miércoles, 25 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los secretos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y los pensamientos    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La cantidad total de Materia del Universo se da generalmente en términos de una cantidad llamada Densidad Crítica, denotada por el signo Ω. Esta es la densidad de la materia que se necesita para producir un universo plano. La Densidad efectivamente observada ¿es menor o mayor que ese número?. En el primer caso el Universo es abierto, en el segundo es cerrado. La Densidad Crítica no es muy grande; corresponde aproximadamente a un protón por metro cúbico de espacio. Puede que no parezca mucho, dado el número inmenso de átomos en un metro cúbido de lado, pero no debemos olvidar que existe una gran cantidad de espacio “vacío” entre las galaxias.

Algunos números que definen nuestro Universo:

  • El número de fotones por protón
  • La razón entre densidades de Materia Oscura y Luminosa.
  • La Anisotropía de la Expansión.
  • La falta de homogeneidad del Universo.
  • La Constante Cosmológica.
  • La desviación de la expansión respecto al valor crítico.
  • Fluctuaciones de vacío y sus consecuencias.
  • ¿Otras Dimensiones?

 

 

 

 

Estimar la cantidad de materia luminosa del universo es una cosa muy fácil de hacer. Sabemos el brillo que tiene una estrella media, así que podemos hacer una estimación del número de estrellas de una galaxia distante. Podemos contar entonces el número de galaxias en un volumen dado de espacio y sumar las masas que encontramos. Dividiendo la masa por el volumen del espacio obtenemos la densidad media de materia en ese volumen. Cuando llevamos a cabo esta operación, obtenemos que la densidad de la materia luminosa es aproximadamente entre el 1 o 2% de la densidad crítica; mucho menos de lo que se necesita para cerrar el universo.

Por otro lado, está lo bastante cerca del valor crítico para hacer una pausa. Después de todo, esta fracción podría haber sido en principio de una billonésima o trillonésima, y también podría haber sucedido que fuese un millón de veces la materia necesaria para el cierre. ¿Por qué, entre todas las masas que podría tener el universo, la masa de materia luminosa medida está cerca del valor crítico que nos dice que estamos en un Universo abierto?

No toda la materia del Universo son estrellas, Nebulosas, galaxias o, agujeros negros. También existe otra clase de materia que conforman las cosas que vemos a nuestro alrededor (ríos y océanos, bosques y montañas…, ¡infinidad de mundos!) y, en ocasiones, incluso podemos relacionarla con esa clase de materia evolucionado que alcanzó la consciencia. ¿Cómo fue posible tal maravilla? Y todo, sin excepción -al menos hasta donde podemos saber-, está hecho de Quarks y Leptones.

Claro que el hecho de que la materia luminosa medida esté tan cercana al valor crítico, puede simplemente deberse a un accidente cósmico; las cosas simplemente “resultan” de ese modo. Me costaría mucho aceptar una explicación y supongo que a otros también. Es tentador decir que el Universo tiene en realidad la masa crítica, pero que de algún modo no conseguimos verla toda.

Como resultado de esta suposición, los astrónomos comenzaron a hablar de la “masa perdida” con lo que aludían a la materia que habría llenado la diferencia entre densidades observadas y crítica. Tales teorías de “masa perdida”, “invisible” o, finalmente “oscura”, nunca me ha gustado, toda vez que, hablamos y hablamos de ella, damos por supuesta su existencia sin haberla visto ni saber, exactamente qué es, y, en ese plano, parece como si la Ciencia se pasara al ámbito Religioso de la Fé,  de creer en lo que no podemos ver ni tocar, y, la Ciencia, amigos míos, es otra cosa.

http://esamultimedia.esa.int/images/dtos/mission/C2_goce.jpg

Tendremos que imaginar satélites y sondas que, de alguna manera, puedan detectar grandes halos galácticos que encierren la tan buscada materia oscura y que, al parecer, hace que nuestro Universo sea como lo conocemos y, es la responsable del ritmo al que se alejan las galaxias, es decir, la expansión del Universo.

Esos halos, tendrían muchas veces la masa que podemos ver en la Materia luminosa, la Bariónica formada por Quarks y Leptones que conforman las estrellas, planetas, galaxias y nosotros mismos. La teoría de la materia oscura y su presencia en cúmulos y supercúmulos ha sido “descubierta” (o inventada para tapar nuestra ignorancia) en época relativamente cercana para que prevalezca entre los astrónomos la uninimidad respecto a su contribución a la masa total del universo. El debate continúa, está muy vivo y, es el tema tan candente e importante que, durará bastante tiempo mientras algún equipo de observadores no pueda, de una vez por todas, demostrar que, la “materia oscura” existe, que nos digan donde está, y, de qué está conformada y como actúa. Claro que, cuando se haga la suma de materia luminosa y oscura, la densidad de la masa total del universo no será todavía mayor del 30% del valor crítico. A todo esto, ocurren sucesos que no podemos explicar y, nos preguntamos si en ellos, está implicada la Materia oscura.

La más abarrotada colisión de cúmulos galácticos ha sido identificada al combinar información de tres diferentes telescopios. El resultado brinda a los científicos una posibilidad de aprender lo que ocurre cuando algunos de los más grandes objetos en el universo chocan en una batalla campal cósmica.

MACSJ0717.5+3745

Usando datos del Observatorio de rayos-X Chandra, el Telescopio Espacial Hubble y el Observatorio Keck de Hawai, los astrónomos fueron capaces de determinar la geometría tridimensional y el movimiento en el sistema MACSJ0717.5+3745 localizado a 5.4 mil millones de años luz de la Tierra. Los investigadores encontraron que cuatro distintos cúmulos de galaxias están envueltos en una triple fusión, la primera vez que un fenómeno así es documentado.

MACSJ0717.5+3745 etiquetado

La composición de imagen (arriba de todo) muestra el cúmulo de galaxias masivo MACSJ0717.5+3745. El color del gas caliente está codificado con colores para mostrar su temperatura. El gas más frío es mostrado como un púrpura rojizo, el gas más caliente en azul y las temperaturas intermedias en púrpura. Las repetidas colisiones en el cúmulo son causadas por una corriente de galaxias, polvo y “materia oscura” -conocida como filamento- de 13 millones de años luz.

La versión etiquetada muestra las galaxias en los cuatro diferentes cúmulos, identificados por las letras A, B, C y D, envueltas en la colisión, además de la dirección del movimiento de los tres cúmulos de movimiento más rápido. La región más fría (más rojiza) de gas hacia la parte inferior izquierda del cúmulo identificado como D, ha sobrevivido probablemente de antes de la colisión. El cúmulo A parece estar cayendo hacia el cúmulo principal luego de haber pasado a través en la dirección opuesta. El cúmulo B tiene una velocidad mucho mayor que los otros a lo largo de la línea de visión.

MACSJ0717 muestra cómo cúmulos galácticos gigantes interactúan con su entorno en escalas de millones de años luz. Es un sistema hermoso para estudiar cómo los cúmulos crecen mientras el material cae en ellos a lo largo de filamentos. Simulaciones por ordenador muestran que los cúmulos de galaxias más masivos deben crecer en regiones donde filamentos de gran escala de gas intergaláctico, galaxias, y materia oscura intersectan.

¿Cuál debe ser la Masa del Universo?

Alan Guth's photo

            Alan Guth

 

Esta claro que la idea de masa perdida se introdujo porque la densidad observada de la materia del universo está cerca del valor crítico. Sin embargo, hasta comienzos de los ochenta, no se tuvo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que desde entonces se ha conocido como “universo inflacionista”. Desde entonces, la teoría ha sufrido numerosas modificaciones técnicas, pero los puntos centrales no han cambiado.

Para nuestra conversación de hoy, diremos que el aspecto principal del universo inflacionista es que estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico. Esta predicción viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. Entre los otros muchos procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.

Abell 370: Lente gravitacional de un cúmulo de galaxias

Abell 370 La lente gravitacional distorsiona la Imagen y nos enseña, a la derecha, algo que nos parece una inmensa cuerda cósmica pero, ¿que podrá ser en realidad? la materia a lo largo y ancho del universo se reparte de manera que, se ve concentrada en cúmulos de galaxias y supercúmulos que son las estructuras más grandes conocidas y, dentro de ellas, están todos los demás objetos que existen. Claro que, deajndo a un lado esas fluctuaciones de vacío y, la posible materia desconocida.

El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; una botella de leche explotará si la dejamos en el exterior en una noche de invierno de gélido frío. No debería ser demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.

La distancia a una galaxia lejana se determina estudiando la luz proveniente de estrellas de tipo Cefeidas Variables. El expectro de la luz estelar revela la velocidad a la que se mueve la galaxia (Efecto Doppler) y la cantidad de expansión que ha sufrido el universo desde que la luz salió de su fuente.

Lo que es sorprendente es la enorme amplitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1050. Este número es tan inmenso que virtualmente no tiene significado para la mayoría de la gente, incluido yo mismo que, no pocas veces me cuesta asimilar esas distancias inconmensurables del Cosmos. Dicho de otra manera, pongamos, por ejmplo, que la altura de los lectores aumentara en un factor tan grande como ese, se extenderían de un extremo al otro del Universo y, seguramente, faltaría sitio. Incluso un sólo protón de un sólo átomo de su cuerpo, si sus dimensiones aumentaran en 1050, sería mayor que el mismo universo. En 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo como el tamaño de una naranja grande. No es extraño que el nombre inflación esté ligado a este proceso.

Comparación entre un modelo de expansión desacelerada (arriba) y uno en expansión acelerada (abajo). La esfera de referencia es proporcional al factor de escala. El universo observable aumenta proporcionalmente al tiempo. En un universo acelerado el universo observable aumenta más rápidamente que el factor de escala con lo que cada vez podemos ver mayor parte del universo. En cambio, en un universo en expansión acelerada (abajo), la escala aumenta de manera exponencial mientras el universo observable aumenta de la misma manera que en el caso anterior. La cantidad de objetos que podemos ver disminuye con el tiempo y el observador termina por quedar aislado del resto del universo.

Cuando (hace mucho tiempo ya) leí por primera vez acerca del universo inflacionario, experimenté dificultades para poder asimilar el índice de inflación. ¿No violaría un crecimineto tan rápido las reglas impuestas por la relatividad de Eintien que marcaban el límite de la velocidad en el de la luz en el vacío? Si un cuerpo material viajó de un extremo de una naranja a otro en 10-35 segundos, su velocidad excedió a la de la luz en una fracci´çon considerable.

Claro que, con esto puede pasar como ha pasado hace unos días con los neutrinos que, algunos decían haber comprobado que corrían más rápidos que la luz, y, sin embargo, todo fue un error de cálculo en el que no se tuvieron en cuenta algunos parámetros presentes en las mediciones y los aparatos que hacían las mismas. Aquí, podría pasar algo parecido y, la respuesta la podemos encontrar en aquella analogía con la masa de pan. Durante el período de inflación es el espacio mismo -la masa de pan- lo que está expandiéndose. Ningún cuerpo material (acordaos que en aquella masa estaban incrustadas las uvas que hacían de galaxias y, a medida que la masa se inflaba, las uvas -galaxias- se alejaban las unas de las otras pero, en realidad, ninguna de estas uvas se mueven, es la masa lo que lo hace.

                   El Universo se expande

Las reglas contra los viajes a mayor velocidad que la de la luz sólo se aplican al movimiento del espacio. Así no hay contradicción, aunque a primera vista pueda parecer que sí. Las consecuencias del período de rápida expansión se pueden describir mejor con referencia a la visión einsteniana de la gravitación. Antes de que el universo tuviera 10-35 segundos de edad, es de suponer que había algún tipo de distribucón de la materia. A cauda de esa materia, el espacio-tiempo tendrá alguna forma característica. Supongamos que la superficie estaba arrugada antes de que se produjera la inflación. Y, de esa manera, cuando comenzó a estirarse, poco a poco, tomó la forma que ahora podemos detectar de “casi” plana conforme a la materia que contiene.

La Galaxia NGC 4388 y su Inmensa Nube de Gas

En todo esto, hay un enigma que persiste, nadie sabe contestar cómo, a pesar de la expansión de Hubble, se pudieron formar las galaxias. La pregunta sería: ¿Qué clase de materia estaba allí presente, para que, la materia bariónica no se expandiera sin rumbo fijo por todo el universo y, se quedara el tiempo suficiente para formar las galaxias? Todo ello, a pesar de la inflación de la que hablamos y que habrái impedido su formación. Así que, algo tenía que existir allí que generaba la gravedad necesaria para retener la materia bariónica hasta que esta, pudo formar estrellas y galaxias.

No me extrañaria que, eso que llaman materia oscura, pudiera ser como la primera fase de la materia “normal” que, estándo en una primera fase, no emite radiaciones ni se deja ver y, sin embargo, sí que genera la fuerza de Gravedad para hacer que nuestro Universo, sea tal como lo podemos observar.

Una hipótesis más arriesgada sostiene que la materia oscura está chocándo consigo misma de alguna forma no gravitacional que nunca se había visto antes..? (esto está sacado de Observatorio y, en el texto que se ha podido traducir podemos ver que, los astrónomos autores de dichas observaciones, tienen, al menos, unas grandes lagunas y, tratándo de taparlas hacen aseveraciones que nada tienen que ver con la realidad).

 

 

http://farm6.static.flickr.com/5146/5653032414_c8e6085f98.jpg

 

Lo cierto es que, en el Universo, son muchas las cosas que se expanden y, pienso yo…¿Por qué no tratamos todos de expandir nuestras mentes? De esa manera, posiblemente podríamos comprender éstas y otras muchas cuestiones que nos atormentan al no poder llegar a saber qué son y cuáles son sus significados y mensajes.

emilio silvera

 

¡La Mente! Ha estado presente desde un pasado remoto

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y los pensamientos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Miramos la historia y nos maravillamos de lo que nuestros antepasados pudieron llegar a conseguir en todas las áreas del saber humano. Se dice con frecuencia que, la Astronomía fue la Ciencia más antigua de todas, ya que, las maravillas del cielo siempre llamaron nuestra atención y despertaron nuestra inemnsa curiosidad. Los sucesos que podían observar aquellos seres del pasado, eran fuente de miedo y de mágico asombro que, su ignorancia condujo hasta la divinidad.

Pero el tiempo pasaba, ellos seguían observando y aprendiendo de los hechos que se sucedían una y otra vez y, llegaron a comprender algunas de las cosas que, frecuentemente pasaban. Algunas vez he sentido la tentación de decir que la astronomía del Viejo Mundo estaba más adelantada que la del Nuevo Mundo porque llegaron a introducir el uso de instrumentos en la ciencia de observación de las estrellas. Por supuesto, no había telescopios -esta innovación se debe a Occidente-, pero los astrónomos chinos e islámicos sí que inventaron unos elaborados artilugios de metal para observaciones que realizaron con el propósityo de hacer el mapa de los cielos.

           El mapa celeste de Dunhuang, uno de los mapas estelares más antiguos de China

Los astrónomos chinos, bajo la protección y administración del gobierno, escrutaban el cielo permanentemente y se convirtieron en los observadores más precisos y persistentes de toda la antigüedad. De hecho, las únicas referencias a algunos fenómenos celestes acontecidos entre los siglos V y X de nuestra era que han llegado a nuestros días proceden de crónicas astronómicas chinas.

Según una estadística reciente se conservan registros de más de diez mil eventos astronómicos entre ellos 270 sobre manchas solares, 300 sobre auroras boreales, 300 sobre meteoritos, 1.600 sobre eclipses de sol, 1.100 sobre eclipses de Luna, 200 sobre ocultaciones lunares, 100 sobre novas y supernovas, 400 sobre lluvias de meteoros y 4.900 sobre meteoros. Además existen cientos de documentos sobre los movimientos de la Luna y los planetas. El descubrimiento en 1967 del púlsar de la Nebulosa del Cangrejo,  relacionada con la nova de 1054 que aparece en los registros chinos, despertó el interés por esta documentación astronómica.

La gran cantidad de observaciones que recopilaron y sus métodos matemáticos fueron unas contribuciones cruciales para el posterior florecimiento de la astronomía entre los hindúes y los musulmanes, así como entre los griegos.

zigurat

En la limpia atmósfera de Mesopotamia, la Astrología tomó una forma parecida a la de nuestros tiempos. Hace mas de cinco mil años que los sacerdotes-astrólogos de Babilonia se ocuparon en conocer el cielo e identificar a todas las estrellas visibles del firmamento, para ello construyeron observatorios en la llanura que se denominaban zigurats. Existen este tipo de monumentos que datan desde el 2600 a.C. como el que se muestra en la imagen. Aparecen unas tablillas de la Biblioteca de Nínive que tratan de astronomía y astrología babilónicas y caldeas. También registraron en paso del cometa Halley en el año 164 a C.

Durante más de dos mil años los esfuerzos de los astrónomos de Mesopotamia quedaron olvidados bajo las ruinas de palacios y zigurats en lo que hoy en día es principalmente Irak. Todo lo que se sabía del tema procedía de unos pocos pasajes de la Biblia y de las informaciones dadas por algunos escritores griegos. Pero esas informaciones eran sumamente seductoras. El erudito romano Plinio el Viejo, por ejemplo, escribiò que los babilonios dieron cuenta de susn observaciones de las estrellas en las inscripciones que estuvieron realizando sobre tablillas de barro cocido con previsiones para 720.000 años, un número que duplicó varios siglos más tarde un filósofo griego, Simplicius, llegando a la asombrasa cifra de 1.440.000 años.

http://www.profesorenlinea.cl/imagenUniversalH/mesopotamia039.jpg

A mediados del siglo XIX, los arqueólogos comenzaron a desenterrar en Mesopotamia miles de estas tablillas con inscripciones con escritura cuneiforme. se calcula que cien años más tarde había medio millón de estas tablillas repartidas por los museos de todo el mundo.

En el emplazamiento de la antigua ciudad de Sippar, situada al suroeste en las cercanías de Bagdad, los arqueólogos que realizaban excavaciones allí descubrieron una biblioteca de los últimos tiempos del imperio babilónico en los que se encondía una enorme cantidad de anotaciones astronómicas y ejercicios matemáticos.

Los textos traducidos, aunque sólo son una pequeña parte de los descubrimientos, revelan la presencia en Mesopotamia de una astronomía que se remonta al menos hasta el siglo XVIII a. C., fueron los primeros en catalogar las estrellas más brillantes, esbozaron un conjunto rudimentario de constelaciones del zodiaco, rewseñaron los movimientos de los cinco planetas visibles (Mercurio, Venus, Marte, Júpiter y Saturno) e hicieron el mapa de los movimientos del Sol y de la Luna con respecto a las constelaciones. Dieron a estas unos nombres que en algunos casos aún nos resultan familiares -Escorpio, Tauro, Leo.

El disco sumerio clasificado como K8538 es una prueba más del avanzado conocimiento astronómico de los sumerios. Es posible que los sumerios fueran el primer pueblo del mundo en desarrollar un calendario basado enteramente en la recurrencia de las fases completas, o sinódicas, de la Luna y también el primero que utilizó los períodos sinódicos de la Luna como la base del año de doce meses, es decir, 360 días.

A partir de restos de cimentaciones, se ha querido reconstruir una de las ciudades de babilonia en su época de mayor esplendor y, el resultado ha sido el que arriba podeis contemplar, aunque no fiable del todo, sí que nos habla de avanzados conocimientos para la época. Desde el proncipio, los babilonios supieron resilver problemas geométricos elementales de una manera algebraica. Optaron por explicar los movimientos de los cuerpos celestes de un modo básicamente temporal, lo contrario de lo que hicieron los griegos, que optaron por la explicación espacial, es decir, geométrica. De esta manera, las notaciones babilónicas -la algebraica y la del valor según la posición- se dconvirtieron en el fundamento de una astronomía teórica de carácter matemático. Esta astronomía reducía al mínimo los datos empíricos. trató unos fenómenos celestes bastante complicados, descubriendo unas funciones matemáticas sencillas cuya combinaciòn describe éstos fenómenos con inteligencia y elegancia.

                                             Página del Almagesto de Ptolomeo.

Ptolomeo

(h. 90-h. 168) Astrónomo y geógrafo griego. Su principal obra es el Almagesto, en la que expone su concepción geocéntrica del Universo. El sistema ptolemaico entronca con la tradición aristotélica, fue utilizado por astrónomos árabes y medievales y solo perdió vigencia con la aceptación de las teorías heliocéntricas propuestas por Copérnico.

La influencia babilónica en la astronomía griega, tal como se refleja en el Almagesto, incluía los nombres de muchas constelaciones; el sistema de referencia zodiacal; el grado como unidad básica para la medición de ángulos; observaciones, especialmente de eclipses, que se remontan hasta el comienzo del reinado de Nabonasar en el año 747 a. C., y varios parámetros fundamentales, incluido el valor correspondiente al mes sinódico medio.

Desde que existe sobre la Tierra, el ser humano siempre ha mirado al cielo y, ¿qué duda nos puede caber? las observaciones astronómicas fueron anteriores a la escritura. El cielo, las estrellas, el espacio la luz… ¡qué maravillas! Los seres humanos se integraron con los sucesos del firmamento en una visión más amplia que los hacía partípe de acontecimientos mágicos y maravillosos que ocurrían lejos, en las alturas de un espacio inalcanzable pero que, fomentó una firme configuración del cerebro que adquirió nuevas pautas y un sistema de organización que nos llevó más allá de la Tierra al querer saber de los acontecimientos celestes que nos llevó, a nuestro origen, nos transportó hasta las estrellas lejanas que sí, pudimos visitar con nuestras mentes imaginativas que poco a poco, fueron descubriendo los secretos que el Universo escondía.

emilio silvera

¿Otros universos? ¿Por qué no?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y los pensamientos    ~    Comentarios Comments (33)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los Matemáticos afirman que los Universos múltiples existen, y, si eso es así, coincide con algunas observaciones que han sido realizadas y que, de manera sorprendente, respaldan el resultado de la existencia de otros universos a partir del “borde” mismo del nuestro, y, además, es posible que, las grandes estructuras de estos universos (del más cercano), esté influenciando en el comportamiento del  nuestro que, se comporta como si existiera más materia de la que realmente hay debido a que, la fuerza de gravedad de esos “universos” vecinos, incide de manera real en este Universo nuestro.

Los estudios del MAPW han derivado en deducciones que nos dicen: “El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.

¿Quién puede decir lo que existe más allá de nuestro Universo?

Ωbh2 = 0,002267 + o,000558/ 0,000059

Ωch2 = 0,1131 ± 0.0034

ΩΛ      = 0,726± 0.015

ns = 0,960 ± 0,013

τ          = 0,084 ± 0.016

σ8 = 0,812 ± 0.026

Estos son los valores de los parámetros cosmológicos obtenidos a partir de los datos combinados de 5 años de observación de WMAP, medidas de distancia de supernovas tipo I y la distribución de galaxias Omega b, c, lambda que son las densidades de materia bariónica, materia oscura y energía oscura respecto a la densidad crítica (la correspondiente a un espacio euclideo) h = 0,71 es el parámetro de Hubble que mide la razón de expansión del universo, τ es la profundidad óptica, y ns y σ8 son el índice espectral y la amplitud del espectro de las fluctuaciones de la materia, respectivamente.

Además de los parámetros cosmológicos, el estudio de la distribución estadística de las anisotropías en la intensidad de la polarización de la radiación también nos proporciona una información muy valiosa sobre la historia remota del Universo. El Modelo estándar de inflación predice que las fluctuaciones en la densidad de energía se distribuye siguiendo, muy aproximadamente, un campo aleatorio gausiano. Sin embargo el modelo estándar se basa en el caso ideal de existencia de un solo campo cuántico, el inflatón, que evoluciona lentamente hasta el mínimo de potencial.

http://www.cienciakanija.com/wp-content/uploads/within_a_black_hole.jpg

“El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.

En los numerosos análisis realizados a los datos de WMAP se han encontrado una serie de “anomalías” cuyo origen está aún por determinar. En el artículo se nos dice: ” El flujo oscuro es controvertido debido a que la distribución de la materia en el Universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del Universo visible -fuera de nuestro “horizonte”- está tirando de la materia en nuestra vecindad”. Es decir, que de lo que en realidad se trata es, de saber cuanto vale Omega (Ω), o, lo que es lo mismo, la cantidad de materia que contiene el Universo metiendo en ese “saco” tanto a la materia bariónica como a la oscura.

Las anomalías observadas no son debidas ni al ruido ni a residuos contaminantes, lo más probable es que sea debida a defectos topológicos en forma de textura. Seguramente la misión Planck de la ESA nos proporcionará la mejor medida de la anisotropía en la intensidad del Fondo Cósmico de Microondas en todo el cielo con una sensibilidad, resolución y cubrimiento frecuencial sin precedentes.

¿Estaremos inmersos en un sistema de inflación autorreproductora? Parece que algunos datos nos vienen a decir que cuando el Universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible.  Cada burbuja será un nuevo Universo, o mini-universo en los que reinarán escenarios diferentes o diferentes constantes y fuerzas.

El escenario que describe la imagen, ha sido explorado y el resultado hallado es que en cada uno de esos universos, como hemos dicho ya, pueden haber muchas cosas diferentes, pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la Naturaleza, pudiendo unos albergar la vida y otros no. Claro que, sólo son pensamientos y conjeturas de lo que podría ser.

Las fronteras del conocimiento sobre el Universo se amplian día a día y, a no tardar mucho podremos saber sobre:

  • Las caracterísiticas de la época inflacionaria así como de las fluctuaciones primordiales en la densidad que allí se generaron.
  • La existencia de ondas gravitatorias primordiales.
  • La naturaleza de la materia oscura y la energía oscura y su contribución al contenido material/energético total del Universo.
  • La distribución de cúmulos de galaxias seleccionados mediante el efecto Sunyaev-Zeldovich.
  • La época de reionización”.
  • Las fluctuaciones de vacío generadoras de objetos misteriosos y energías exóticas.
  • La inevitabilidad de la vida por todo el Universo.

Y, muchas cosas más que de momento ignoramos y que, como podemos leer en el artículo de arriba, cada día quedan más cerca de nuestro entendimiento gracias al trabajo de muchos y, sobre todo, al ingenio de los seres humanos que, con su inagotable imaginación y, por fin, unificando los conocimientos adquiridos durante largos años, ahora van aprendiendo a dirigir sus esfuerzos en la debida dirección, que nos llevará, a desvelar cosas que no comprendemos para saber, cada vez más profundamente, como funciona el Universo en el que vivimos y por qué de sus comportamientos.

La naturaleza a temperaturas muy bajas tiene una gran cantidad de sorpresas bajo la manga”, comenta Meyer. “No quiero especular sobre cuál resultará ser la explicación de la emisión criogénica, pero no me sorprendería si la estructura de banda de los semiconductores desempeña un papel importante”.

    Estructuras desconocidas arrastran las galaxias de nuestro universo

¡Hay tantas cosas que desconocemos! Pudiera incluso ser posible que, esa fuerza misteriosa que tira de nuestras galaxias y, cuya responsabilidad se la adjudicamos a “la materia oscura”, sea, en realidad, la fuerza de Gravedad que generan cientos de miles de Galaxias situadas en otro universo que, vecino del nuestro, incide de manera directa en el comportamiento de los objetos que el nuestro contiene.

Porque, ¿quién puede asegurar que nuestro Universo es el único universo? Nosotros decimos, en relación a “nuestro” Universo, que comprende “todo” lo que existe, incluyendo el espacio, el tiempo y la materia. Claro que, al decir “todo lo que existe” nos estamos refiriendo al ámbito del propio Universo, sin pensar en que, más allá de éste nuestro, puedan existir otros iguales o diferentes que, como el nuestro, tenga también espacio, tiempo y materia, y, si es así, ¿Por qué esa materia vecina no puede incidir, con la fuerza de Gravedad que su materia genera, en éste Universo nuestro? Si recordamos bien, se dice que, tanto el alcance de la fuerza electromagnética como el de la Gravitatoria, son infinitos. De esa manera, esa materia que conforma otros universos, podría estar “tirando” de nuestras galaxias y, haciendo que corran a más velocidad de la que tendrían de no concurrir en escena, alguna otra fuerza externa. Claro que, nosotros, creyendo que la idea de otros universos es algo atrevida, hemos preferido adoptar a la “Materia Oscura” para que explique, o, más bien justifique, las anomalías observadas.

Una cosa sí que está clara, el Universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Tal separación gradual, a medida que el tiempo pasa, hace que el Universo sea, cada vez más frío.

¿No pasará con los universos como ocurre con las galaxias? Sabemos que Andrómeda se nos echa encima a 100 Km/s, y, de la misma manera, son múltiples las galaxias que se han fundido en una sola galaxia mayor. Si eso es así (que lo es), si las leyes del Universo son las que son, ¿quién puede negar que al igual que las galaxias, también los universos se funden en otro mayor?

Yo, la verdad es que no acabo de estar de acuerdo con la dichosa “materia oscura”, algo me dice que hay algo más que no sabemos ver y, posiblemente, la fuerza de Graedad tenga alguna propiedad o extensión desconocida. Por otra parte,  la idea, no de universos paralelos que serían intangibles para nosotros al estar situados en otro plano dimensional, sino la idea de universos conexos que, de alguna manera, se relacionan entre sí a una escala tan enorme que aún no hemos podido captar.

Creo firmemente que, eso debe ser así según los indicios que, cada vez son más fuertes apuntando en dicha dirección, y, esos modelos que nos hemos inventado del Universo Plano, Abierto o Cerrado, no son más que palos de ciego tratando de explicar lo que no comprendemos.

La materia que conforma nuestro Universo es la que podemos ver y detectar, la que confroman todos los objetos existentes nosotros incluidos, y, sin importar la forma que esté adoptando en este momento, la materia, materia es: es decir, Quarks y Leptones. Es posible que, seguramente, esté acompañada de esa otra escondida en eso que llamamos “fluctuaciones de vacío” donde, que sepamos, puede haber oculto mucho más de lo que hemos podido localizar, ya que, su dominio, el dominio de los llamados “océanos de Higgs” nos quedan muy, pero que muy lejos, y, ahora, con el LHC, posiblemente podamos obtener algunas de las respuestas tan deseadas y necesarias para rellenar muchos de los espacios “vacíos” que están presentes en nuestros conocimientos limitados.

Screenshot of CERN's new blog

Pensemos en el Universo y que con el Hubble y otros magníficos aparatos tecnológicos de complejo diseño, hemos podido acceder a un conocimiento más profundo de lo que puede ser la materia y las partículas de que está conformada. Por otra parte y pensando en el enorme costo que nos suponen esos inmensos aceleradores de partículas que nos llevan (durante una fracción de segundo) al instante mismo de la creación para que, allí, podamos “ver” lo que fue y entender, de esa manera, lo que es, a costa de una inemnsa energía. Precisamente por ello, sería deseable busca otros caminos más dinámicos y menos costosos (la Química) que nos llevaran hasta el mismo lugar sin tanta estructura y con menos esfuerzo económico que se podría destinar a otros proyectos del espacio.

 [HST]

Sabemos de su magnificencia y de su “infinitud”. Lleva 13.700 millones de años creciendo, y, hemos logrado la proeza de captar galaxias situadas a unos 13.ooo millones de años-luz de nosotros, es decir, de cuando el Universo era muy joven. Con las nuevas generaciones de aparatos, con las nuevas y más avanzadas tecnologías, seguramente, alcanzaremos a poder ver, incluso el momento mismo de “la gran explosión”.

Sin embargo, tales hallazgos no serán suficientes para explicar todo lo que en verdad existe y está ahí, “junto” a nosotros, haciéndonos señales que no podemos captar, y, seguramente, enviándonos mensajes que no podemos recibir. ¡Algún día, muy lejos en el futuro, podremos, al fin saber, en qué Universo estamos y si, éste Universo nuestro, tiene otros hermanos!

“Kashlinsky y su equipo afirman que su observación representa la primera pista de lo que hay más allá del horizonte cósmico. Al averiguarlo, podremos saber cómo se veía el universo inmediatamente después del Big Bang, o si nuestro universo es uno de muchos. Otros no están tan seguros. Una interpretación diferente dice que no tiene nada que ver con universos extraños sino el resultado de un defecto en una de las piedras angulares de la cosmología, la idea de que el universo debe verse igual en todas direcciones. O sea, si las observaciones resisten un escrutinio preciso.”

“Las estructuras más allá del “borde” del Universo observable, el cual están esencialmente confinados a una región con un radio de 14 mil millones de años luz, dado que sólo la luz dentro de esta distancia ha tenido tiempo de llegar hasta nosotros desde el Big Bang.

En el escenario de inflación, la expansión está dirigida por un campo de energía de un origen misterioso. Erickcek y sus colegas argumentan que la asimetría podría ser el remanente de las fluctuaciones en un campo de energía adicional, el cual empezó siendo diminuto, pero estalló por la inflación hasta que se hizo mayor que el universo observable.

Como resultado, el valor de este campo de energía varió desde un lado del universo al otro en los inicios, aumentando las variaciones de temperatura – y densidad de materia – en un lado del cielo con respecto a otro.

La conclusión, si es correcta, haría añicos una apreciada suposición sobre el universo. “Uno de los sustentos básicos de la cosmología es que el universo es el mismo en todas las direcciones, y el modelo estándar de la inflación se construye sobre estos cimientos”, dijo Erickcek a New Scientist. “Si la asimetría es real, entonces nos dice que un lado del universo es de algún modo distinto al otro lado”.

“El universo, tan vasto para la mayoría de nosotros, a veces les resulta pequeño a los cosmólogos. Observando a enormes distancias de la Tierra han encontrado una “ventana” que podría mostrarnos que existe algo más allá de los 45.000 millones de años luz, el “borde final” observable de esta burbuja cósmica que nos aloja. ¿Constituye esto una evidencia de la existencia otros universos?”

He buscado diversas opiniones y estudios que arriba están para su lectura, y, también he plasmado aquí mis propias opiniones sobre todo este complejo tema. Leyendo a unos y otros sabemos que, a nada se ha llegado de manera definitiva pero, la idea de que más allá del horizonte de nuestro Universo, hay algo más, toma fuerza y amplia nuestra visión en relación a dónde podemos estar y lo que, verdaderamente pueda ser todo esto.

emilio silvera

¡Las ideas luminosas! ¡Los secretos que persisten!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y los pensamientos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Lo cierto es que miremos donde miremos… la materia y la energía están presentes. No importa que estémos en micromundo de la mecánica cuántica o en el macromundo de los cúmulos de galaxias, siempre nos toparemos con la energía que impregna todo el espacio y que adopta las diferentes y caprichosas formas que podemos ver y, seguramente otras que ni intuimos que están ahí. Materia = Energía pero, ¿qué son,  en realidad y en su más profundo origen esas “cosas”?  ¡Materia! y “Energía! que siendo lo que conforma y mueve al universo entero, no hemos podido llegar a saber ni su verdadero origen ni su auténtico significado.

Cuando Einstein tenía 26 años, calculó exactamente cómo debía cambiar la energía si el principio de la relatividad era correcto, y descubrió la relación E=mc2.  Puesto que la velocidad de la luz al cuadrado (c2) es un número astronómicamente grande, una pequeña cantidad de materia puede liberar una enorme cantidad de energía.  Dentro de las partículas más pequeñas de materia hay un almacén de energía, más de un millón de veces la energía liberada en una explosión química.  La materia, en cierto sentido, puede verse como un depósito casi inagotable de energía; es decir, la materia es en realidad, energía condensada.

http://2.bp.blogspot.com/_-Rw4Rb4bpMc/SRnwxorU6QI/AAAAAAAAAko/VA75n0HebDQ/s400/Materia+OScura-Energ%C3%ADa+oscura-Internet

Einstein supo ver que las dimensiones más altas tienen un propósito: unificar los principios de la Naturaleza.  Al añadir dimensiones más altas podía unir conceptos físicos que, en un mundo tridimensional, no tienen relación, tales como la materia y la energía o el espacio y el tiempo que, gracias a la cuarta dimensión de la relatividad especial, quedaron unificados.

Desde entonces, estos conceptos, los tenemos que clasificar, no por separado, sino siempre juntos como dos aspectos de un mismo ente materia-energía por una parte y espacio-tiempo por la otra.  El impacto directo del trabajo de Einstein sobre la cuarta dimensión fue, por supuesto, la bomba de hidrógeno, que se ha mostrado la más poderosa creación de la ciencia del siglo XX.  Claro que, en contra del criterio de Einstein que era un pacifista y nunca quiso participar en proyectos de ésta índole.

El Espacio y el Tiempo están tan unidos que, desde la Teoría de la Relatividad Especial y con la ayuda de Minkouski, le llamamos espaciotiempo como si de una sola entidad se tratara y el uno sin el otro no pudieran existir y, junto a la materia-energía, conforman un todo profundamente estable en el conocimiento de la Naturaleza que perseguimos.

Einstein completó su teoría de la relatividad con una segunda parte que, en buena mendida, estaba inspirada por lo que se conoce como principio de Mach, la guía que utilizó Einstein para crear esta parte final y completar su teoría de relatividad general.

Einstein enunció que, la presencia de materia-energía determina la curvatura del espacio-tiempo a su alrededor.  Esta es la esencia del principio físico que Riemann no logró descubrir: la curvatura del espacio está directamente relacionada con la cantidad de energía y materia contenida en dicho espacio.

Esto, a su vez, puede resumirse en la famosa ecuación de Einstein, que esencialmente afirma:

http://img6.imageshack.us/img6/989/f05040202.jpg

Materia-energía determina la curvatura del espacio-tiempo

Esta ecuación engañosamente corta es uno de los mayores triunfos de la mente humana (me he referido a ella en otras muchas ocasiones).  De ella emergen los principios que hay tras los movimientos de las estrellas y las galaxias, los agujeros negros, el big bang, y seguramente el propio destino del Universo. Pronto se cumplirá un siglo desde que se dio a conocer al mundo y, todavía, sigue dando resultados positivos que nos llevan a conocer, algunos aspectos del Universo que permanecían escondidos.

Es curiosa la similitud que se da entre la teoría del electromagnetismo y la relatividad general, mientras que Faraday experimentó y sabía los resultados, no sabía expresarlos mediante las matemáticas y, apareció Maxwell que, finalmente formuló la teoría. Einstein, al igual que Faraday, había descubierto los principios físicos correctos, pero carecía de un formulismo matemático riguroso suficientemente potente para expresarlo (claro que Faraday no era matemático y Einstein si lo era).  Carecía de una versión de los campos de Faraday para la Gravedad.  Irónicamente, Riemann tenía el aparato matemático, pero no el principio físico guía, al contrario que Einstein.  Así que, finalmente, fue Einstein el que pudo formular la teoría con las matemáticas de Riemann.

Einstein, como todos sabeis, se apoyo en otros muchos para formular sus teorías relativistas desde Mach, Maxwell y Lorentz hasta el propio Riemann. Sin embargo, fue él quien tuvo la chispa de ingenio de ver con claridad el significado de todos aquellos postulados que andaban sueltos por el mundo de la física y supo reunirlos en una teoría coherente y unificadora que, a lo largo del tiempo, ha sido demostrada de manera más que suficiente y aclaratoria.

La obra de Einstein está revestida de grandes éxitos en el campo de la Física y de la Cosmología, y, hasta tal punto es así que, el Cosmos sería otro sin la teoría de la Relatividad General de cuyas ecuaciones -arriba reseñadas- aún se están obteniendo consecuencias mucho más allá de los agujeros negros.

También esa simple ecuación que, se está convirtiendo en uno de los mayores logros de la Humanidad, por su sencilles y simpleza en contraposición con su profundidad y complejidad en cuanto a los mensajes que encierra, como por ejemplo, el hecho de que dichas ecuaciones de campo de la teoría de Einstein emerjan como por encanto desde las profundidades de la Teoría de cuerdas. Sin que nadie las llame, allí aparecen.

¿Qué tienen estas ecuaciones? ¿Qué mensajes nos envía? ¿Qué secretos encierran? y, ¿cómo debemos entender eso que llamamos espacio-tiempo? Nuestra imaginación no descansa y viaja hasta la complejidad de del Tiempo y del Espacio, del Pasado y del Futuro mientras que vivimos una realidad en el Presente.

Las teorías sobre la estructura del espacio-tiempo han sido objeto de muchas discusiones entre los físicos y los filósofos a lo largo de la historia, y de ninguna manera podemos decir que se haya llegado a una solución definitiva. En los últimos siglos las posturas se han polarizado en dos teorías. Por una parte el substantivismo, que considera al espacio-tiempo como una entidad independiente de las cosas materiales, prescindiendo de que existan o no, y por otra parte, el relacionalismo, que reduce la naturaleza del espacio-tiempo al conjunto de relaciones entre los corpúsculos o partículas elementales de las que está compuesta la materia y que, por consiguiente, no puede existir sin estos corpúsculos materiales. Es decir, sin materia no habría espacio-tiempo.

El defensor más acérrimo de la teoría relacional fue Leibniz, en contra de Newton, que propugnaba el substantivismo. Según Leibniz, el espacio no era más que el conjunto de relaciones entre los puntos (mónadas) materiales que existen simultáneamente, mientras que el tiempo no era más que el conjunto de relaciones entre puntos que no existen simultáneamente y uno es el origen (la causa) del otro.

   ¡Siempre queriendo atrapar cosas!

Para Newton, en cambio, el espacio es un gran contenedor donde se mueven los cuerpos materiales, y el tiempo es un flujo universal que se mueve en una dirección independientemente de que hubiese objetos externos. Los dos filósofos eran coetáneos y Leibniz se enfrentó a Neweton por la autoria de algunas ideas que generaron una gran polécimca en su tiempo y que, aún hoy,  se siguen debatiendo.

Las discusiones entre los substantivistas y los relacionalistas se han continuado hasta nuestros días, en que nuevos problemas han aumentado el debate, como el descubrimiento por Gödel de unas soluciones de las ecuaciones de Einstein que implican un tiempo cíclico, o la propuesta de Putnam y Rietdijk, que defiende un mundo de cuatro dimensiones estático, en vez de apoyar la teoría de que el Universo es una sucesión dinámica de mundos tridimensionales.

Las recientes discusiones han ayudado a reflexionar a un grupo de filósofos y físicos, que se han decidido a crear una plataforma internacional para estudiar los temas del espacio-tiempo, y así nació la Spacetime Society, dirigida por el Profesor Veselin Petkov de la Universidad Concordia de Montreal para involucrar a físicos y filósofos en la persecución del saber sobre ese espaciotiempo misterioso.

 

 

El tipo de vórtice que existe alrededor de la Tierra existe magnificado por todo el universo, alrededor de estrellas de neutrones, agujeros negros  y núcleos galácticos creando distintas distorsiones en la fábrica del espaciotiempo.  Los agujeros negros en realidad están girando y se comportan como inmensos giroscopios que crean a su alrededor misteriosos lugares en los que el espaciotiempo dejan de existir y se produce una densidad y curvatura “infinitas”, como si de otro “mundo” se tratara, nadie sabe lo que hay en el interior de los agujeros negros y en qué se ha convertido la materia que sirvió para conformar tan exóticos objetos.

Viejo es el debate sobre si estos vortices generados por los efectos de la materia generadora de la gravedad pueden servir como agujeros de gusano para viajar en el tiempo. Precariamente podemos postular la posibilidad de que los vórtices pueden funcionar como “stargates” a diferentes escalas ya que ocurren en toda la naturaleza. El efecto de la materia y la energía doblando el espacio para crear una puerta hiperdimensional dentro de la geometría euclidiana que rige nuestras vidas cotidianas.  Aunque en el universo de Einstein esto está limitado por la imposibilidad de superar la velocidad de la luz, el mismo Eisntein dijo alguna vez que “la distinición entre el pasado, el presente y el futuro es solamente un ilusión  muy persistente”..

emilio silvera


¡Los pensamientos! ¡La Naturaleza!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y los pensamientos    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                  Parece que se llevan bien

El psicólogo Eric Ericsson llegó a proponer una teoría de estadios psicológicos del desarrollo. Un conflicto fundamental caracteriza cada fase. Si este conflicto no queda resuelto, puede enconarse e incluso provocar una regresión a un periodo anterior. Análogamente, el psicólogo Jean Piaget demostró que el desarrollo mental de la primera infancia tampoco es un desarrollo continuo de aprendizaje, sino que está realmente caracterizado por estadios discontinuos en la capacidad de conceptualización de un niño. En un mes, un niño puede dejar de buscar una pelota una vez que ha rodado fuera de su campo de visión, sin comprender que la pelota existe aunque no la vea. Al mes siguiente, esto resultará obvio para el niño.

Quinteto de Stephan

 

Los precesos siguen, las cosas cambian, el Tiempo inexorable transcurre, si hay vida vendrá la muerte, lo que es hoy mañana no será.

Esta es la esencia de la dialéctica. Según esta filosofía, todos los objetos (personas, gases, estrellas, el propio universo) pasan por una serie de estadios. Cada estadio está caracterizado por un conflicto entre dos fuerzas opuestas. La naturaleza de dicho conflicto determina, de hecho, la naturaleza del estadio. Cuando el conflicto se resuelve, el objeto pasa a un objetivo o estadio superior, llamado síntesis, donde empieza una nueva contradicción, y el proceso pasa de nuevo a un nivel superior.

Los filósofos llaman a esto transición de la “cantidad” a la “cualidad”.  Pequeños cambios cuantitativos se acumulan hasta que, eventualmente, se produce una ruptura cualitativa con el pasado. Esta teoría se aplica también a las sociedades o culturas. Las tensiones en una sociedad pueden crecer espectacularmente, como la hicieron en Francia a finales del siglo XVIII. Los campesinos se enfrenaban al hambre, se produjeron motines espontáneos y la aristocracia se retiró a sus fortalezas. Cuando las tensiones alcanzaron su punto de ruptura, ocurrió una transición de fase de lo cuantitativo a lo cualitativo: los campesinos tomaron las armas, tomaron París y asaltaron la Bastilla.

Las transiciones de fases pueden ser también asuntos bastante explosivos. Por ejemplo, pensemos en un río que ha sido represado. Tras la presa se forma rápidamente un embalse con agua a enorme presión. Puesto que es inestable, el embalse está en el falso vacío. El agua preferiría estar en su verdadero vacío, significando esto que preferiría reventar la presa y correr aguas abajo, hacia un estado de menor energía. Así pues, una transición de fase implicaría un estallido de la presa, que tendría consecuencias desastrosas.

También podría poner aquí el ejemplo más explosivo de una bomba atómica, donde el falso vacío corresponde al núcleo inestable de uranio donde residen atrapadas enormes energías explosivas que son un millón de veces más poderosas, para masas iguales, que para un explosivo químico.  De vez en cuando, el núcleo pasa por efecto túnel a un estado más bajo, lo que significa que el núcleo se rompe espontáneamente. Esto se denomina desintegración radiactiva. Sin embargo, disparando neutrones contra los núcleos de uranio, es posible liberar de golpe esta energía encerrada según la formula de Einstein E = mc2. Por supuesto, dicha liberación es una explosión atómica; ¡menuda transición de fase! De nefasto recuerdo por cierto.

Las transiciones de fase no son nada nuevo. Trasladémoslo a nuestras propias vidas. En un libro llamado Pasajes, el autor, Gail Sheehy, destaca que la vida no es un flujo continuo de experiencias, como parece, sino que realmente pasa por varios estadios, caracterizados por conflictos específicos que debemos resolver y por objetivos que debemos cumplir.

Fábricas de estrellas en el Universo lejano

Los contornos recubiertos muestran la estructura de la galaxia al ser reconstruida desde las observaciones hechas bajo el fenómeno de lente gravitatorio con el radiotelescopio Submillimeter Array. La formación de nuevas estrellas en el Universo es imparable y, la materia más sencilla se constituye en una estructura que la transformará en más compleja, más activa, más dispuesta para que, la vida, también pueda surgir en mundos ignotos situados muy lejos del nuestro.

   Sí, todo cambia y nada permanece: transiciones de fases hacia la complejidad

Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría. Al premio Nobel Abdus Salam le gusta la ilustración siguiente: consideremos una mesa de banquete circular, donde todos los comensales están sentados con una copa de champán a cada lado. Aquí existe simetría. Mirando la mesa del banquete reflejada en un espejo, vemos lo mismo: cada comensal sentado en torno a la mesa, con copas de champán a cada lado.  Asimismo, podemos girar la mesa de banquete circular y la disposición sigue siendo la misma.

Rompamos ahora la simetría. Supongamos ahora que el primer comensal toma la copa que hay a su derecha. Siguiendo la pauta, todos los demás comensales tomaran la copa de champán de su derecha. Nótese que la imagen de la mesa del banquete vista en el espejo produce la situación opuesta.  Cada comensal ha tomado la copa izquierda. De este modo, la simetría izquierda-derecha se ha roto.

El niño del espejo le da a su amiguito reflejado la mano derecha y aquel, le saluda, con la izquierda. ¡La simetría especular…! Así pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío.

Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional original era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones. Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron las primeras quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.  Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

Cadena pp

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar hidrógeno en helio, de los elementos más ligeros a los más pesados.  Avanza creando en el horno termonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma explosiva de  una supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

Puesto que el peso promedio de los protones en los productos de fisión, como el cesio y el kriptón, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante la conocida fórmula E = mc2. Esta es la fuente de energía que también subyace en la bomba atómica. Es decir, convertir materia en energía.

Así pues, la curva de energía de enlace no sólo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie humana, se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.

Cuando alguien oye por vez primera la historia de la vida de las estrellas, generalmente (lo sé por experiencia), no dice nada, pero su rostro refleja escepticismo. ¿Cómo puede vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución y poder contarlo.

Pero no parece que todo evolucione… algunas cosas siempre siguen igual… ¡A pesar de todo!

Pero volviendo a las cosas de la Naturaleza y de la larga vida de las estrellas, sí, tenemos los medios técnicos y científicos para saber la edad que tiene, por ejemplo, el Sol. Nuestro Sol, la estrella alrededor de la que giran todos los planetas de nuestro Sistema Solar, la estrella más cercana a la Tierra (150 millones de Km =  1 UA), con un diámetro de 1.392.530 Km, tiene una edad de 4.500 millones de años, y, como todo en el Universo, su discurrir la va desgantando, evoluciona hacia su imparable destino como gigante roja primero y enana blanca después.

              Una gigante roja engulle a un planeta cercano

Cuando ese momento llegue, ¿dónde estaremos? Pues nosotros, si es que estamos, contemplaremos el acontecimiento desde otros mundos. La Humanidad habrá dado el gran salto hacia las estrellas y, colonizando otros planetas se habrá extendido por regiones lejanas de la Galaxia.

El Universo siempre nos pareció inmenso, y, al principio, aquellos que empezaron a preguntarse cómo sería, lo imaginaron como una esfera cristalina que dentro contenía unos pocos mundos y algunas estrellas, hoy, hemos llegado a saber un poco más sobre él. Sin embargo, dentro de unos cuantos siglos, los que detrás de nosotros llegaran, hablarán de universos en plural, y, cuando pasen algunos eones, estaremos de visita de un universo a otro como ahora vamos de una ciudad a otra.

¡Quién pudiera estar allí!

¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco!

 

 

 

De lo grande a lo pequeño que, es lo que hace lo grande

 

Según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros.

Esta masa la conocemos con el nombre demasa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que la es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único número de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!).

Esto significa que tratamos de localizar una partícula con la precisión de una longitud de Planck, las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck, y los efectos de la fuerza gravitatoria entre partículas, así, sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.

Lo cierto es que, esas unidades tan pequeñas, tan lejanas en las distancias más allá de los átomos, son las que marcan nuestros límites, los límites de nuestras teorías actuales que, mientras que no puedan llegar a esas distancias… No podrán avanzar en el conocimiento de la Naturaleza y, tampoco, como es natural, en la teoría de supercuerdas o en poder saber, lo que pasó en el primer momento del supuesto big bang, hasta esos lugares, nunca hemos podido llegar.

emilio silvera