En tierra firme, ¿existe algún modelo más sencillo por el cual un animal puede desplazarse que no sea mediante apendices articulados? Las patas de un perro, desde el punto de vista mecánico, no se diferencian demasiado de las de una mosca, pese a haber sufrido evoluciones completamente independientes una de otra. Evidentemente, la rueda es también, una máquina muy sencilla, útil para desplazarse por tierra, pero hay buenas razones técnicas que dificultan su evolución.

 

 

Recuerdo haber visto con los chicos cuando eran pequeños, aquella película en la que L. Frank Baum, en Ozma de Oz, inventó una raza de hombres, llamada “los rodadores” , con cuatro piernas como un perro pero que, cada una de ellas terminaba con una ruedecilla que les hacía correr velozmente para causar el pánico en la pequeña protagonista de la fantástica historia. Y, de la misma manera, si nos paramos a observar la Naturaleza y las criaturas que en ella han llegado a sugir, el asombro de tan fantástico logro, nos llega a dejar sin habla.

Pese a que ningún animal utiliza ruedas para auto-propulsarce a través del suelo o del aite, sí existen bacterias que se mueven por los líquidos haciendo rodar sus flagelos a modo de propulsores.

Existen mecanismos de rotación en el interior de las células para esparcir filamentos retorcidos de ADN. Algunos aniumales unicelulares se desplazan a través del agua haciendo que ruede todo su cuerpo. Si estudiamos el mundo microscópico de esos infinitesimales seres, nos quedaríamos maravillados de la inmensa diversidad de mecanismos que utilizan para poder realizar sus actividades cotidianas.

Órganos sensoriales como los ojos y nariz también deben ser como son si la vida evoluciona hacia algún tipo de actividad inteligente avanzada. Las ondas electromagnéticas son ideales para dar al cerebro un cuidadoso “mapa” del mundo exterior. Las ondas de presión, transmitidas por moléculas, proporcionan pistas adicionales de gran valor sobre el entorno, y son captadas por los oídos. Las moléculas emanadas por una sustancia se detectan.

 

6 personajes de Star Wars con oscuras historias que quizás no conoces |  Entretenimiento Cine y Series | Univision

Por ahí fuera, cualquier cosa que podamos imaginar… ¡Podría ser posible!

No es imposible que puedan  existan culturas avanzadas extraterrestres inteligentes en las que el olfato y el gusto no sean solamente los sentidos dominantes, sino que también sean los que proporcionan los principales medios de comunicación entre individuos. Hasta hace muy pocos años,  los biólogos no han descubierto que, en especies animales terrestres, se transmite una gran cantidad de información mediante una transferencia directa de sustancias que ahora se denominan feromonas.

Las formas de vida que existen aquí en la Tierra no son todas conocidas por nosotros y especies que están ocultas a nuestro conocimiento deambulan por el planeta tan ricamente. De la misma manera, en cualquiera de los mundos que son en el Universo, habrá miles de millones de criaturas que, como las de la Tierra, estarán habitando ecosistemas diversos en las mismas condiciones que aquí lo hacen las especies vecinas conocidas o no por nosotros. Un mensaje sí está claro: Todas las criaturas que existen en la Tierra están basadas en el Carbono.

 

 

Puesto que tanto  la luz como el sonido y las moléculas existen efectivamente en otros planetas, parece que la evolución debería crear también sentidos que explotaran éstos fenómenos como excelente medio de control de las circunstancias de la vida. Aquí en la Tierra, por ejemplo, el ojo no  ha tenido menos de tres desarrollos independientes entre sí: Los ojos de los vertebrados, los ojos de los Insectos y los de las diversas clases de moluscos.

 

Lo cierto es es que, ambos están hechos de lo mismo ¡Quarks Y Leptones!

 

                                                 ¡La Naturaleza! Esa maravilla

El pulpo, por ejemplo, tiene un ojo particularmente bueno (de hecho, en algunos aspectos es mejor que el nuestro); posse párpados, córnea, iris, pupíla, retina igual que el ojo humano, ¡aunque ha evolucionado de forma completamente independiente del ojo de los vertebrados! Es difícil encontrar un ejemplo más sorprendente de cómo la evolución, actuándo según dos líneas de desarrollo desconectadas, puede llegar a crear dos instrumentos nada sencillos que, en esencia, poseen la misma función e idéntica estructura.

 

Los ojos, igual que otros órganos sensoriales, tienen buenas razones para constituir un tipo de cara habitual. En primer lugar, constituye una gran ventaja que ojos, nariz y oídos estén situados cerca de la boca, pués así son de utilidad para buscar alimentos. Asimismo, resulta ventajoso que estén colocados en las proximidades del cerebro: la sensibilidad está allí, y debe reaccionar para conseguir alimentos, eludir peligros y atisbar el mundo que nos rodea transmitiendo, por medio de los sentidos al cerebro, lo que pasa a nuestro alrededor.

 

 

El propio cerebro, al evaluar e interpretar los impulsos sensoriales, lo hace mediante redes eléctricas: una especie de microcomputador de inmensa complejidad. Los filamentos nerviosos que conducen los impulsos eléctricos pueden ser esenciales para el cerebro de los seres vivos avanzados (de ello hemos hablado aquí con frecuencia).

Si la vida en otros planetas llega a alcanzar el nivel de inteligencia de nuestra especie en la Tierra, parece probable que tendría al menos, algunos rasgos humanoides. La ubicación de los dedos en los extremos de los brazos reporta, evidentemente, indudables ventajas. De la misma manera y para su seguridad, el valioso cerebro debe estar fuertemente encastado y, además, tan alejado del suelo como sea posible, su seguridad es esencial.

 

Cuántos ojos tienen las arañas? - National Geographic en Español

 

Imaginar podemos todo lo que a nuestras mentes pueda acudir, incluso seres con ojos en las puntas de los dedos pero, la Naturaleza es racional, no pocas veces decimos que es sabia y, si pensamos en todo lo que antes hemos leído y visto, no tenemos más remedio que aceptarlo: ¡La Naturaleza es realmente Sabia! y, lo mismo que aquí en la Tierra, habrá sabido crear  criaturas en esos mundos lejanos en los que, la diversidad, será tan abundante como lo es en nuestro propio planeta y, lo mismo que en él, en esos otros mundos estará presente la evolución y la adaptación al medio que, en definitiva, son las reglas que rigen cuando la vida está presente.

Emilio Silvera V.

La Inmensidad del Universo y, la “pequeñez” de los seres…

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. Según todos los datos que tenemos la edad de la Tierra data de hace unos 4.500 millones de años, y, los primeros signos de vida que han podido ser localizados fosilizados en rocas antiguas, tienen unos 3.800 millones de años, es decir, cuando la Tierra era muy joven ya apareció en ella la vida.

El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el Hidrógeno, Nitrógeno, Oxígeno, CARBONO, etc.

 

Resultado de imagen para movimientos de la tierra GIF

 

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro.  Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.

 

 

El Taller de Jar: noviembre 2009Atmósfera Primitiva Y Actual :: Principios Del Mundo

El vapor de agua presente en la atmósfera primitiva fue condensándose, cayendo a la superficie en forma de lluvia. El agua líquida que precipitaba se evaporaba ni bien tocaba la superficie debido a la alta temperatura de la roca, es decir que el agua volvía a la atmósfera en forma de vapor.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la foto-disociación de vapor de agua.  En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la  radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

 

       La imagen del cielo de Canarias nos puede servir para mostrar una atmósfera acogedora para la vida

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

Existe una razón trascendental para la existencia de la vida humana en el  universo? - LA NACIONAsí es como se usa la inteligencia artificial para saber si hay vida  extraterrestre

 

A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

 

File:Ammonia World.jpg

 

Es cierto que la realidad puede ser mucho más imaginativa de lo que nosotros podamos imaginar. ¿Habrá mundos con formas de vida basadas en el Silicio? Aunque me cuesta creerlo, también me cuesta negarlo toda vez que, la Naturaleza nos ha demostrado, muchas veces ya, que puede realizar cosas que a nosotros, nos parecen imposibles y, sin embargo, ahí está el salto cuántico… Por ejemplo.

 

                       

 

Los biólogos, por ejemplo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono.  La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc.  En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía.  Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

 

        Para nosotros ha pasado mucho tiempo, y, sin embargo, para el Universo ha sido solo un instante

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos.  Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.

 

 

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina.  Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes.  Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN PUEDEN VERSE AFECTADOS DE MANERA ADVERSA. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades.  Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, n se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

Las constantes de la naturaleza ¡son intocables!

 

 

Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz.  Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso.  Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por M3 de espacio.  Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres.  Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

 

La expansión del Universo podría ser una ilusión, según estudio

 

La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.

 

 

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos.  Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más. De todas las maneras, nsotros somos una parte esencial del universo: La que siente y observa, la que genera ideas y llega a ser consciente de que es, ¡la parte del universo que trata de comprender!

Emilio Silvera V.

La fortaleza de la vida

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

135 frases de la vida: bonitas, duras, significativas y motivadorasExtremófilos y la posibilidad de vida extraterrestre. (Divulgación) | Blog  multi-temático de Antonio Castro

Que no está muerto lo que duerme plácidamente

Este trabajo está hermanado con otro, llamado (a la inversa de éste) La fragilidad de la vida. La verdad es que debían aparecer más juntos en el tiempo, consecutivos, pero no pudo ser. El volumen de información del tema que trato aquí resultó terriblemente grande y me llevó mucho tiempo dar por completo el trabajo. Y aún me quedo con la sensación de que alguna información interesante se queda afuera.

La exploración que están realizando en Marte los dos robots de la NASA ha causado que los medios periodísticos se saquen de la manga el tema de los microbios capaces de sobrevivir en hábitats extremos, porque éstos son los que se podrían hallar en las condiciones que presenta Marte hoy en día. Y también en otros planetas y lunas de nuestro Sistema Solar.

 

No hay vida en el meteorito más famoso de Marte

El meteorito más famoso de Marte en el que creyeron encontrar vida

 

 

El ciudadano común está impresionado, pero aclaremos no es un tema nuevo: la exobiología lo viene discutiendo y tratando extensamente desde hace años. En Internet hay sitios enteros dedicados a este tipo de información. Sin embargo, la sensación existe: la gente está sorprendida, los propios científicos están sorprendidos. Después de convivir durante al menos dos o tres siglos con la creencia de que la vida está conectada directamente con el Sol el agua y las temperaturas moderadas (proveniente del conocimiento científico, no de mistificaciones), en un par de décadas, y más que nada en los últimos años, nos hemos topado con el descubrimiento de que la vida medra en ambientes inimaginables de la Tierra, una vida adaptada —muy bien adaptada y a gusto— a condiciones muy fuera de la línea de lo que considerábamos posible.

 

Resultado de imagen de La vida en ambientes extremosResultado de imagen de La vida en ambientes extremos

                      en estos lugares, aunque nos parezca mentira, la vida está presente

Especulábamos, con cierta tristeza, sobre las arideces, sequedades, temperaturas y condiciones químicas imposibles de los planetas y lunas de nuestro sistema. Muchos de nosotros hemos escuchado más de una vez que nuestro planeta es el único favorable para la vida: un planeta de agua, con una luna única, una rotación estable que otros no tienen, con un movimiento de placas y una vida a nivel geofísico (interna) que no se observa en otros lugares. Y esto es bastante cierto, claro.

Nuestro planeta tiene en sus océanos el ambiente más enorme que se pueda imaginar como caldero para experimentar con la vida. A los científicos les parecía —y hasta lo juraban— que sólo aquí podía haberse desarrollado la vida que conocemos.

 

Resultado de imagen de La vida en ambientes extremos

 

(AZprensa) No hace falta irse muy lejos para comprobar si puede haber vida en otros planetas. Hasta ahora se ha comprobado que existe vida en ambientes extremos y que existen microorganismos capaces de soportar calor, radiación, presión o acidez desorbitados. Sin embargo nunca se había explorado un ambiente “poliextremo” y eso es lo que está haciendo el denominado proyecto Prometheus, un equipo de seis investigadores financiados por el Consejo Europeo de Investigación (ERC).

undefinedProyecto Prometeo, la flota de sondas espaciales nucleares que nunca fue -  Eureka

 

Alguien puede agregar que nuestro planeta de por sí es, además, un lugar templado. Y es cierto, pero no por eso deja de tener sitios que creemos que son, por definición, por lo que sabemos de las células, los organismos y su funcionamiento, definitivamente “inhabitables”.

También hemos escuchado interminablemente sobre la capacidad única del extremo inferior de la cadena de producción alimenticia, las plantas, que son las únicas capaces de generar las células de sus cuerpos a partir de lo básico: el agua, los minerales y la luz del sol. Sin ellas, sin la fotosíntesis —nos decían en una de las primeras clases de biología—, la vida no es posible.

Ahora los científicos se han encontrado con seres que, con extrañas soluciones de adquisición de alimento y equilibrio de energía y una bizarra relación con el medio ambiente, viven en sitios absolutamente crueles e inesperados. De pronto parece que casi cualquier lugar de nuestro mundo tiene organismos que viven ahí.

 

Resultado de imagen de La vida en ambientes extremos

 

Las arqueas pueden habitar este tipo de ambientes extremos, donde otras formas de vida no son concebibles.

Aclaremos que no es que estos organismos apenas sobreviven en estas condiciones, sino que estos ambientes extremos son su hábitat natural. Viven felices ahí. Los ambientes extremos son sus hogares. Más de uno de esos seres muere si se lo extrae de su ambiente y se lo coloca en condiciones que para nosotros —y para la vida en general que conocíamos hasta ahora— serían paradisíacas.

 

Así son los organismos extremófilos que desafían todo lo que creíamos saber  sobre la vida en la Tierra - National Geographic en Español

Viven en lugares imposibles. Chorros de ácido submarino, vapores de azufre, radiación y espacios sin oxígeno. Estos son algunos de los espacios predilectos de los organismos extremófilos, que se reproducen y viven en condiciones que para cualquier otro ser en la Tierra serían inhóspitas. Microscópicos y resistentes, desafían los parámetros conocidos de la vida en nuestro planeta.

 

 

organismos extremófilos

Paisaje de las aguas termales de Grand Prismatic Spring a través de un bosque de pinos y lejanas siluetas de turistas caminando por la pasarela elevada, Wyoming, Estados Unidos.

Aquí viven organismos son antiguos y muy diversos. Han poblado la Tierra desde hace miles de millones de años, y todavía hoy, algunos de ellos disfrutan de ambientes en los que las temperaturas medias son de -200ºC. Un ejemplo son las células procariotas, amantes de la presión al fondo de la Fosa de las Marianas, o mlos tardígrados (también conocidos como osos de agua),

 

Extremófilos y extremotolerantes: viviendo en los extremos - Ko-fi ❤️ Where  creators get support from fans through donations, memberships, shop sales  and more! The original 'Buy Me a Coffee' Page.

Es por ello que se les ha denominado extremófilos. ¿Es posible la vida cerca de una región tan aparentemente hostil como puede ser un volcán? Con esta cuestión se inicia este hilo, dedicado a esos organismos capaces de crecer en y/o tolerar condiciones que, para el resto, son imposibles: los extremófilos y los extremo-tolerantes.

Es obvio que descubrir vida que prolifera feliz en estos ambientes extremos ha llevado a una explosión de la imaginación de los que buscan vida fuera del planeta. Ahora es mucho más plausible pensar que ahí fuera puede haber algo vivo. Sí, nuestros océanos pueden haber sido la sopa primordial de la vida, pero los componentes podrían haber llegado desde el espacio —porque se los detecta en las nubes interestelares y en los meteoritos que caen aquí— y también podría ser que desde aquí hayan saltado de regreso al espacio… No es un afiebrado divague mío, es lo que se especula hoy en algunas corrientes científicas.

No es que la vida terrestre haya necesitado cohetes y cápsulas espaciales para salir del planeta (¿las suelas sucias de los astronautas?), sino que se habría desparramado debido a desprendimientos producidos por los impactos de los asteroides y cometas que han golpeado periódicamente nuestro mundo. Una retro-panspermia, lo inverso de lo que se ha especulado siempre.

U3g extremofilos 20267 | PPTU3g extremofilos 20267 | PPT

Extremófilos | PPTU3g extremofilos 20267 | PPT

Que los nombremos bajo un único denominador puede hacer parecer que todos ellos son una misma cosa, una misma clase de organismo, incluidos dentro de un tipo, clase o philum. Pero hay una buena variedad de formas.

También es importante definir qué es un ambiente extremo —para la vida, claro— y qué no lo es. Antes de toda esta seguidilla de impresionantes hallazgos, un “ambiente extremo” era aquel en el que la vida no podía existir.

 

Imagen del que sería el microbio más antiguo hallado hasta ahora (Birger Rasmussen, Australia)

Es obvio que cada vez que se encuentra en esos lugares algo que se retuerce, reproduce, alimenta y crece, las fronteras cambian.

¿Cuál sería una definición básica para determinar hasta dónde pueden colonizar ambientes los seres vivos?

En general todo organismo tiene funciones que debe mantener para poder sobrevivir, y la mayoría de ellas están basadas en el intercambio de materia y energía con el medio. Es decir, que el medio debe permitirle realizar estas funciones.

A medida que descubrimos lo que la propia vida —sólo adaptándose— ha logrado hacer desde hace millones de años, las nuevas maneras que han surgido de adquirir energía y alimentos, descubrimos que no hay definiciones que valgan.

 

He visto que se habla de organismos medrando bajo stress. Esto significa, para mí, que un individuo de una de estas especies extremófilas se encuentra en situación incómoda en ese ambiente extremo, sufriendo. Esto sería correcto decirlo si queremos pensar que todos los organismos están adaptados, en realidad, a las condiciones físicas y químicas estándar —medias— de la superficie de la Tierra, y que a veces la naturaleza los obliga a estar en otros sitios menos bondadosos, donde deben esforzarse por sobrevivir. Y que las condiciones que generan stress son las situaciones en las que se somete a un organismo a variaciones, hacia cualquier extremo, de las condiciones estándar.

Bien podría ser al revés. Ya veremos que las condiciones en las que apareció la vida podrían ser las llamadas “extremas”, no las moderadas.

Archaea (Arquea): La Vida en Condiciones Extremas | Ecosofía

En la actualidad en el árbol de la vida se describen 3 ramas fundamentales, llamadas “dominios“. El dominio de los eucariontes es donde nos encontramos nosotros: los protozoos, hongos, algas, plantas y animales; todos seres formados por celulas eucariotas que tienen un núcleo bien diferenciado y otras estructuras internas. Los otros dos dominios, las bacterias y las arquea, son seres formados por células procarióticas que son mucho más simples.

De ellas, las arquea son un dominio fascinante que se describió a fines del siglo XX. Las arquea incluyen a los seres que viven en las condiciones más extremas de la tierra: cerca de volcanes submarinos o en fuentes termales, o aguas muy ácidas o muy alcalinas. Es decir, hay arquea que son capaces de vivir donde otras formas de vida no tendrían ninguna oportunidad de sobrevivir.

 

Vida en condiciones (realmente) extremas

La Halobacterium NRC-1 es el organismo conocido más resistente a la radiación, capaz de soportar unos 18.000 dosis de radiación -bastan 10 para matar a una persona. Esto duplica la marca establecida por la D. radiodurans, descubierta en los años 50 del pasado siglo como única superviviente de una comida irradiada. Este tipo de bacterias son especialmente buenas reparando su propio ADN.

Ocurre que así como durante mucho tiempo nuestra cultura se dejó llevar por el antropocentrismo —y también por un rancio centrismo cultural, como cuando Europa se encontró con América—, si pensamos de este modo nos estamos dejando arrastrar por otro desplazamiento del punto de vista: los organismos que viven en esas condiciones no pueden estar sufriendo, porque están absolutamente adaptados. Allí viven felices y en las condiciones que necesitan. Si se los quita de ahí y se los pone en el mejor de los paraísos campestres de nuestro mundo conocido, en el más fértil, templado y rico que queramos, ellos mueren.

 

El infierno de Dallol: ¿hay o no vida en el lugar más extremo de la Tierra?

Un nuevo estudio afirma que es imposible que seres biológicos prosperen en este sistema poli-extremo que combina altas temperaturas, hiper-salinidad e hiper-acidez, con altas concentraciones de hierro y carencia de oxígeno

 

No estamos muy cerca de hallar vida allá afuera (Shutterstock).

Sería demasiado ególatra creer que nosotros, los humanos, junto a las otras especies que existen en nuestro planeta, somos los únicos seres vivos en todo el infinito espacio exterior, sin embargo, aunque los científicos han descubierto un sinfín de mundos con características muy similares a las de la Tierra, y a todos esos monolitos de metal misteriosos que muchos achacan a los extraterrestres, tal parece que no estamos muy cerca de hallar vida allá afuera.

https://www.milenio.com/ciencia-y-salud/temperatura-espacio-impedir-hallar-vida-planetas

 

Temperatura del espacio podría impedir hallar vida en otros planetas -  Grupo Milenio

Temperatura del espacio podría hacer imposible hallar vida en planetas “habitables”

 

Analicemos ahora los extremos de los que hablamos. Son de dos clases. Físicos: temperatura, radiación, presión. Y geoquímicos: desecación, salinidad, concentración de oxígeno, acidez, potencial de oxidación.

Para manejarse con estos extremos, los organismos han generado distintas estrategias, dependiendo de cada caso. Evolucionando, han desarrollado respuestas que llevaron a fisiologías distintas o una capacidad de reparación del daño que les produce el medio. Como nosotros, por ejemplo, que transpiramos para regular nuestra temperatura y regeneramos la piel constantemente.

 

Estudian armadura del escarabajo para ayudar a fabricar aviones | TN8.tv

La armadura del escarabajo le permite resistir el picoteo de las aves, las pisadas de animales e incluso el peso de un Toyota Camry que le pasa por encima. Ahora los científicos están estudiando esa armadura en la esperanza de que ofrezca ideas para diseñar edificios y aviones más resistentes.

Aislarse del medio es una solución. Nosotros lo hemos hecho con nuestra piel, y no hablemos de —para ir a extremos— los escarabajos, con sus durísimas armaduras.

 

ALGA ROJA: UNA JOYA DE LA NATURALEZA Albalab Bio

Cyanidium caldarium (famosa y enigmática alga roja, eucariota y también termófila) y Dunaliella acidophila (microalga, eucariota) viven en un pH de 5 (ácido) y pueden resistir aún peores (hasta pH 0, que es un valor terrible: es la acidez de una disolución de ácido clorhídrico). Estas células tienen un citoplasma neutro, mientras que sus proteínas externas son tolerantes del ácido.

Dije antes que un organismo que vive en un ambiente extremo no debería ser considerado como uno de nosotros que se ha modificado a causa de las agresiones. Bien puede ser al revés: quién dice que estos organismos no son mucho más viejos que nosotros y que nuestros ancestros son los que cambiaron en respuesta a condiciones más suaves.

 

MicroBichos: ¿Te quejas del calor?... Sulfolobus acidocaldarius

 

Si un extremófilo vive en un ambiente con más de una característica extrema, entonces es un poliextremófilo, como ejemplo Sulfolobus acidocalcarius, una archea que vive en un medio de 80° C y, como si eso fuera poco, con un pH de 3.

 

Halófilos: la vida en la sal | Ciencia Hoy

Ya dije que se han encontrado extremófilos que pertenecen a muchas divisiones de los seres vivos. Hasta hace poco más de un siglo se pensaba que era imposible encontrar organismos que vivieran en ambientes donde predominan condiciones extremas, entendiéndose por tales aquellas que son muy diferentes a las que permiten el desarrollo de la mayoría de las formas de vida en el planeta Tierra. Algunos ejemplos de estas condiciones son temperaturas superiores a 80°C o menores a -12°C, presiones aplastantes, oscuridad total, ambientes muy ácidos o alcalinos y concentraciones saturantes de sales. Sin embargo, los avances de las técnicas de exploración en estos nichos tan extremos permitieron encontrar una diversidad de organismos que viven en ellos. Los extremófilos (amantes de condiciones extremas) pueden ser microorganismos, plantas o animales, aunque la mayoría son organismos procariotas unicelulares (arqueas y bacterias). Su pequeño tamaño y su metabolismo variado y adaptable les ha permitido colonizar ambientes que resultarían letales para organismos más complejos.

 

Estructura de la célula EUCARIOTA - [resumen + VÍDEOS!]

 

Entre ellos hay eucariotas, que son aquellos cuyas células tienen la información genética envuelta dentro de una membrana que envuelve lo que llamamos núcleo. Las células de las plantas y de los animales pluricelulares casi siempre son eucariotas.

También hay procariotas —bacterias y archeas—, organismos ancestrales desde el punto de vista filogenético. Son seres unicelulares que tienen la información genética dispersa por su citoplasma: no tienen núcleo.

Y entre los extremófilos no faltan los pluricelulares, y hasta hay vertebrados, aunque parezca increíble.

 

Resultado de imagen de Y entre los extremófilos no faltan los pluricelulares, y hasta hay vertebrados, aunque parezca increíble.Resultado de imagen de Y entre los extremófilos no faltan los pluricelulares, y hasta hay vertebrados, aunque parezca increíble.Resultado de imagen de Y entre los extremófilos no faltan los pluricelulares, y hasta hay vertebrados, aunque parezca increíble.

2018 junio 02 : Blog de Emilio Silvera V.

 

Con respecto a algo que dije antes, sepamos que entre los termófilos (seres que viven en temperaturas extremas) aparecen más que nada procariotas (ancestrales, como dijimos), de modo que, basándonos en el punto de vista evolutivo, se deduce que los primeros ambientes de la vida —lo “normal” en los ecosistemas antiguos— tenían estas condiciones extremas.

Unos microbios muy primitivos hallados por científicos chinos en rocas cubiertas por el mar hace 1.400 millones de años parecen dar apoyo a la teoría sobre el origen de la vida a partir de “chimeneas subterráneas”.

Las evidencias geológicas encontradas en rocas cerca de la Gran Muralla, en el noreste de China, desafían la actual teoría que dice que la evolución depende exclusivamente de la luz del sol.

Los estudios parecen apuntar a que varios microbios fosilizados, del tamaño de un micrón y forma de bulbo o de hilo, fueron capaces de sobrevivir en condiciones extremas, sin luz ni oxígeno, a temperaturas y niveles de presión extremos.

Los microbios obtenían energía y nutrientes mediante la transformación de sulfuro de hidrógeno, un gas tóxico para el ser humano y muchos de los animales actuales, y que era emitido en forma de humo oscuro por chimeneas naturales.

 

Liu YU | Professor (Full) | Peking University, Beijing | PKU | College of  Urban and Environmental Sciences | Research profileLa fortaleza de la vida : Blog de Emilio Silvera V.

 

Los expertos consideran que el descubrimiento (logrado por Li Jianghai, profesor del Instituto de la Tierra y el Espacio de la Universidad de Beijing) es importante para acercarse a la comprensión del origen de la vida y evaluar la posibilidad de que también se haya iniciado la vida en otros planetas.

Al extremo de mucho, mucho calor

 

Las 7 especies de bacterias más resistentes del mundo

Los microorganismos fueron los primeros habitantes de la Tierra, y a día de hoy siguen siendo las formas de vida más abundantes y diversas. Llevan poblando la Tierra desde hace más de 3.000 millones de años, mucho más de lo que llevan las plantas terrestres (530 millones de años) o los mamíferos (220 millones de años), por no hablar de los humanos (250.000 años).

Por lo tanto, las bacterias han tenido mucho más tiempo que los otros seres vivos para evolucionar y adaptarse a cualquier ambiente de la Tierra. Y cuando decimos cualquiera, es cualquiera. Los microorganismos son capaces de colonizar todos los ambientes del mundo. No importa lo extremo que sea. Siempre encontraremos alguna forma de vida.

 

 

Tipos de lípidos en el organismo | BiologíaLos alimentos animales y vegetales con más proteínasLos Ácidos Nucleicos - Educapedia

 

La temperatura afecta a los tres tipos fundamentales de moléculas biológicas —lípidos, proteínas y ácidos nucleicos— produciendo cambios en su estructura que desembocan, entre otras cosas, en la desnaturalización (degradación) de estas moléculas.

También hay una correlación inversa entre la solubilidad de los gases en el agua y la temperatura, de manera que a altas temperaturas se puede producir falta de oxígeno y/o de CO2 (anhidrido carbónico o dióxido de carbono) en el agua.

Que es la clorofila, aprovecha sus Beneficios |

aprovecha sus Beneficios

Cuando se llega cerca de los 100° C, la fluidificación de la membrana celular puede ser letal. Por otra parte, no menos importante, la clorofila se degrada a los 75°, perdiéndose la capacidad fotosintética.

A pesar de todo esto existen los hiper-termófilos, que viven con toda naturalidad por encima de los 80° C.

 

Pyrolobus fumarii - microbewikiPyrolobus fumarii - Wikipedia

bacteria, procariota, archea

El hipertermófilo de alta temperatura más extremo es la Pyrolobus fumarii (bacteria, procariota, archea), que vive en las paredes de las fumarolas hidrotermales submarinas. Es un quimiolitótrofo nitratorreductor (ataca las piedras y aprovecha los nitratos) y, por lo que se ha podido medir hasta ahora, es capaz de medrar a hasta 114° C, bien por arriba de la temperatura de vaporización del agua. Incluso, a temperaturas menores de 90° C deja de desarrollarse. Es un ambiente demasiado frío para ella.

Otro hipertermófilo que vive en chimeneas del fondo del mar, la archaea productora de metano Methanopyrus spp, está atrayendo ahora mucha atención porque su filogenética está muy cercana a la raíz del árbol de la vida. Se espera que el análisis de sus genes y su actividad ayuden a clarificar cómo sobrevivían las primeras células del mundo.

 

Resultado de imagen de Y entre los extremófilos no faltan los pluricelulares, y hasta hay vertebrados, aunque parezca increíble.Imagen relacionada

 

Hay termófilos entre las bacterias fototróficas (cianobacterias, bacterias púrpuras y verdes), eubacterias (BacillusClostridiumThiobacillus, bacteria ácido-láctica, Desulfotomaculum, actinomicetos, espiroquetas, Thermus y muchos otros géneros), así como en las archeas (PyrococcusThermococcusThermoplasmaSulfolobus y las metanógenas).

En contraste, los eucariotas soportan un límite superior de temperatura menos alto, de 60° C para algunos protozoos, algas y hongos, en torno a los 48° C para las plantas vasculares, y de 40° C para los peces, posiblemente porque la solubilidad del oxígeno disminuye a mayor temperatura.

Y mucho frío también

 

Encuentran una especie "propia de otro mundo" en la Antártida: tiene 20  brazos y aspecto de fresa

 

Resultado de imagen de Descubren vida en la Atlantida. Parece una especie propia de otro mundo

Científicos rusos encuentran NUEVA forma de vida en la Antártida, sólo 86% son genéticamente similares a todos los organismos vivos conocidos

A muy bajas temperaturas también medra la vida. Se han encontrado microorganismos con actividad biológica bien debajo del punto de congelación, en un ambiente a -18° C (un freezer de heladera está entre -10 y -18° C).

Hace un par de años, científicos de la National Science Foundation (NSF) de los Estados Unidos hallaron en el polo sur microbios que resisten el frío y las intensas radiaciones ultravioletas del sitio, y que son capaces de vivir en la oscuridad y con escasez de agua líquida. Estas bacterias mostraban un metabolismo activo y con síntesis de ADN a temperaturas ambientes de -12 a -17° C. Se supone que poseen enzimas y membranas que les permiten medrar en esos terribles entornos, muy similares a los de Marte.

Este valor de -18 grados numéricamente no parece mucho. La principal razón por la que la diferencia en grados no es tan amplia en el extremo frío —en comparación con los límites que se alcanzan hacia arriba— es que debajo de los 0° C, como todos sabemos, el agua se congela. Congelada deja de ser el medio para reacciones metabólicas, pero además, dado que el agua se expande al hacerse hielo, los cristales rompen la membrana celular.

 

Resultado de imagen de ORGANISMOS UNICELULARESResultado de imagen de ORGANISMOS UNICELULARES

 

Por esta razón la mayoría de los organismos —aún más los unicelulares— sufren daños que los llevan a la muerte. La excepción es un nematodo llamado Panagrolaimus davidi, que puede resistir vivo con la totalidad del agua de su cuerpo congelada.

Los científicos vienen estudiando los microbios que toleran las más gélidas temperaturas de la Tierra en los helados mares y lagos árticos y en los secos valles antárticos. Se procura aprender, así, dónde buscar la vida en otros mundos. Se cree que existen posibilidades de encontrar algún tipo de vida en los lechos de Marte (que ahora se sabe fueron mares salados) y bacterias envueltas en fluidos y hielo en la luna de Júpiter llamada Europa.

Los científicos neocelandeses que investigan en la Antártida opinan que el hallazgo de microorganismos cuya existencia transcurre bajo las gélidas superficies de ese continente ha fortalecido la posibilidad de encontrar organismos vivos en Marte. También para ellos, los organismos vivos de la Antártida viven en condiciones geológicas similares a las del planeta roJo-

 

                  Los investigadores taladraron un orificio de 1.060 metros de profundidad para acceder al agua del lago Whillans, en la Antártida

                  Encuentran formas de vida desconocidas bajo 1 Km de hielo en la Antártida

El clima de la Antártida se caracteriza por frías temperaturas, que pueden bajar de los treinta grados centígrados bajo cero, y por la sequedad extrema del medio ambiente, que en la Antártida recibe unos 10 milímetros de lluvias anuales. Muchos lugares de Marte se aproximan mucho a eso.

Los científicos dicen que no se debe perder la posibilidad de estudiar los microorganismos en la Antártida, para así estar preparados respecto a lo que se puede encontrar en los mundos gélidos, en vez de tener que esperar a que se pueda viajar al planeta rojo.

Los microorganismos hallados en la Antártida, localizados en un área conocida como Valles Secos, fueron identificados como Beauverias bassianas, unos hongos que pertenecen a una especie emparentada con los de la penicilina. Estos hongos viven enterrados bajo la superficie de la tierra, a una profundidad de entre tres y ocho centímetros.

Los científicos notaron además que el hábitat de la colonia de microbios tiene un alto grado de salinidad, de unas siete veces, al menos, el grado de salinidad de los océanos.

Y otros soportan radiaciones

 

Resultado de imagen de Extrem´pfilos que soportan la radiación

Imagen relacionada

 

La radiación es energía en movimiento, bien en forma de haces de partículas —protones, neutrones— o como ondas electromagnéticas —rayos gamma, rayos-X, utravioletas, de luz.

No es habitual que en la superficie de la Tierra haya niveles extremos de radiación, pero igualmente se han estudiado los efectos de una radiación intensa, tanto de ultravioleta como de radiación ionizante, por su importancia en medicina, producción de energía o en los viajes espaciales.

Los daños que puede producir el exceso de radiación van desde la disminución de la movilidad o inhibir la fotosíntesis, hasta algo mucho más importante: daño a los ácidos nucleicos. Cuando una criatura se ve expuesta a una dosis alta de radiación, esta energía intensa causa la descomposición de la molécula de ADN —la colección de todos los genes en un ser vivo que constituyen su esencia—, y ninguna criatura puede sobrevivir si sus genes no funcionan bien.

En este caso el daño es directo, pero también puede ser indirecto, a través de la formación de contenidos de oxígeno reactivo, que reaccionan tanto con las bases como con los dobles y triples enlaces.

 

Deinococcus radiodurans

A pesar de todo esto, tenemos extremófilos resistentes a la radiación. La bacteria Deinococcus radiodurans es famosa por su capacidad de resistir la radiación ionizante. Una dosis de 500 a 1000 rads es suficiente para matar a una persona. La D. radiodurans perdura aún después de haber sido sometida a 1.500.000 rads, ¡tres mil veces más!

La mayoría de los microbios tienen herramientas para reparar —ocasionalmente— los daños en su ADN. Por ejemplo, cuando se avería una parte del ADN de Escherichia coli, una bacteria muy común que vive en nuestros intestinos, usualmente puede repararlo y seguir viviendo. Sin embargo, no puede sobrevivir a dos o tres daños grandes en su ADN. D. radiodurans, por su parte, puede recomponer en unas pocas horas el ADN fragmentado a causa de la radiación.

Una de las razones es que tiene una gran cantidad de copias de sus genes. Las células de D. radioduransposeen de cuatro a diez copias de su molécula de ADN, mientras que la mayoría de las bacterias poseen sólo una copia. Estas copias sirven como reserva, son como los resguardos de seguridad que uno guarda de los archivos de una computadora.

De esta manera, cuando la radiación daña el ADN de D. radiodurans, el microbio tiene muchas oportunidades de encontrar una copia intacta de cada gen para usarla y recomponer su ADN. Una proteína especial llamada RecA es la que une los fragmentos. Y parece que D. radiodurans tendría más herramientas de reparación.

Estos procesos aún se están estudiando. Los científicos no tienen completamente claro cómo y por qué D. radiodurans es mucho más resistente a la radiación que otros microbios que tienen las mismas herramientas. Otras bacterias tienen más de una copia de sus genes, aunque no tantas como D. radiodurans.

 

Resultado de imagen de Los científicos están examinando los genes de D. radioduransResultado de imagen de Los científicos están examinando los genes de D. radioduransResultado de imagen de Los científicos están examinando los genes de D. radioduransResultado de imagen de Los científicos están examinando los genes de D. radiodurans

Los científicos están examinando los genes de D. radiodurans, tratando de entender qué otras herramientas puede tener la bacteria que le confieren una protección extra contra la radiación.

 

Lo más importante que intentan saber es por qué D. radiodurans desarrolló esta superresistencia a la radiación, ya que el microbio no podría estar expuesto a tan increíbles niveles de radiación en ningún lugar de la naturaleza de la Tierra.

También es increíble que D. radiodurans sea capaz de sobrevivir largos periodos sin una sola gota de agua. Algunos investigadores piensan que la resistencia a la radiación de la bacteria es un efecto colateral de su habilidad para soportar largos períodos sin agua, algo que sí ocurre en muchos lugares. La deshidratación causa los mismos daños en el ADN que la radiación, de modo que requiere el mismo proceso de reparación.

Otros organismos que pueden soportar altos niveles de radiación son dos especies de bacterias del género Rubrobacter y el alga verde Dunaliella bardawil.

Un lago que se formó en el cráter del volcán Licancábur, ubicado a unos 6.100 m de altitud en el Altiplano andino y en la frontera entre Bolivia y Chile, es el lugar ideal para saber cómo se han adaptado los organismos que viven en lagos como ése a la atmósfera enrarecida y al dañino ambiente con alta radiación UV (ultravioleta). Allí se llevan a cabo experimentos sobre estos organismos.

Altas presiones también

 

Resultado de imagen de Extremófilos sometidos a altas presionesResultado de imagen de Extremófilos sometidos a altas presiones

Resultado de imagen de Extremófilos sometidos a altas presiones

La presión varía con la altitud. En la atmósfera, por ejemplo, a 10 km de altitud la presión es casi un cuarto de la que existe a nivel del mar. Nosotros hemos evolucionado en una presión de una atmósfera, que es igual a 101,3 kilopascales (el pascal es la unidad que se utiliza para medir la presión por metro cuadrado) y también a los famosos 760 mm de mercurio de los barómetros tradicionales.

Nuestros ancestros acuáticos, sin embargo, estaban sometidos a una mayor presión, pero hidrostática (en el agua). La presión hidrostática crece en 10,5 kilopascales por cada metro de profundidad. A cinco metros de profundidad, ya tenemos un 50% más de presión que en la superficie.

En la litósfera (dentro de la estructura rocosa del planeta) la presión litosférica crece 22,6 kilopascales por cada metro hacia abajo. A cinco metros debajo del suelo, la presión es un 110% superior a la del aire en la superficie del planeta.

El océano presenta profundidades extremas, en las que la presión es enorme. El punto de ebullición del agua crece con la presión, así que en el fondo oceánico, donde hay fumarolas volcánicas con temperaturas que deberían vaporizarla, el agua del mar se mantiene líquida a 400° C. Este fenómeno incrementa la temperatura a la que es posible el crecimiento microbiano.

Ya hablamos antes de los efectos de la temperatura, pero ¿qué le hace la presión a los seres vivos? Entre otras acciones, la presión produce un cambio de volumen del organismo (lo reduce); además, comprime el empaquetamiento de los lípidos de manera que hace menos fluidas sus membranas. El aumento de la presión puede también inhibir reacciones químicas.

Aunque muchos seres pueden adaptarse a una presión muy alta, lo que no soporta casi ninguno son los cambios repentinos, que pueden ser letales.

 

Resultado de imagen de Las fosas marianas tiene vida

 

La fosa de las Marianas es la mayor depresión marina del mundo, con 11.000-11.200 m de profundidad. Allí, además de Piccard con el batiscafo,

Se llaman estándar a otros, llamados piezófilos, que están totalmente adaptados a presiones de 70-80 megapascales (casi mil veces la presión que soportamos nosotros en la superficie). Estas especies no sobreviven a presiones menores a los 50 megapascales.

El submarino científico japonés Kaiko, por ejemplo, alcanzó las máximas profundidades oceánicas del mundo, realizando más de 250 exploraciones que permitieron descubrir 180 bacterias y 350 nuevas especies, útiles para aplicaciones médicas e industriales.

Este vehículo no tripulado, operado en forma remota, tenía apenas tres metros de largo y pesaba 10,6 toneladas. Fue perdido en medio de un tifón y ahora procuran reemplazarlo.

 

La gesta que solo superó James Cameron: la inmersión suicida de Piccard  hasta los 11.000 metros

 

En el lecho de la depresión Challenger, la más profunda del mundo, en la fosa Maruyama, situada cerca de Guam (Islas Marianas) en el océano Pácifico occidental, los brazos robóticos de Kaiko llevaron a cabo una búsqueda de microbios, con ricos resultados.

El científico Yuichi Nogi descubrió, en la fosa de las Marianas, la bacteria Moritella yayanosii, que contiene proteínas como la DHA y la EPA, ampliamente utilizadas en la medicina. Los investigadores intentan desarrollar a partir de ella nuevos y más potentes medicamentos contra la hipertensión y el cáncer, así como un agente purificador de la sangre.

 

Complejo hábitat alrededor del Riftia pachyptila

Otro hallazgo fue la bacteria Shewanella violacea, en una exploración a 6.500 metros en la Fosa de Tyukyu, cerca de la meridional isla japonesa de Okinawa. Esta bacteria tiene mecanismos particulares de regulación de la presión.

 

La Shewanella violacea se está probando en la industria de los semiconductores. Los científicos creen que algunas estructuras cristalinas de la bacteria podrían aplicarse a la creación de compuestos químicos útiles para el desarrollo de materiales semiconductores.

El biólogo marino Shinji Tsuchida participó en varias exploraciones en la fosa de las Marianas. En el océano Indico, gracias al submarino robot halló vida en torno a las “fumarolas negras” (del inglés black smokers), una suerte de géiseres submarinos que arrojan agua muy caliente rica en minerales desde el fondo del océano.

Las especies halladas en ese lugar proliferan en un ambiente con gran concentración de sulfuro de hidrógeno (altamente venenoso para los animales) y metano, y una presión mil veces superior a la de la superficie marina. La teoría común señalaba que nada podría sobrevivir en semejantes ambientes extremos, a los que la luz del sol jamás llega.

Allí, en aguas cercanas a Okinawa, donde a profundidades de más de 2.500 metros la temperatura del agua llega a 360° C, se encontraron, por ejemplo, el extraño gusano tubícola Riftia pachyptila, el pequeño cangrejo blanco Austinograea rodriguezensis, y varias especies de camarones y mejillones.

El gusano tubícola parece realmente extraterrestre: no tiene boca ni tracto digestivo y se alimenta del sulfuro de hidrógeno (que es considerado un veneno de amplio espectro), pero no directamente. Contiene una bacteria que vive en simbiosis con él. La bacteria posee una enzima en su organismo que disuelve el sulfuro de hidrógeno y lo convierte en materia orgánica que alimenta al gusano.

Alrededor de estos gusanos se ha creado todo una comunidad de seres vivos de diferentes tipos, que dependen de éstos.

Si todo está muy seco…

El agua posee muchas propiedades que la convierten en el solvente esencial de la vida. Los seres vivos son en gran parte de agua. Así que si falta el agua, la vida no es posible… ¿o sí?

Por lo que se sabe hasta ahora, la falta de agua en un ambiente sí parece ser determinante. El año pasado, en la parte más seca del desierto de Atacama (Chile), un equipo de investigación llevó a cabo experimentos similares a los realizados por las sondas Viking en Marte para encontrar microbios. No hallaron ninguna evidencia de vida. Los científicos calificaron de “altamente inusual” este descubrimiento, por ser un ambiente expuesto a la atmósfera terrestre. Pero Atacama es la región más seca del mundo.

 

Resultado de imagen de El desierto de Atacama

 

Ubicado a 1.000 metros de altitud, el desierto de Atacama tiene una antigüedad de 15 millones de años y es 50 veces más árido que el Valle de la Muerte californiano. Dicen los investigadores que la razón de que sea tan seco y virtualmente estéril es porque la humedad está bloqueada a ambos lados, por los Andes al este y por montañas costeras al oeste.

Los científicos estudiaron la parte más seca de Atacama, un área llamada “de doble sombra de lluvia”. Durante los últimos cuatro años, la estación meteorológica del equipo registró una única precipitación de tan sólo unos míseros 0,25 mm de humedad. La hipótesis del equipo es que en el corazón del desierto de Atacama llueve, en promedio, una vez cada diez años.

Fred A. Rainey, profesor asociado de ciencias biológicas en la Universidad Estatal de Louisiana y experto en microorganismos de ambientes extremos, dijo que Atacama fue el único lugar de la Tierra en el que tomó muestras de suelo para cultivar microorganismos en el laboratorio de las que no creció nada. Dijo que, normalmente, cuando se toma una muestra de suelo de cualquier ambiente y se lo pone en un medio de cultivo, se pueden ver diferentes colonias bacterianas creciendo allí después de unos pocos días. Pero, en el caso de suelos recogidos en algunas áreas de la región central del desierto de Atacama, no aparece ninguna o muy pocas colonias bacterianas, aún después de veinte días de incubación.

Pero luego de esta investigación con resultados negativos, científicos del Instituto del Desierto de Chile detectaron la presencia de vida microscópica en los cerros que rodean la ciudad de Antofagasta (ubicada al borde del desierto de Atacama). Se trata de bacterias fotosintéticas denominadas cianobacterias, primeras habitantes del planeta.

 

Resultado de imagen de ORGANISMos fotosintéticos en el desierto de atacama

 

Desde hace cuatro años, científicos del Instituto del Desierto de la Universidad de Antofagasta (INDES), encabezados por el académico Dr. Benito Gómez Silva, realizan un estudio de los organismos fotosintéticos del desierto de Atacama. Aunque el lugar posee bajísimos índices de humedad, ahí se encuentran organismos hipolíticos, es decir, que viven en las piedras, enterrados bajo la superficie, especialmente en aquellas rocas translúcidas como el cuarzo o el granito, mineral que abunda en esa zona.

Los microrganismos hallados son fotosintéticos y corresponden a una cianobacteria, primeros entes que evolucionaron en la Tierra, siendo responsables de la producción de oxígeno en la atmósfera hace millones de años. Estos microorganismos, dicen los científicos chilenos, podrían ser útiles en biotecnología, pues resisten las condiciones extremas del desierto de Atacama.

En otros ambientes menos extremos pero también muy secos, sin embargo, se encuentran organismos con adaptaciones que les permiten sobrevivir a la falta de agua. Hay organismos que pueden tolerar la desecación extrema porque son capaces de entrar en un estado llamado anhidrobiosis, que se caracteriza porque el organismo tiene una cantidad de agua intracelular pequeña y porque no posee actividad metabólica.

Este estado puede ser alcanzado por una gran variedad de organismos, incluyendo bacterias, levaduras, hongos, plantas, insectos, tardígrados (invertebrados muy pequeños, con el aspecto de los ácaros, a los que se les llama “ositos de agua”), nematodos micófagos, y el crustáceo Artemia salina (que es el que se vende a los niños como un polvillo mágico que se echa en el agua y del que nacen, “milagrosamente”, los “hombrecitos de mar” o “monitos de mar”).

De todos modos, los cambios irreversibles, como la desnaturalización y ruptura de las estructuras de lípidos, proteínas y ácidos nucleicos, así como la acumulación de especies oxigenadas reactivas durante la deshidratación, especialmente bajo la radiación solar, son mecanismos de desecación que producen la muerte.

Salado, salado

 

Resultado de imagen de Halófilos que viven en la Sal

Puede observarse el color rojizo que los microbios halófilos producen en el agua. En el centro de la espiral la imagen de

Se sabe ahora que los organismos vivos pueden vivir en un rango de salinidad que va desde el del agua destilada (o sea ninguno) hasta el de las soluciones saturadas de sal.

Hay una forma de arqueobacterias que está adaptada a la vida en ambientes altamente salinos. Estos organismos, conocidos con el nombre de halófilos (amantes de la sal), viven en ambientes salinos y húmedos como el Mar Muerto (Jordania e Israel) y el Great Salt Lake (Gran Lago Salado) de Utah, Estados Unidos.

La antigüedad específica de los halófilos aún no se conoce, pero debido a que respiran oxígeno se cree que no son una de las primeras formas de arqueobacterias. El oxígeno no era uno de los componentes principales de la atmósfera terrestre hasta que los organismos anaeróbicos, como las cianobacterias, comenzaron a producirlo. Sin embargo, existe evidencia que indicaría que los halófilos estarían muy cerca de las raíces del árbol de la vida. Si los estudios indicaran que los halófilos son las arqueobacterias más antiguas, esto apuntaría a que el origen de la vida fue en agua muy salada.

La salinidad, como la temperatura, tiene efecto en las propiedades del agua. Un aumento de la salinidad aumenta la presión osmótica (importante para los organismos), además de bajar la temperatura de congelación (normalmente de 0° C).

Debido a la diferente presión osmótica, la vida en altas concentraciones de sal debe ser capaz de solucionar cuestiones relativas a la presión de la tensión hídrica, la deshidratación celular y la desecación.

Entre los halófilos se encuentra una variedad de microbios. Muchos son archeas y cianobacterias, además del alga verde Dunaliella salina, que puede sobrevivir en soluciones saturadas de cloruro de sodio.

 


Microfotografía en colores simulados de Tindallia californiensis – © R. Hoover, NASA

El lago Mono, en California, Estados Unidos, es un cuerpo de agua extremadamente salado y además alcalino. Es casi tres veces más salado que el agua de mar y tiene un pH de 10. Sin embargo, el lago Mono sostiene una gran variedad de vida; desde microbios, pasando por plankton y llegando a pequeños camarones.

El Tindallia californiensis se encuentra aquí como en su hogar.

Prospera en condiciones altamente alcalinas (pH de 8 a 10,5) y con concentraciones salinas cercanas al 20%.

Hay allí otro raro microbio: Spirochaeta americana. Lo encontraron viviendo junto al T. californiensis y a una cantidad de especies microbianas —que se supone llegan a varios centenares— en las muestras de lodo del lago Mono. Encontrar nuevas especies en esta abundante colección de vida microbiana es un trabajo de detectives.

“La recolección de muestras en el fondo fangoso de este lago, y el mantenerlas vivas, puede ser un asunto complicado,” dice el investigador que trabaja en este lago. “Estas especies mueren ante la presencia de oxígeno, así que hay que tener mucho cuidado para protegerlas”.

Acidez extrema o alcalinidad extrema y temperaturas no aptas para la vida

 

Resultado de imagen de Vida en aguas de Acidez extrema o alcalinidad extremaResultado de imagen de Vida en aguas de Acidez extrema

                              Ahí la vida está presente

El pH fue definido en 1909 por el químico danés Sorensen como el potencial hidrógeno (pH), o logaritmo negativo de la concentración molar (más exactamente de la actividad molar) de los iones hidrógeno.

Esto es: pH = -log [H+]. Desde entonces, se utiliza universalmente el término pH.

Como esto debe haber sonado para muchos muy técnico y seguramente poco explicativo, para darnos una idea veamos una pequeña tabla de los pH de diversas sustancias:

 

Disolución de HCl 1 M (ácido clorhídrico) 0
Jugo gástrico 1,5
Zumo de limón 2,5
Zumo de naranja 2,8
Vinagre 3
Vino 3,5
Zumo de tomate 4
Cerveza 4,5
Café 5
Agua de lluvia 5,6
Agua corriente 6
Leche 6,9
Agua pura 7
Sangre 7,4
Bicarbonato 8,2
Agua de mar 8,5
Leche de magnesia 10,5
Lejía (hipoclorito sódico) 12
Disolución de NaOH 1 M (hidróxido de sodio) 14

 

Los procesos biológicos normales tienden a ocurrir en un rango medio del espectro de pH. El pH tanto intracelular como ambiental suele encontrarse en este valor, de alrededor de 6 a 7.

Sin embargo en algunos sitios de la naturaleza el pH puede ser muy alto, como sucede en los lagos salinos o zonas de desecación, o muy bajo, llegando hasta 0 (extremadamente ácido, como el ácido clorhídrico).

A este pH excepcionalmente bajo las proteínas se desnaturalizan.

Sin embargo, existen organismos que viven con estos niveles de acidez. Son llamados acidófilos.

No se hallan peces y cianobacterias en un pH más bajo de 4, las plantas e insectos viven en sitios que tienen entre 2-3, pero los eucariotas unicelulares pueden vivir por debajo de 1.

El acidófilo más conocido es el alga roja Cyanidium caldarium, que ha sido hallada en la naturaleza a un pH de 0,5, aunque su óptimo en el crecimiento en cultivo es de 2-3. El alga verde Dunaliella acidophilapuede también sobrevivir a 0 de pH, con un máximo de 1. Tres hongos, Acontium cylatiumCephalosporium sp y Trichosporon cerebriae crecen a pH 0.

En estos ambientes de extrema acidez también se han encontrado archeas.

Los heterótrofos aeróbeos Picrophilus oshimae y Picrophilus torridus tienen un crecimiento óptimo a pH 0,7 y 60° C

 

Imagen relacionada

Durante años, los probióticos (o bacterias benéficas) han sido estudiados para conocer sus propiedades y beneficios a la salud, desde la gran ayuda que representan para la salud gastrointestinal…

En una mina de hierro y en una mezcla de ácido sulfúrico y altos niveles de cobre, arsénico, cadmio y zinc, apareció una rareza: Ferroplasma acidarmanus, con membrana únicamente, sin pared celular.

Existe el otro extremo, el de los alcalófilos, que prefieren pH altos, con una diferencia de dos o más unidades de pH entre el medio interno y externo de la célula. Hay representantes de todos los dominios y del reino de los eucariotas capaces de tolerar pH altos (elevada alcalinidad), de hasta 11.

¡En agua sulfurosa!

 

Resultado de imagen de Aguas sulfurosas del río tintoResultado de imagen de Aguas sulfurosas del río tintoResultado de imagen de Aguas sulfurosas del río tintoResultado de imagen de Aguas sulfurosas del río tinto

 

Las aguas del río Tinto, en la provincia de Huelva, España, fueran consideradas muertas durante años a causa de la actividad minera de la faja pirítica —que se realizó durante mucho tiempo— y otros motivos, relacionados con actividad industrial más reciente.

Un grupo de investigadores y estudiantes de la Universidad Autónoma de Madrid, que iniciaron a finales de los ochenta el estudio de los posibles microorganismos del Río Tinto, descubrieron con sorpresa que el área fuente de este río de España albergaba una comunidad de microbios muy diversa, resultado inconsistente con un ambiente supuestamente degradado.

Estudios posteriores de la microbiología y química del agua en los noventa empezaron a evidenciar que gran parte de las condiciones de extrema acidez alcanzadas en el río eran originadas por la actividad de ciertos microorganismos, que son capaces de sobrevivir oxidando los sulfuros metálicos, como la pirita, que conforman parte del basamento de la cuenca minera y que han sido fuente de su riqueza.

En efecto, la oxidación de la pirita por microbios quimiolitótrofos (así se definen), produce la generación de una solución ácida con alta concentración en hierro oxidado, que es la sustancia que da el color característico al río Tinto.

 

Resultado de imagen de La quimiolitotrofía es el proceso metabólico que usan algunos microorganismos para procurarse energía a partir de moléculas inorgánicas

 

La quimiolitotrofía es el proceso metabólico que usan algunos microorganismos para procurarse energía a partir de moléculas inorgánicas. En el caso del río Tinto, bacterias “comedoras de rocas” como Leptospirillum ferrooxidans y Acidithiobacillus ferrooxidans consiguen su energía oxidando los iones de hierro ferroso (Fe2+) de la pirita, convirtiéndolos en iones férricos (Fe3+). El Acidithiobacillustambién es capaz de conseguir energía oxidando el azufre.

A causa de la pequeña cantidad de energía que se genera en la oxidación de ion ferroso a férrico, estas poblaciones de bacterias deben oxidar una gran cantidad de hierro para crecer. Como resultado, relativamente pequeños crecimientos en la población bacteriana producen la precipitación de masivas cantidades de material férrico.

El equipo de investigación ha recogido en ese río unos 1.300 organismos diferentes, incluyendo arqueobacterias, levaduras, hongos y protistas. La biomasa más abundante en el río parecen ser algas. Masas de algas cubren a menudo la superficie del agua, tiñendo las rojas aguas de verde y produciendo burbujas de oxígeno.

Uno de los científicos del equipo piensa que es inexplicable que unos organismos eucariotas como las algas sean capaces de prosperar en estas duras condiciones de acidez y concentraciones metálicas tan elevadas.

¿Y el aire qué?

 

Resultado de imagen de La atmósfera primitiva de la Tierra

 

Hay que hacer referencia a un aspecto que no debemos olvidar: aunque hoy en día el ambiente terrestre es mayoritariamente aeróbeo, es decir con oxígeno (tanto en el aire como en el agua), este elemento es, en realidad, una sustancia activa y tóxica a la que nos hemos adaptado.

El aumento del oxígeno como gas atmosférico modificó los rasgos de la vida en la Tierra. Muchas formas de vida murieron, mientras que otras se adaptaron a la nueva concentración de este gas.

En ese sentido, todos los organismos aeróbeos deberíamos ser considerados extremófilos.

Dentro de las piedras

 

 

El 80 por ciento de la flora antártica no es muy diferente de la de otras zonas del planeta. Sin embargo, en el 20 por ciento restante aparecen formas de vida únicas, tan curiosas como la de la imagen de arriba (franja oscura).

Se trata de las comunidades o líquenes endolíticos, “una asociación de hongo y alga que vive dentro de las piedras en una zona de la Antártida conocida como ‘valles secos’, donde se pensaba que no existían formas de vida pluricelular”, relata el profesor de la Universidad Complutense Leopoldo García Sancho.

Este tipo de liquen se ha hecho muy famoso porque “ha servido para diseñar teóricamente lo que puede ser la vida en Marte o los últimos tipos de vida que hayan existido en dicho planeta, y en ellos se basa el proyecto de Vida en Marte de la NASA”.

Las peculiaridades de los líquenes antárticos son en su mayoría morfológicas. “Se ha llegado a hablar incluso de ‘gigantismo’. Algunos ejemplares pueden llegar a alcanzar tamaños descomunales con respecto a otros de su misma especie en distintas zonas”.

En cuanto a su crecimiento, es completamente distinto en las dos zonas del continente: “En la parte continental, la tasa de crecimiento es bajísima, muchos de los líquenes tienen más de 1.000 años”.

En prácticamente todos los desiertos del mundo, en las rocas de cuarzo, que son translúcidas, habitan organismos endolíticos. En el desierto de Mojave, en las zonas más áridas, casi todas las rocas que se encontraron estaban colonizadas por estos organismos.

Un equipo de científicos de la Universidad del Estado de Oregon descubrió bacterias dentro de una perforación de 1.350 metros de profundidad horadada en la roca volcánica cerca de Hilo, Hawai. El agujero comienza en la roca ígnea del volcán Mauna Loa y pasa a través de lava del volcán Mauna Kea. A 1.000 metros encontraron cristales de basalto fracturados que se formaron cuando la lava fluyó al océano.

Luego de un minucioso examen, encontraron que esta lava había sido cambiada por microorganismos. Usando microscopio electrónico, hallaron allí unos diminutos microbios esféricos y fueron capaces de extraerles el ADN, que ahora están estudiando.

El aguante sin luz

 

Resultado de imagen de sERES QUE VIVEN SIN LUZ

eSTOS SERES LLEVAN 50 MILLONES DE AÑOS VIVIENDO A OSCURAS

Aún se discute si el asteroide que dejó su marca en Yucatán fue el que eliminó a los dinosaurios. Sea o no el caso, su efecto fue mundial. El registro fósil muestra que al final del Cretácico, la vegetación de Nueva Zelanda estaba dominada por coníferas y plantas con flores. El registro muestra también que muchas de estas especies desaparecieron súbitamente al final de ese período y fueron reemplazadas por esporas y filamentos de hongos preservados por una capa de carbón de cuatro milímetros de espesor. Esta capa coincide con la deposición de iridio, un elemento raro en la corteza de la Tierra pero abundante en los asteroides.

Es decir, sí hubo una catástrofe mundial. Los científicos pudieron reconstruir el evento mes a mes, con una gran resolución temporal. Durante un período muy corto (entre unos pocos meses a un par de años) los hongos y otras saprofitas que vivían de organismos muertos fueron la forma dominante de vida sobre la Tierra. El polvo atmosférico bloqueó la luz solar y provocó la muerte de las plantas que dependían de la fotosíntesis.

La capa de hongos fósiles es seguida por un intervalo de sesenta centímetros de espesor que contiene trazas de la flora que se iba recuperando, la cual se restableció relativamente rápido: los helechos terrestres primero, seguidos luego de décadas o siglos por una vegetación más diversa, tipo bosque.

Se conoce una capa similar de hongos y algas de una catástrofe previa que ocurrió hace 251 millones de años en la frontera Pérmico-Triásico. Ésta fue una extinción en masa aún mayor: desapareció aproximadamente el 90% de las especies que existían hasta ese momento.

Microbios atómicos y eléctricos

 


Geobacter sulfurreducens. El recuadro ampliado de imagen muestra las estructuras similares a cabellos que utiliza para nadar.
Imagen de University of Massachusetts.

Geobacter sulfurreducens es un microbio capaz de alimentarse de uranio radioactivo, que es soluble en el agua —lo que lo hace peligroso porque es disuelto y arrastrado por ella—, y convertirlo en una forma que se precipita, de modo que es más fácil separarlo. Estos microbios viven en la tierra común y pueden ser estimulados a crecer naturalmente agregando vinagre al suelo.

Investigadores financiados por el Departamento de Energía de los Estados Unidos usaron este microbio para reducir en un 70 por ciento el uranio disuelto en el agua de una mina llamada Rifle Mill, en Western Colorado, donde se extraía este mineral para las armas nucleares. El uranio disuelto en ese lugar contaminaba el agua subterránea, que luego fluía hacia el río Colorado.

A fines del año pasado, los científicos secuenciaron el genoma de G. sulfurreducens, identificando los genes que le dan al microbio esa capacidad. Encontraron los genes que le permiten nadar y “oler” los metales. Más de cien genes ayudan al microbio a producir energía transportando electrones en metales como el uranio. Descubrieron que es probable que este microbio se adapte y sea capaz de competir en entornos subterráneos, incluyendo suelos pobres en oxígeno, pero también en aquellos en los que este elemento existe en cantidad. Los descubrimientos fueron publicados en la revista Science.

El proceso que usa el microbio para obtener su energía de los metales se puede utilizar para fabricar baterías. Los científicos produjeron electricidad fijando celdas con microbios G. sulfurreducens a electrodos y capturando la corriente que se generó.

Hay otro microbio, el Geobacter metallireducens, que es capaz de descomponer el uranio y también el plutonio, un metal muy radioactivo.

En las profundidades del planeta

 

Resultado de imagen de Vida EN LAS PROFUNDIDADES DEL PLANETA

        Un nematoda (Poikilolaimus sp.), que vive a 1,4 kilómetros de profundidad en el suelo.

La perforación más profunda del mundo es el pozo SG-3, de 12.262 metros, en el área de Pechenga-Zapolyarny, península de Kola, Rusia. Estos pozos son experimentales. Además del aporte en conocimentos a la geofísica, se prueba en ellos hasta dónde es posible penetrar en la corteza de nuestro mundo.

Alcanzar grandes profundidades no es nada fácil de lograr. A medida que se avanza, el trabajo se hace cada vez más dificultoso, y el éxito final depende de la calidad técnica del equipo que se utiliza —que en los casos extremos, como el pozo SG3, requiere tecnología ultravanzada, comparable a la espacial—, pero también de la formación geológica en la que se perfora.

El programa alemán de perforación continental profunda (KTB) realizó varias perforaciones de la frontera Cretáceo-Terciaria en la roca cristalina de la cuenca del Bosque Negro Bávaro (Bavarian Black Forest, en Schwartzwald) en Europa central. De los seis pozos perforados, el más profundo tiene 9.100 m, y a esa profundidad la temperatura alcanzó los 265° C. En uno de estos pozos de KTB se hallaron hipertermófilos a una profundidad de 4.100 m, aunque no se pudieron lograr muestras cultivables de estos microorganismos. La temperatura de los líquidos era de 118° C (hasta ahora, la temperatura a la que se han podido cultivar hipertermófilos no ha excedido los 113° C).

En Gravenberg, Suecia, se hizo otra perforación muy profunda para estudiar los gases de las profundidades. Alcanzó los 6.800 m y ahí sí se pudieron aislar las bacterias termofílicas, a una profundidad de 5.278 m, donde había una temperatura de entre 65 y 75° C.

Estos hallazgos son más o menos fortuitos, porque estas perforaciones profundas siguen siendo muy pocas y no se ha encarado ninguna que esté específicamente orientada a la investigación microbiológica. Las que se realizan con el propósito de explorar la vida microbiana raramente alcanzan los 1.000 m. La exploración de la biosfera intra-terrestre profunda recién ha comenzado y es difícil predecir qué sorpresas nos pueden esperar allí.

Bajo el suelo del mar, comiendo vidrio

 


Vista microscópica de estructuras tubulares de unos 25 micrometros, sobre vidrio volcánico marrón (lava superenfriada). La muestra fue tomada en el sitio 504B del Ocean Drilling Project, una perforación que se realiza en el Pacífido ecuatorial oriental.

 

 

 

 

 

En un pozo realizado bajo el océano Pacífico se encontraron rastros de microbios que viven como topos, comiendo y avanzando por la roca, a 375 metros debajo de la corteza del fondo oceánico y a 4.000 metros por debajo del nivel del mar. Se trata de roca formada por lava submarina vitrificada, similar a la que se usaba en la edad de piedra para hacer puntas de flechas, en la que se hallaron las galerías (como de gusano) excavadas por los microbios.

Se podría dudar del origen de estas perforaciones, atribuyéndolos a fenómenos químicos que no involucren seres vivos, pero se halló material biológico adherido a las paredes internas de los túneles.

Hubert Staudigel, de la Institución Scripps de Oceanografía de la Universidad de California, en San Diego, Estados Unidos, descubridor de estos organismos, dijo que los microbios pueden hacerse camino excavando túneles al mismo tiempo que comen, ya que derivan energía química del vidrio y así encuentran protección de “organismos mayores”. Dice que estos microbios come-vidrio son los extremos inferiores de la cadena alimenticia de la ecología de este mundo en las rocas. Su estudio fue publicado en la revista Science en el año 2001.

Resistiendo el espacio exterior

 

Resultado de imagen de ESPORAS DEL eSPACIO EXTERIOR

 

En base a los experimentos realizados por los rusos y la NASA, se sabe que las formas sencillas de vida podrían sobrevivir los viajes interplanetarios o interestelares. Los científicos creen que lo harían en un estado muy poco vital, congelados y deshidratados, dentro de los asteroides rocosos más grandes, protegidas de los rayos cósmicos.

Al caer en planetas con las condiciones necesarias, podrían revivir y medrar allí, adaptándose a sus condiciones.

En un experimento de la NASA, la bacteria Bacillus subtilis sobrevivió casi seis años abiertamente expuesta al espacio. La bacteria Deinococcus radiodurans ha soportado tranquilamente pruebas de exposición a rayos gama equivalentes a haber estado millones de años en el espacio, además de aceleraciones equivalente a 33.000 veces la gravedad terrestre.

Además, se han podido volver a la vida bacterias halladas insertas dentro de fósiles terrestres después de haber estado latentes durante 25 a 40 millones de años. Es obvio que algunos de estos microbios serían capaces de sobrevivir los viajes interestelares y llegar vivos a otros planetas, a pesar de la alta energía de los impactos de los cometas y asteroides.

Flotando en altitudes extremas

 

Resultado de imagen de Vida Flotando en altitudes extremasResultado de imagen de Vida Flotando en altitudes extremas

 

Científicos del departamento de Astrobiología de la Universidad de Cardiff (Reino Unido) y de Hyderabad (India) han tomado muestras de aire con contenido biológico en las capas estratosféricas superiores. En enero de 2001 lanzaron varios globos sonda desde Hyderabad, que tomaron muestras a altitudes de hasta 41 km, congelándolas in situ.

Los resultados de estos experimentos se publicaron en FEMS Letters, una publicación de la Federación de Sociedades Microbiológicas Europeas.

Cuando estas muestras fueron descongeladas y cultivadas, se hallaron dos tipos de bacteria similares a las Bacillus simplex y Staphylococcus pasteuri, comunes en los suelos. También había un tipo de hongo que parece ser Engyodontium album. La densidad de estos microorganismos era reducida, pero real. Aunque no se pueda descartar del todo una mínima posibilidad de contaminación antes o después del vuelo de los globos sonda, tampoco existe prueba alguna para dudar de la correcta realización del experimento.

Estos resultados han producido una fuerte disputa en la comunidad exobiológica y microbiológica por dos motivos. El primero es la dificultad de comprender cómo han logrado llegar esos microorganismos a semejantes altitudes. El segundo, más serio todavía, es la posibilidad de que estos seres no vengan desde abajo, sino desde arriba, transportados por objetos no terrestres como los cometas. Esto sería una vindicación directa de la polémica teoría de la panspermia, según la cual la vida en la Tierra —y en otros planetas— bien podría haber sido sembrada desde el espacio.

La panspermia no es una teoría generalmente bien aceptada por la comunidad científica en estos momentos y cualquier posible vindicación de la misma es escrutada con cien ojos.

Sea como fuere, es evidente que la vida es un fenómeno persistente que se manifiesta en ambientes extremos de todo tipo, desde géiseres hirvientes hasta inhóspitos desiertos y ríos ácidos. Lo extraño de estos microorganismos presuntamente capturados a 41 km de altitud no es su existencia, sino de qué manera han acabado allí… y se mantienen allí (si es que no están permanentemente lloviendo desde el espacio, como podría afirmar la panspermia).

El astrofísico Jayant Naralikar —que ha colaborado en los experimentos descritos— sugirió a la prensa que el virus del SARS podría tratarse de uno de estos organismos extraterrestres, o al menos de alta atmósfera.

 

Resultado de imagen de el virus del SARSResultado de imagen de el virus del SARS

 

Esto es como mínimo aventurado y sólo podría considerarse después de descartar otras causas mucho más comunes, como, por ejemplo, la situación higiénico-sanitaria en los focos de la infección y la formación convencional de nuevas cepas víricas, bien documentadas en el caso de enfermedades como el SIDA y determinadas fiebres hemorrágicas, como el Ébola.

También hay que considerar que se acepta comúnmente que, por razones evolutivas, los organismos de orígenes muy distintos interactúan mal. Los proponentes de esta hipótesis “altoatmosférica” para el origen del SARS deberían explicar cómo es posible que estos microorganismos sean capaces de interactuar con seres que han seguido caminos evolutivos muy distintos, como los humanos.

Muy, muy antiguos

 

Resultado de imagen de Los fósiles más antiguosResultado de imagen de Los fósiles más antiguosResultado de imagen de Los fósiles más antiguos

 

Un investigador ha encontrado algo que a su parecer son fósiles de como mínimo 3.200 millones de años de antigüedad (y hasta podrían tener 3.500 millones o más aún), lo que sugiere que la vida en la Tierra se habría originado en el fondo del océano, en lugares donde la luz del sol jamás ha llegado, en sitios profundos calentados por efecto de los volcanes.

“La cuna de la vida puede haber sido un terrible lugar, subterráneo y sulfuroso, nada diferente de la visión medioeval del Infierno”, dice Birger Rasmussen, paleobiólogo de la Universidad de Western Australia, quien reportó el hallazgo del fósil en la revista Nature.

Las formaciones halladas, que a entender de los científicos son organismos unicelulares, aparecieron en rocas australianas 600 millones de años más antiguas que la evidencia más primitiva de vida química que se haya encontrado en la Tierra. Además, este descubrimiento hace retroceder en alrededor de 2.700 millones de años la evidencia fósil de microbios que hayan vivido alrededor de fuentes calientes del fondo del océano.

Las formaciones parecen organismos filamentosos que miden una milésima de milímetro de diámetro y un décimo de milímetro de longitud. Estos seres pueden haber obtenido su energía de productos químicos relacionados con el azufre en lugar de la luz del sol, dijo Rasmussen, su descubridor.

 

Resultado de imagen de "En las profundidades del océano, los manantiales calientes pueden haber sido hábitats atractivos para los primitivos microbios,Resultado de imagen de Inmensos lagos

 

“En las profundidades del océano, los manantiales calientes pueden haber sido hábitats atractivos para los primitivos microbios, ya que allí estaban protegidos de los efectos del bombardeo planetario y sumergidos en una rica sopa de metales y nutrientes”, explicó Rasmussen. “Semejante entorno puede haber ofrecido durante centenares de millones de años un lugar seguro para el desarrollo de la vida, antes de que la superficie de la Tierra se hiciese habitable.”

Estos hallazgos no terminan con el debate sobre cuál puede haber sido el lugar de origen de la vida en la Tierra, ya que esos microbios pueden haber migrado desde otro lugar.

Pero según piensa Andrew Knoll, profesor de paleobiología de la Universidad de Harvard, Rasmussen ha traído a la palestra el hecho de que las rocas volcánicas ubicadas en lugares fuera del alcance de la luz del sol, bañadas de agua hirviente, podrían ser el lugar donde se inició todo.

 

La fortaleza de la vida : Blog de Emilio Silvera V.

“La teoría actual de la biología es muy parecida a la visión medioeval del Infierno”, dice Knoll.

Charles Darwin teorizó que la vida podría haber comenzado en una pequeña charca calentada por el sol. En los años 50 los científicos demostraron que un rayo eléctrico caído en una mezcla de gases que simulaba la composición de la atmósfera de la primitiva Tierra produce aminoácidos, uno de los ladrillos de la vida.

Luego, sin embargo, los biólogos que buscan el origen de la vida concentraron su búsqueda en lugares en los que brota agua caliente a través de la corteza de la Tierra.

 

Resultado de imagen de Fósiles en las rocasResultado de imagen de Fósiles en las rocas

 

Rasmussen dice que se tropezó con los fósiles mientras examinaba el interior de unas rocas compuestas principalmente de cuarzo y pirita que se habían extraído de muchos metros debajo de la superficie. Su estudio trataba de determinar cuánto oxígeno había en la atmósfera primitiva.

El lugar del hallazgo es conocido como depósito del “Manantial de Azufre”, ubicado en la región de Pilbara, en el oeste de Australia. Esta región fue un antiguo lecho marino y ahora es accidentada, rocosa y caliente, con muy pocas lluvias.

“Luego de investigar centenares de sitios, encontré unas estructuras inusuales que contenían densos conjuntos de filamentos entrelazados”, explicó. “Tras un examen cuidadoso, llegué a la conclusión de que los filamentos tienen que ser biológicos.”

Knoll está de acuerdo, ya que los filamentos tienen tamaños y alineamientos regulares.

Rasmussen y Knoll creen que estos fósiles, además de sumarse al panorama de la primitiva vida sobre la Tierra, marcan un camino para los científicos que buscan vida en otros lugares del Sistema Solar.

Un asunto alucinante

Europa en Encélado: la misión L4 de la ESA irá a Saturno - Eureka

Después de todo lo visto anteriormente… ¿Quién puede negar la presencia de vida en otros mundos?

Comencé esta recopilación impactado por un artículo que encontré en Internet hace bastante tiempo. Lamentablemente, mientras lo estaba traduciendo, el artículo desapareció de la red.

No sé qué credibilidad se le puede dar, pero de todos modos aquí lo pongo, porque sin duda es alucinante.

Nota: Por si alguien piensa que esto puede ser algo inventado por mí, lo refiero a un link que apunta aún a ese artículo desaparecido, ubicado en Astrobiology.com – observen allí el artículo “Scientists Claim to Revive Alien Bacteria, Discovery.com”, del día 10 may 2001.

Microbios en rocas y meteoritos: una nueva forma de vida no afectada por el tiempo, la temperatura y la presión

Giuseppe Geraci (*), Rosanna del Gaudio (*) and Bruno D’Argenio (**) (*) Dipartimento di Genetica, Biologia Generale e Molecolare, Università di Napoli “Federico II”, Naples, Italy (**) Dipartimento di Scienze della Terra, Università di Napoli “Federico II”, Naples, Italy and Istituto di Ricerca Geomare Sud, Consiglio Nazionale delle Ricerche, Naples, Italy

 

Resultado de imagen de Criostales, rocas y vetas minerales que contioenen vidaResultado de imagen de Criostales, rocas y vetas minerales que contioenen vidaResultado de imagen de Criostales, rocas y vetas minerales que contioenen vidaResultado de imagen de Criostales, rocas y vetas minerales que contioenen vidaResultado de imagen de Criostales, rocas y vetas minerales que contioenen vidaResultado de imagen de Criostales, rocas y vetas minerales que contioenen vida

 

RESUMEN – Los cristales, rocas y vetas minerales de diferentes orígenes parecen contener vida microscópica viable que aparece nadando bajo el microscopio cuando la muestra es fragmentada apropiadamente y se la suspende en un medio nutriente. Esta forma de vida de las rocas parece no ser afectada por el tiempo, ya que se han encontrado microbios en muestras de eras geológicas diferentes, desde 2.800 millones de años de antigüedad a otras recientes, ni tampoco por la presión y la temperatura, ya que están presentes en rocas metamórficas e ígneas. Una búsqueda similar en meteoritos muestra que en esos materiales también hay microorganismos. Se han cultivado y clonado algunas especies microbianas derivadas de muestras de rocas y meteoritos. Se las ha clasificado por tipificación de 16S rDNA, encontrando que no son esencialmente diferentes de los organismos de hoy; además, resultan sensibles a la inhibición de crecimiento a causa de antibióticos específicos. Si las formas bacterianas encontradas en meteoritos realmente son de origen extraterrestre, su presencia apoyaría la hipótesis de que la vida llegó de fuera de la Tierra, con la indicación adicional de que podrían haber estado presentes en los materiales que formaron el Sistema Solar.

PALABRAS CLAVE: Bioastronomía, Microbios, Vida en las rocas, Vida en meteoritos, Origen de la vida.

INTRODUCCIÓN

Es de conocimiento común que existen fósiles bien reconocibles de formas de vida microbiana en antiguas rocas sedimentarias, tales como los estromatolitos arcaicos. Algunos microfósiles están tan bien preservados que ha sido posible su identificación y caracterización en términos de estructura y composición, permitiendo determinar qué tipos de microorganismos poblaban la Tierra en sus tiempos geológicos iniciales (Golubic y Seong-Joo, 1999; Nisbet, 2000; Rosing, 1999). Estos estudios son relevantes para comprender mejor el origen y evolución de la vida en la Tierra. Con ese propósito se formularon diferentes teorías en la primera mitad del siglo 19, que consideraban las peculiares condiciones prebióticas (J. D. L. Bernal, J.B.S. Haldane, A.I. Oparin), y también se realizaron experimentos de laboratorio en condiciones que duplicaban los entornos prebióticos supuestos (S.L. Miller).

Recientemente, los estudios geotérmicos sobre la presencia de vida en la joven Tierra han dado evidencia de que había microorganismos hace 3.200 millones de años (Rasmussen, 2000) o incluso antes 3.470 millones de años atrás, en base al resultado de la enzimología de redución de sulfato microbial (Shen et al, 2001). Todo esto ha llevado el comienzo de la presencia de vida organizada, capaz de realizar funciones bioquímicas complejas, a un período inmediatamente posterior al bombardeo pesado de meteoritos a la Tierra (Gogarten-Boeckel et al., 1995; Drake, 2000). ¿Cuánto tiempo fue necesario, en efecto, para la aparición de vida organizada en células con metabolismo activo luego de la acreción de nuestro planeta?

Al parecer fue suficiente un corto período, de unos pocos centenares de millones de años, para dar el salto entre el mundo de lo inorgánico y el mundo biológico (Nisbet, 2000). La posibilidad de que el origen de la vida pueda estar fuera de la Tierra, a donde fue importada, se ha tomado en consideración desde que lo propuso Svante Arrhenius (panspermia) al comienzo del siglo 19, con el refuerzo reciente de Fred Hoyle. Se ha considerado recientemente la posibilidad de que la vida se haya originado en la profundidad del espacio. En apoyo a esta hipótesis se ha reportado que un material sólido, producido por irradiación de químicos básicos en el vacío y a baja temperatura, al ser sumergido en agua creó espontáneamente estructuras membranosas similares a burbujas de jabón que tenían una capa interna y una externa. (Dworkin et al., 2001).

Los resultados del presente trabajo muestran que existen microorganismos reales dentro de cristales y rocas de composiciones químicas diferentes, además de en meteoritos, en una forma que presenta propiedades muy peculiares e inesperadas, que podría haber sido el vector ideal para propagarlos a través del universo.

Estos hallazgos surgieron de un estudio de microorganismos en muestras colectadas por medio de perforaciones superficiales en el fondo del mar, que luego fue extendido a diferentes tipos de rocas. Se encontró que las eurobacterias, en algunos casos archaea y en un caso un eucariota unicelular, no sólo aparecen en células calcificadas, muertas o parcialmente degradadas, como se ha establecido en una multitud de artículos de geomicrobiología (Banfield y Nealson, 1997), sino que están, además, en una forma que puede ser reactivada suspendiendo un fragmento apropiado del espécimen sólido en un medio nutriente.

En las observaciones iniciales se inspeccionaron alrededor de cincuenta muestras de diferentes dominios geológicos y eras y de diferentes composiciones químicas, y diez de ellos fueron analizados, incluyendo algunos meteoritos, proporcionados amablemente por el Real Museo Mineralógico de la University of Naples Federico II.

 


Figura 1.1 – Dominios (Pique para ampliar y ver explicación)
Figura 1.2 – Especímenes (Pique para ampliar y ver explicación)

MATERIALES Y MÉTODOS

El origen de los cristales, rocas, piezas de mineral y meteoritos utilizados se reporta en la explicación de la figura 1.1

Se obtuvieron pequeñas muestras de los especímenes mayores removiendo la capa externa y cortando luego en dos mitades la parte interior con un equipo estándar de corte de rocas. La nueva superficie expuesta se embebió en etanol y luego se puso en la llama de un mechero Bunsen durante dos minutos. En la superficie tratada se perforaron agujeros de 5 mm de profundidad con un taladro con puntas estériles. Se realizó un agujero mayor y luego uno menor, dentro de él. Del fondo del segundo agujero se obtuvo una muestra de roca raspando con una aguja esterilizada de jeringa, que se había puesto al rojo previamente en la llama del mechero Bunsen. Después del corte de la roca en mitades, todas las operaciones se realizaron dentro de una campana estéril de flujo laminar. Los operadores utilizaron guantes de látex. El material plástico utilizado se esterilizó. El resto del material y elementos utilizados se esterilizaron en autoclave durante 40 minutos a 121° C. Antes de la utilización como medio de cultivo, la solución esterilizada fue incubada durante una semana para comprobar posibles contaminaciones. Todos los experimentos se realizaron con los controles apropiados de contaminación, que dieron negativo durante el período de cultivo de las muestras analizadas.

Los fragmentos finamente pulverizados de las rocas en análisis se colocaron directamente en una placa de microscopio, suspendidos en un medio de cultivo estéril LB, se cubrieron con una microcubierta de vidrio y se observaron de inmediato con aumentos de 400x a 1000x. Las muestras pulverizadas también se colectaron en frascos de Petri y se agregó medio de cultivo estéril. Se inició el cultivo líquido agitando suavemente en una base oscilante a temperatura ambiente. Después del tiempo apropiado de cultivo, que duró entre dos días a una semana dependiendo de la muestra, el cultivo fue disuelto seriadamente y disperso en agar sólido en placas estériles LB de agar para aislar los clones individuales.

Ver detalles técnicos (inglés)

Figura 2
Ejemplos de una variedad de formas de colonia que se observan cuando se cultiva microorganismos a partir de algunos especímenes de rocas. Placa 1, colonia de la laja GB-6 que produce una estructura carbonatada similar a un encaje. Placa 2, estructuras que emergen de dos pequeños fragmentos de la misma roca colocada en el medio nutriente. Placas 2 y 3, colonias en la laja GB-16. Obsérvese la variedad de formas, tamaños y colores en la placa 4, el paso intermedio de una disolución seriada para aislar colonias simples.

RESULTADOS Y DISCUSIÓN

En la Figura 1 se reporta la caracterización geológica de las rocas, cristales y menas de mineral que se han examinado por el método de raspar el interior de la muestra, obteniendo un material finamente fragmentado que se colocó en una placa de miscroscopio, suspendido en un medio nutriente, cubierto y observado con aumentos de 400x – 1000x. Se muestra como ejemplo de especímenes alienígenas los que surgieron del meteorito condrítico (MetA.) La muestra del Cámbrico bajo GB-16 es el ejemplo de especímenes de más de 500 millones de años.

Para buscar microorganismos viables se han estudiado muestras que cubren desde épocas recientes hasta fines del Arcaico y dos meteoritos. En todos los casos se observó la aparición de formas nadadoras, con diferencia en el tiempo transcurrido hasta la primer observación de movimiento y la variedad de formas presentadas en la muestra. En varios casos el movimiento apareció al inicio de la observación, lo que indica que la transición a una forma activa fue prácticamente inmediata a la suspensión de la roca fragmentada en el medio nutriente. El gran número de formas activadas de inmediato, junto con la variedad de tamaños y formas, indica que no son una parte menor de las muestras, y reduce la posibilidad de que, a este nivel del análisis, puedan derivar de contaminación externa. [Un hallazgo interesante es la asociación frecuente de los “microorganismos” con fragmentos de la roca de muestra que realmente se movieron en el campo del microscopio durante la observación. Existe un vídeo de algunas observaciones realizadas a 1000x que muestra la actividad que se presenta en las rocas fragmentadas que se han sumergido en el medio de cultivo.]

La suspensión de muestras fragmentadas en agua produjo también efectos similares pero el período de movimiento activo sólo duró unos minutos. En otros casos, la observación de los movimientos iniciales requirió un largo período de incubación. El término más largo fue típico de una muestra de dolomita en la que los movimientos activos se observaron una hora después de la suspensión de la muestra pulverizada en el medio de cultivo.

(El artículo sigue con más datos científicos, demasiado científicos ya, así que detuve aquí la traducción. Si alguien desea verlo, me lo pide y se lo envío por e-mail)

Algunos récords de la vida extrema:

  • Más calor: (114° C) Pyrolobus fumarii (Isla Vulcano, Italia).
  • Más frío: (-18° C) Cryptoendoliths (Antártida y permafrost de Siberia).
  • Radiación más alta: (5 MRad, o 5000 veces la radiación letal para los humanos) Deinococcus radiodurans.
  • Mayor profundidad: 3,2 km bajo el suelo.
  • Mayor acidez: pH 0,0 (La mayoría de la vida está a un factor al menos 100.000 veces menos ácido).
  • Mayor alcalinidad: pH 12,8 (La mayoría de la vida está a un factor al menos 1.000 veces menos alcalino).
  • Mayor duración en el espacio: 6 años, Bacillus subtilis (en un satélite de la NASA).
  • Mayor presión: 1.200 veces la atmosférica.
  • Mayor salinidad: 30 % sal, ó 9 veces la salinidad de la sangre humana. Haloarcula.
  • Menor tamaño: < 0,1 micras ó 500 veces menor que el grosor de un cabello humano (picoplancton).

Más datos: