domingo, 09 de marzo del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Y conseguimos saber de qué estaban hechas las estrellas!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En alguna ocasión os he contado:

“El enigma que representaba en la antigüedad de qué estaban hechas las estrellas y otros objetos celestes, se pudo resolver finalmente no mediante el telescopio o la cámara solamente, sino combinando ambos con el espectroscopio, que revelaría de qué están hechas las estrellas y las nebulosas, algo que el filósofo Auguste Comte, todavía en 1844, citaba como ejemplo de un conocimiento que nunca llegaría a tener la mente humana.”

                                                 Imágen Messier 4 (NGC 6121)

Augusto Comte, pensador francé que decía:

“La Humanidad nunca llegará a conocer de qué estaban hechas las estrellas. Lo mismo que a él, le ocurrió, muchos años antes y en otro ámbito, al Presidente de la Real Society de Londres, cuando ante una gran audiencia dijo: “Nunca nada más pesado que el aire podrá volar” y, el hombre se llenó de gloria cuando, poco tiempo después, remontó el vuelo el primer avión de los hermanos  wright.”

La prudencia, a la vista de las muchas anécdotas que como las anteriores podríamos contar, nos aconseja no negar nada y dar la posibilidad, por increíble que nos parezca, a cualquier acontecimiento futuro que ahora nos parezca imposible y que, con los avances de la Ciencia, mañana podría ser posible.

La figura de arriba representa el espectro de la luz solar (ahí están presentes elementos como el potasio, sodio, rubidio… etc. Pero Wollaston dejó su experimento de lado, y la elevación de la espectroscopia al rango de ciencia exacta quedó para un pobre adolescente enjuto con una tos persistente, que, cuando Wollaston hizo su descubrimiento, estaba en un hospital recuperándose de heridas sufridas en el derrumbe de un taller de óptica donde trabajaba en los suburbios de Munich. Su nombre era Joseph Frunhoufer, y su suerte estaba por mejorar.

Sigamos con la historia de cómo se desarrolló la espestroscopia y cuando comenzó esa aventura allá por el año 1666, cuando Newton observó que la luz blanca del Sol, al pasar un prisma, produce un arcoíris de colores. En 1802, el físico inglés William Wollaston descubrió que si colocaba una fina ranura frente al prisma, aparecían en el espectro una seríe de rayas oscuras paralelas, como las grietas entre las teclas del piano. Sin embargo, pronto dejó de lado aquello y no profundizó en el fenómeno.

Ya os hablé aquí de aquel escuálido muchcho, Joseph von Frunhofer, pobre adolescente enjuto con una tos persistente, que, cuando Wollaston hizo su descubrimiento, estaba en un hospital recuperándose de heridas sufridas en el derrumbe de un taller de óptica donde trabajaba en los suburbios de Munich. El acontecimiento haría que su suerte comenzara a mejorar.

Joseph von Fraunhofer Biografie - Fraunhofer präsentiert 1814 das Spektroskop

Joseph creció al abrigo de un mentor que le apoyó en todo y se hizo mayor. Fraunhofer tenía instinto para lo esencial, y sus intensas investigaciones sobre las características básicas de diversos tipos de vidrios pronto le hicieron ganarse la fama de ser el primer fabricante de lentes para los mejores telescopios del mundo.

“Vi con el telescopio -escribió- un número casi incontables de rayas verticales fuertes y débiles, más oscuras que el resto de la imagen de color. Algunas parecían totalmente negras.”

Detectó centenares de tales rayas en el espectro del Sol, y halló regularidades idénticas en los espectros de la Luna y los planetas, como era de esperar, pues estos cuerpos brillan por la luz solar que reflejan. Pero cuando dirigía su telescopio a otras estrellas, sus lineas espectrales parecían  muy diferentes. La significación de esa diferencia era un misterio.

Esta historia ya os la conté  el pasado día 3 de este mismo mes de Octubre y, todos sabéis ya que Fraunhofer empezó usando las líneas espectrales como fuentes de luz monocromática para sus experimentos dirigidos a mejorar la corrección cromática de sus lentes, pero pronto se sintió fascinado por la lúneas mismas.

Como Tycho o Copérnico, Fraunhofer también tiene su cráter en la Luna. Fraunhoufer llegó a ser un personaje muy conocido y reconocido pero, su delicada salud acabó con su vida el día 7 de junio de 1826, a los treinta y nueve años, de tuberculosis, dejando como legado las misteriosas lineas de Fraunhofer. En 1849, León Foucault en Paris y W. A. Miller en Londres hallaron lineas brillantes que coincidían con las lineas oscuras de Fraunhofer. Hoy unas y otras son conocidas, respectivamente como lineas de emisión y lineas de absorción, y tienen en la espectroscopia un papel tan importante como la de los fósiles en la geología, pues dan información sobre la temperatura, la composición y los movimientos de las nebulosas gaseosas y las estrellas que, a pesar de sus inmensas lejanías, nos pueden contar de qué están conformadas gracias a las líneas de Fraunhofer.

                                  Gustav Kirchhoff                                                                      Robert Bunsen

En los años comprendidos entre 1855 y 1863, los dísicos Gustav Kirchhoff y Robert Bunsen (el inventor del mechero Bunsen) demostraron que los diversos elementos químicos producen las distintas series de líneas de Fraunhofer. Una noche vieron,  desde la ventana de su laboratorio en Heidelberg, un incendio que hacía estragos en la ciudad portuaria de Mannheim, a dieciseis cilómetros al oeste.

Usando su espestroscopio, detectaron las reveladoras líneas del bario y del estroncio en las llamas. Esto hizo preguntarse a Bunsen si podrían detectar elementos químicos en el espectro del Sol. “Pero -añadió- la gente pensaría que estamos locos en pensar tal cosa.” Sin embargo, Kirchhoff era lo bastante loco como para intentarlo, y en 1861 había identificado sodio, calcio, magnesio, hierro, cromo, niquel, bario, cobre y cinc en el Sol. Se había hallado un nexo entre la física de la Tierra y la de las estrellas, y se abrió un camino hacia las nuevas ciencias de la espectroscopia y la astrofísica.

                 Willian Huggins

En Londresm un rico astrónomo aficionado llamado William Huggins se enteró del hallazgo de Kirchhoff  y Bunsen de que las líneas de Frunhofer eran generadas por elementos químicos conocidos del Sol, y comprendió de inmediato que sus métodos podían ser aplicados a las estrellas y las Nebulosas.

“Esta noticia es para mí como el descubrimiento de un manantial en una tierra seca y agostada”

Eso escribió  Huggins t, de inmediato, adaptó un espectroscopio al telescopio Clark de su laboratorio privado, en Upper Tulse Hill, Londres. Estudiando cuidadosamente cada espectro hasta que pudo dar sentido a sus numerosas líneas superpuestas, logró identificar hierro, sodio, calcio, magnesio y bismuto en los espectros de las estrellas brillantes Aldebarán y Betelgeuse. Fue la primera prueba concluyente de quen otras estrellas están compuestas de las mismas sustancias que encontramos en todo el Sistema Solar.

File:Artist Concept Planetary System.jpg

Así, sabemos que los materiales y sustancias de las estrellas del cielo, son las mismas que conforman nuestro Sistema Solar que, al fin y al cabo, nació de una Nube estelar Nebulosa de la que también, nacieron las estrellas que nos rodean y,. siendo así, era lógico pensar que todo, estaba hecho de la misma cosa como se vino a confirmar.

Con creciente excitación, Huggins dirigió su telescopio hacia una Nebulosa. Su diario del año 1864 registra la sensación “de excitada incertidumbre, mezclada con algún temor, con que, después de unos momentos de vacilación, puese mis ojos en el espectroscopio. ¿No estaba por descubrir un lugar secreto de la Creación?. No se decepcionó:

Miré en el espestroscopio. ¡No había ningún espectro como el que yo esperaba! ¡Sólo una única línea brillante!… El enigma de las Nebulosas estaba resuelto. La respuesta, que no había llegado en la luz misma, decía: no hay una agrupación de estrellas, sino un gas luminoso. Las estrellas como nuestro nuestro Sol y como las estrellas más brillantes darían un espectro diferente; la luz de esa Nebulosa había sido emitida por un gas luminoso.

Puesto que esa primera Nebulosa que observó Huggins era gaeosa, llegó a la errónea conclusión de que todas las nebulosas, incluídas las elípticas y las espirales, eran gaseosas y nunguna estaba compuesta por estrellas.

Esta es una de las Nebulosas que más me gustan, en ella están represerntadas todas las cosas que en ellas están presentes. Polvo y Gas, estrellas nuevas que radiantes en el ultravioleta ionizan el material circunsdante y, las fuerzas que con todo eso interaccionan para que todo cambie y se transforme. Ahí ya están las moléculas de la vida.

Pero la vida pocas veces es simple, y las pruebas engañosas a favor de la hipótesis nebular  continuaron acumulándose. Se hizo el mapa de las posiciones de cientos de nebulosas espirales y se halló que eran más numerosas en las partes del cielo que están muy distantes de la Vía Láctea, que “evitaban” a la Vía Láctea, en la jerga astronómica. El efecto de evitación parecía indicar que las nebulosas espirales estaban asociadas a nuestra galaxia. (En realidad, la evitación resulta del hecho de que las nubes oscuras que hay en eplano de nuestra galaxia oscurecen nuestra visión de las otras galaxias, de modo que vemos generalmente las que están lejos del plano galáctico.) La hiopótesis nebular también se fortaleció en el campo teórico, cuando el astrofísico James Jeans demostró, con considerable rigor matemático, que una nube de gas que se contrae tiende a adptar la forma de un disco, muy similar al de la nebulosa espiral. Jeans hasta logró que su modelo generase brazos espirales como los que se ven en las astrofotografías.

                           Las galaxias lejanas que antes se tomaban por Nebulosas

En ese momento, la hipótesis nebular tenía tánto éxito que se apoderó de los astrónomos un síndrome de conformismo con la corriente de moda y, extrapolando todo aquello en el tiempo, ahora pasa lo mismo con la dichosa “materia oscura” que, veremos si no termina todo como aquella historia de las Nebulosas que, finalmente resultaron ser las galaxias.

http://espacioteca.files.wordpress.com/2008/07/materia.jpg

Han llegado a decir (sin fundamento alguno) que ahñi arriba, en la imagen, están juntas la materia bariónica y la llamada oscura y la muestran en distitntos colores. La realidad es que, estamos tan lejos de saber si en realidad existe algo como la materia oscura como de si podremos, dentro de algunos años, acceder a la energía de Pklanck para poder llegar hasta las cuerdas vibrantes.

¡Menos mal!, amigos míos, que la Ciencia tiene un mecanismo autocorrector, y a principios del siglo había comenzado a afirmarse. Las primeras grietas en la fachada de la hipótesis nebular aparecieron en el campo teórico, cuando se descubrió un efecto fatal en la teoría de Jeans de cómo se había condensado el sistema solar. De ser correctas la hipótesis, calcularon los matemáticos, el Sol debía haber conservado la mayor parte del momento angular del sistema solar y rotar muy rápidamente; en cambio, el “día” solar dura veintiseis lentos días en el ecuador del Sol, y los planetas tienen el 98 por 100 del momento angular del Sistema Solar. Los datos de observación también empezaron a volverse contra la hipótesis nebular. Huggins obtuvo un espectro de la Nebulosa de Andrómeda en 1888, pero la ahlló difícil de interpretar. Nueve años más tarde, Julius Schteiner publicó en Alemania un espectro de la Nebulosa de Andrómeda, y señaló que el espectro no era gaseoso sino estelar. indudablemente, al menos algunas nebuliosas espirales estaban constituidas por estrellas.

La galaxia Andrómeda | NASA

Aquello sería el principio del fin para que las galaxias se pudieran confundir con Nebulosas y, tal descubrimiento de enorme importancia, se lo debemos a Fraunhofer, aquel muchacho que un día, nos habló de las lineas espectrales que delatan las distancias sustancias y elementos del que están hechas las estrellas y los mundos. Espero que, de la misma manera, podamos seguir avanzando para poder rechazar algunas teorías actuales que nos llevan a una gran confusión hablñándonos de una clase de materia inexistente y de cuya existencia real nadie ha podido dar ni un sólo dato hasta el momento y, sin embargo, está ocupando una gran parte del tiempo de físicos y astronómos que, al no saber, continúan curiosos investigando sobre la certeza de ese exceso de materia que “dicen” tiene el Universo pero quen no podemos ver.

http://dopaminabienrepartida.files.wordpress.com/2012/03/istock_000008258171xsmall1.jpg

No, no trato de decir que para creer en la existencia de algo lo tengamos que tocar ineludiblemente pero, en Ciencia, amigos míos, para aseverar una cosa, para aseguar algo con rotundidad, no podemos apouarnos sólo en la intuición o en la teoría, la ciencia exige algo más: Lo que no está comprobado…¡No existe! Y, desde luego, así debe ser para evitar confusiones que nos atrasen decenas de años ene l camino del saber sobre los misterios de la Naturaleza.

emilio silvera

En el Centro de la Galaxia

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Descubren extrañas partículas que parecen emanadas desde el Centro Galáctico están bombardeando la Tierra. Desde el Departamento de Física de la Universidad de California se confirma que poderosos rayos Gamma están llegando  a nuestro planeta desde el mismo centro de la Galaxia.

Existen argumentos más que fundados para creer que, en el Centro de nuestra Galaxia, la Vía Láctea, habita un enorme Agujero Negro que según las observaciones y  medidicones efectuadas, puede tener 4 millones de veces la masa del Sol. Así lo avalan los 16 años de investigación y estudio de 28 estrellas allí situadas y, sobre todo, el comportamiento de la estrella designada con el nombre S2 de cuyo comportamiento al orbitar el Centro Galáctico, se han deducido estos números increibles. Se utilizaron telescopios y cámaras muy sofisticadas que hicieron el siguimiento de S2, y, cuando estaba a 1 dia-luz del Centro, pudieron comprobar de manera muy convincente los resultados de los efectos Gravitatorios que se produjeron en las cercanias de influencia del Agujero Negro Supermasivo que, aunque invisible para nuestros aparatos, no lo es en cuanto a la Gravedad que genera se refiere.

Es un verdadero triunfo técnico el poder conseguir, desde una distancia de 27 000 a.l., el poder conseguir comprobaciones como esta que nos dan las respuestas esperadas de ese lugar que hasta hace relativamente muy poco tiempo nos era totalmente misterioso.

En el centro de la Vía Láctea

                           Credit: ESO , Stefan Gillessen ( MPE ) En el Centro de la Galaxia


La Imagen nos muestra la acumulación de estrellas que existe en un radio de tres años-luz del centro de la Vía Láctea. Estamos contemplando una región altamente activa y donde están presentes enormes energías y ocurren sucesos que por nuestras latitudes no podemos contemplar como, por ejemplo,  fuertes emisiones de rayos X y Gamma como consecuencia del material que cae dentro del Agujero Negro y se produce la radiación Hawking.

En algunos lugares he podido leer que algo grande está pasando en aquel lugar, algo que los Astrónomos no alcanzan (aún) a explicar. El Fermi, el Telescopio Espacial de Rayos Gamma de la NASA que, pudo descubrir allí dos gigantes burbujas de energía en erupción con la fuente en el mismo Centro de la Galaxia. ¿Qué fuerzas se están generando allí? ¿Que vientos estelares no se producirán para que surjan esas burbujas?

El origen de las burbujas es,  de momento misterrioso, y el Jefe del equipo que estudia el fenómeno ha declarado que las burbujas se extienden a 25.000 años-luz hacia arriba y abajo de cada lado de la Galaxia y contiene energías equivalentes a 100.000 explosiones de supernovas.

 

 

 

Los efectos que pueden provocar las supernovas, no se limitan a su entorno cercano y, a muchos liles de millones de kilómetros del lugar de la explosión, se pueden llegar a sentir y sufrir sus efectos devastadores.

Se piensa que dichas burbujas energéticas han podido surgir como consecuencia de una ola de nacimientos de estrellas jovenes y masivas de intensa radiación ultravioleta. Otra opción que barajan los expertos es que pueden tener su origen en un erupto gigantesco del Agujero Negro super masivo ubicado en el mismo Centro Galáctico.

Está claro, como declaró algún miembro del equipo que estudio el acontecimiento que, el Universo, “nos tiene reservadas muchas sorpresas” que no podemos ni imaginar.

Como siempre suele ocurrir en estos casos, cuando no tenemos la certeza de dar una explicación coherente, algunos acuden a la materia oscura para tratar de explicar lo que, de momento, no tiene explicación. Nuestra Galaxia, la Vía Láctea, ha dado lugar a escritos que podrían llenar una gran Biblioteca y, desde los tiempos más remotos, sabios que gustaban de la contemplación de los cielos, dejaron sus impresiones escritas de una u otra manera. Mirando por ahí encuentro el párrafo siguiente:

“La Vía Láctea ha fascinado a muchos más. Se han tejido mitos y leyendas a su alrededor.  Los antiguos la conocieron por muchos nombres.  Anaxágoras y Aratos ( 500 a. de C. ) le llamaban To Gala : La Rueda Brillante  ¿Rueda?  ¿De dónde? A mí me pareció una sola franja.  Resulta que esa franja continuaba por debajo de mis pies (del otro lado de la Tierra) hasta cerrarse. Esa parte invisible para mí esa noche aparecería en las madrugadas de otoño.  ¡Vaya que los primeros astrónomos eran buenos observadores!  Y también tenían imaginación, una imaginación a veces predictiva: Demócrito, el padre del átomo, sugirió que La Vía Láctea estaba formada por una multitud de estrellas … ¡En el año 430 a. de C.! Eratóstenes, quien midió la circunferencia de la Tierra la llamó  “El círculo de la Galaxia” ó “ Círculo Galáctico “ ¡Wow! ¡Que avanzados! ¿Cómo sabían que la Vía Láctea era una Galaxia? No lo sabían.  Su interpretación del término “Galaxia”  era distinto a la actual.  Galaxia sólo había una y se refería a la lechosa luz que cruzaba  el cielo nocturno ( Nótese la similitud entre los términos Lácteo y Galaxia ) Hoy, cuando escuchamos la palabra “Galaxia” nos imaginamos un gran remolino de estrellas, nubes y polvo, con un centro brillante.  En aquel entonces “Galaxia” no era otra cosa que el nombre propio de nuestra Vía Láctea.  En al año 175 a. de C. Hiparco la llamó simplemente “La Galaxia”. Aún hoy, cuando vemos la palabra Galaxia -con mayúscula- sabemos que se refiere a la nuestra.

Via_Lactea.jpg

En la parte interios del Brazo de Orión (señalada con la línea) está el Sistema Solar, a 27.000 años-luz del Centro Galáctico en una región bastente tranquila que nos permite contemplar (con nuestros ingenios) lo que que ocurre en otras regiones lejanas y las fuerzas desatadas que azotan aquellos lugares.

Otros veían la Galaxia como un gran río. Le llamaban “El Río del Cielo”.  Los árabes la conocían simplemente como “El Río”, los hebreos “El Río de Luz” Job la llamaba “La Serpiente Tortuosa”. Los chinos y japoneses veían también un río.  Los chinos la llamaban le llamaron “Tien Ho” es decir “El Río Celestial o Plateado”, y tenían una creencia muy singular (A mí me parece simpática).  Ellos decían que cuando los peces del río (las estrellas) veían aproximarse el anzuelo (una delgada Luna creciente) se ocultaban para no ser atrapados.  Las estrellas y la Vía Láctea no son  compatibles con la Luna.  En realidad, sucede que la resplandeciente Luna supera y opaca la débil luz de nuestra Galaxia.

Los armenios y los sirios le llamaban “El gran Vendaje”.  Los romanos (Plinio), al estilo de Erastótenes, le llamaban el “Círculo Lácteo” además de “El Cinturón Celestial” “Vía Celeste Regia”  y Vía Láctea”, como hoy la conocemos.

        Y la leche de Juno formá la Vía Láctea

¿De dónde salió tanta leche? Cuenta una leyenda que cuando el pequeño Hércules era amamantado por su madre,  mordió uno de sus pechos con tanta fuerza que ella terminó por derramar su leche por el cielo.(¡Que productiva!) De ahí a que Vía Láctea signifique “Camino de Leche” ó “Milky Way”  en inglés.  Además de que el significado se conserva en inglés y español, sucede lo mismo en francés, portugués, italiano, danés, ruso, alemán, etc.

Los indios norteamericanos y algunos pueblos de Noruega decían que la Vía Láctea era “El camino de los Fantasmas” por donde ascendían los espíritus de héroes y guerreros.  Los espíritus se detenían a descansar de vez en cuando y encendían fogatas, que son las estrellas más brillantes.

Los esquimales y algunos pueblos africanos veían en ella “El camino de las cenizas” que se elevaba sobre una gran pira.

En México nuestros abuelos o en los pueblitos la conocen  como “El Camino de San Lorenzo” o “El Camino de Santiago”.

Muchas son las Rutas que nos pueden llevar a Santiago, allí los peregrinos ven algo que les llena de paz. Todos los que han ido dicen que la experiencia es única y, así, llegan de todas partes del mundo. Pero vamos a lo que nos traemos entre manos.

Lo cierto es que, desde siempre, nos fascinó la inmensidad del cielo y de los objetos que lo pueblan. Pero, el enigma que más nos apasiona y la pregunta más frecuente que nos solemos hacer es, ¿estaremos sólos en tan vasto Universo? Para contestar a eso, mejor nos remitimos a lo que ya está más que estudiado:

“En 1961 el radioastrónomo Frank Drake, presidente del SETI (Instituto para la Búsqueda de Inteligencia Extra-Terrestre), concibió una fórmula para calcular la cantidad de civilizaciones extraterrestres en nuestra galaxia.

Bueno, la Galaxia es grande, el Universo mucho más, y, si en nuestra pequeña Tierra está presente la vida Inteligente, ¿qué puede impedir que en otros mundos similares también lo esté?

La fórmula era la siguiente: N = R * fp * ne * fl * fi * fc * L

Donde

  • R es el número de estrellas similares al Sol que se generan al año en la Vía Láctea
  • fp es la fracción de estas estrellas que tienen planetas en su órbita.
  • ne es la fracción de planetas a la distancia adecuada del Sol
  • fl es la fracción de esos planetas en los que se ha desarrollado la vida
  • fi es la fracción de esos planetas en los que se ha desarrollado la inteligencia
  • fc es la fracción de ellos que ha desarrollado una tecnología e intenta comunicarse
  • L es el número de años que puede existir una civilización inteligente.

La fórmula en sí es una fabulosa demostración de ingenio por parte de Frank Drake, por desgracia algunas de estas variables eran desconocidas en su época, lo siguen siendo y seguramente lo serán durante algún tiempo más.

En Astronomía todavía se trabaja mucho por aproximación, y se dice, por ejemplo: “… está situada entre unos 2. y 5 años-luz de nosotros…” Como si unos pocos años luz más o menos no tuvieran importancia. Con esto quiero decir que no todos nuestros aparatos nos dicen lo que queremos saber, necesitamos nuevas tecnologías más precisas, más fiables.

Por ejemplo, sabemos más o menos cuantas estrellas hay en la Vía Láctea, y sabemos más o menos cuantos años hace que se formó. Hemos hecho estadísticas sobre las edades de las estrellas y sabemos, más o menos a qué ritmo se han ido formando.

Pero la mayoría de los demás datos solo podemos suponerlos, y para ello solo disponemos de un único ejemplo: nuestro propio planeta.

Suponer que conocemos las reglas y las probabilidades de un hecho que solo ha podido ser observado una única vez es algo pretencioso y con toda seguridad equivocado. El método científico exige que podamos observar un fenómeno numerosas veces y en distintas condiciones antes de intentar imaginar una ley que lo explique, por lo que mientras no conozcamos más que un único planeta con vida inteligente en todo el universo no podremos aplicar el método científico, solo podremos hacer suposiciones y elucubraciones que intenten apelar a la lógica de lo que sabemos para poder suponer unas conclusiones que, por fuerza, serán casi imposibles de verificar en mucho tiempo.

20091110193514-planetasextrasolares.elmundo.jpg

Cuando se forma una estrella deja a su alrededor unas nubes de polvo y gas que luego formarán los planetas al azar. Es como una ruleta, según su suerte sale uno u otro. Esta es la probabilidad de que se forme un planeta con vida.

No obstante podemos abordar este problema desde dos puntos de vista diferentes y ver a qué conclusiones nos lleva cada uno de estos puntos de partida.”

Bueno, una cosa está más que clara, la vida en cualquier planeta que orbita una estrella, sea o no parecida al Sol, tendrá que contar con ciertos requisitos que, iguales o parecidos a los que se dan aquí en la Tierra, posibiliten la presencia de seres vivos y, para ello, la distancia del planeta a su estrella, una atmósfera adecuada, la existencia de agua corriente, y otros elementos que, como en la Tierra, faciliten la química biológica para el surgir de la vida.

“Pero ya que estamos hablando de enigmáticos objetos galácticos con emisiones gamma, el telescopio espacial de rayos gamma INTEGRAL de la ESA, descubrió en el 2003 lo que parece ser una nueva clase de objeto astronómico. Se trata de un grueso capullo de frío gas que aloja en su interior a un sistema binario que, probablemente, incluya a u agujero negro o a una estrella de neutrones. Hasta ahora, el objeto ha seguido siendo invisible para el resto de los telescopios.

El INTEGRAL detectó al extraño objeto, el 29 de enero de 2003, y se le denominó como IGRJ16318-4848. Aunque los astrónomos no sabían su distancia, estaban seguros que se hallaba en nuestra galaxia. También, y después de estudiar y analizar las evidencias que había recogido el satélite, los investigadores concluyeron que el nuevo objeto podría ser un sistema binario que abarcaba un objeto compacto, tal como una estrella de neutrones o un agujero negro, acompañado orbitalmente por una muy masiva estrella como compañero.”

                                    Nuestro Centro Galáctico, ¡ese lugar misterioso!

Al sintonizar hacia el centro de la Vía Láctea, los radioastrónomos exploran un lugar complejo y misterioso donde está SgrA que…¡Esconde un Agujero Negro descomunal! Las observaciones astronómicas utilizando la técnica de Interferometría de muy larga base, a longitudes de onda milimétricas proporcionan una resolución angular única en Astronomía. De este modo, observando a 86 GHz se consigue una resolución angular del orden de 40 microsegundos de arco, lo que supone una resolución lineal de 1 año-luz para una fuente con un corrimiento al rojo z = 1, de 10 días-luz para una fuente con un corrimiento al rojo de z = 0,01 y de 10 minutos-luz (1 Unidad Astronómica) para una fuente situada a una distancia de 8 Kpc (1 parcec = 3,26 años-luz), la distancia de nuestro centro galáctico. Debemos resaltar que con la técnica de mm-VLBI disfrutamos de una doble ventaja: por un lado alcanzamos una resolución de decenas de microsegundos de arco, proporcionando imágenes muy detalladas de las regiones emisoras y, por otro, podemos estudiar aquellas regiones que son parcialmente opacas a longitudes de onda más larga.

Y, a todo esto, yo me pregunto: Si esas emisiones de rayos Gamma que llegan a la Tierra provienen del Centro de la Galaxia, habrá que deducir que, salieron de allí hace ahora unos 30.000 años. ¡Qué Locura!

emilio silver

¿Es viejo el Universo? ¿Cómo puede ser tan grande?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

BIOLOGÍA Y ESTRELLAS

 

¿Es viejo el universo? Todos los cáculos nos llevan a una edad de 13.700 millones de años que, comparado con el tiempo en el que nosotros hicimos acto de presencia en él, es menos que un simple parpadeo de ojos. Sin embargo, a veces nos sentimos los amos del mundo y del Universo mismo, lo que en realidad, es un simple espejismo, una ilusión que se forja en nuestras mentes que, jóvenes e inmaduras… Aún no comprenden, como son las cosas.

Cuando tenemos que operar con la edad y el tamaño del universo lo hacemos generalmente utilizando medidas de tiempo y espacio. Son tan inmensas las distancias y tan descomunal el tiempo que está presente en el ámbito del Universo que, hemos inventado unidades especiales para poder hablar de ellas sin tener que escribir cantidades tan grandes con los números y, el año-luz, la Unidad Astronómica, el Parsec, Kiloparsec o Gigaparsec son palabras que expresan medidas antropomórficas y extraordinarias que se pierden en el espacio-tiempo.

¿Por qué medir la edad del universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor del astro rey, el Sol? ¿Por qué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque queremos saber en qué lugar estamos, porque es conveniente y porque desde siempre hemos tratado de saber, lo que el universo es. Por otra parte, también en el ámbito de lo muy pequeño hemos tenido que inventar unidades que, esta vez, han querido significar lo que dice la Naturaleza y no el hombre.

Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales”; la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

http://www.aprender-mat.info/history/photos/Planck.jpeg

 

El joven Planck

Mientras que Stoney había visto en la elección de unidades prácticas una manera de cortar el nudo gordiano de la subjetividad, Planck utilizaba sus unidades especiales para sustentar una base no antropomórfica para la física y que, por consiguiente, podría describirse como “unidades naturales”.

De acuerdo con su perspectiva universal, en 1.899 Planck propuso que se construyeran unidades naturales de masa, longitud y tiempo a partir de las constantes más fundamentales de la naturaleza: la constante de gravitación G, la velocidad de la luz c y la constante de acción h, que ahora lleva el nombre de Planck. La constante de Planck determina la mínima unidad de cambio posible en que pueda alterarse la energía, y que llamó “cuanto”. Las unidades de Planck son las únicas combinaciones de dichas constantes que pueden formarse en dimensiones de masa, longitud, tiempo y temperatura. Sus valores no difieren mucho de los de Stoney que figuran en el trabajo siguiente de hoy:

 

Mp = (hc/G)½ = 5’56 × 10-5 gramos
Lp = (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032 ºKelvin

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.

La constante de Planck racionalizada (la más utilizada por los físicos), se representa por ћ que es igual a h/2π que vale del orden de 1’054589×10-34 Julios segundo.

En las unidades de Planck, una vez más, vemos un contraste entre la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos.”

    ¿Quién sabe cómo serán?

 

En sus palabras finales alude a la idea de observadores en otro lugar del universo que definen y entienden estas cantidades de la misma manera que nosotros. Lo cierto es que estas unidades, al tener su origen en la Naturaleza y no ser invenciones de los seres humanos, de la misma manera que nosotros y, posiblemente por distintos caminos, seres de otros mundos también las hallarán y serán idénticas a las nuestras. De entrada había algo muy sorprendente en las unidades de Planck, como lo había también en las de Stoney. Entrelazaban la gravedad con las constantes que gobiernan la electricidad y el magnetismo. Planck nos decía:

“La creciente distancia entre la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.”

 

Sí, Planck tenía razón, el mundo de los sentidos cada vez están más cerca de ese mundo real que perseguimos. Sabemos que nuestra realidad no es la realidad del mundo y, poco a poco, con descubrimientos como estos de las Unidades de Stoney-Planck, nos vamos acercando a la comprensión de esa Naturaleza creadora que permitió aquí nuestra presencia y que ahora, nosotros tratamos de saber.

Podemos ver que Max Planck apelaba a la existencia de constantes universales de la naturaleza como prueba de una realidad física al margen y completamente diferentes de las mentes humanas. Al respecto decía:

“Estos…números, las denominadas constantes universales son en cierto sentido los ladrillos inmutables del edificio de la física teórica. Deberíamos preguntar:

¿Cuál es el significado real de estas constantes?”

 

Claro que, nosotros, simplemente somos un misterio más de los muchos que en el Universo son. Sin embargo y a diferencias de los otros, tenemos la ventaja de ser conscientes con la facultad de pensar y, además, tenemos una insaciable curiosidad. Un fallo que a menudio tenemos ha sido caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. Y, creemos saber que…

La edad actual del universo visible ≈ 1060 tiempos de Planck

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

La masa actual del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

Densidad actual del universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

Temperatura actual del Universo visible ≈ 10-30 de la Planck

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser. Pero, pese a la enorme edad del universo en “tics” de Tiempos de Planck,  hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

http://www.acatos.es/wp-content/uploads/2009/01/planeta-estrellas.jpg

¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena.

Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo.

La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos y el vulcanismo parará su actividad al ser frenado el planeta geológicamente y carecerán de muchos de los movimientos internos que impulsan la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución. Cuando comento este tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.

La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Se desarrolló la diversidad una vez desaparecidos los grandes depredadores. Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros. Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros en comparación, llevamos aquí tres días y, desde luego, ¡la que hemos formado!

Y no podemos tener la menor duda, mientras que estemos aquí, seguiremos pretendiendo y queriendo saber sobre los secretos de la Naturaleza que, al fin y al cabo, puede ser nuestra salvación. Ya saben ustedes: ¡Saber es poder!

emilio silvera

El Universo: siempre misterioso

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

     

Los cosmólogos llaman Omega (Ω) a la cantidad de materia que existe en el Universo y, Omega Negro referido a esa materia “invisible” que algunas llaman oscura pero que, en realidad, nadie sabe lo que es ni de qué puede estar formada y, llevando la cuestión al límite, si ni siquiera existe y, los efectos observados de expansión del Universo, pueden tener su fuente en otro lugar que aún no hemos sabido comprender.

”Vermeer-astronom”
”Vermmer-geometra”
Dos cuadros de Vermeer, el astrónomo y el geómetra, pintados el mismo año. El astrónomo siempre fue un geómetra, pero las conexiones se volvieron todavía más importantes en el siglo XX, donde se descubrió que hasta la cosmología era asunto de geometría.
© Museo del Louvre, Steadelsches Kunstinstitut, respectivamente.

Hemos podido saber que el Universo es todo lo que existe, desde el más insignificante grano de arena de la más lejana playa, hasta la más inmensa galaxia perdida en los confines del esapacio-tiempo. Esa materia interactúa con las cuatro fuerzas fundamentales de la Naturaleza y, según hemos podido llegar a comprender, está compuesta por átomos que se juntan para formar moléculas y éstas, a su vez, lo hacen para formar cuerpos grandes o pequeños pero que, finalmente y sin excepción, todos están compuestos por esos átomos que formados por partículas infinitesimales, son las que conforman el mundo material que nos rodea.

A nivel cercano o local, el mundo es irregular y diverso. Si miramos para esa región nos parecerá distinta de aquella otra. Sin embargo, el Universo contemplado en una perspectiva muy amplia, resulta ser muy homogéneo y todo está distribuido de manera uniforme, de manera tal que, tal como hacen los átomos, que se juntan para formar moléculas y estas cuerpos, así se comportan las galaxias que se juntan para formar cúmulos y éstos, a su vez, supercúmulos que son las grantes estructuras del Universo que, se hallan inmersas en “infinitos” espacios vacíos. Habiendo podido observar todo eso, los cosmólogos y los astrónomos han contabilidado esa materia percibida y han podido constatar que, el Universo, tiene una densidad inferior (en cerca del 1%) a la Densidad Crítica que resulta ser, algo mayor que la que se observa.

En mi trabajo expuesto aquí en otra ocasión, insertaba ésta imagen que venía a significar  la constante de Hubble en función de la Densidad Crítica. Y, lo cierto es que, no acabamos de obtener una información fiable de la materia existente en el Universo, ya que, según parece, puede que exista una clase de materia que no podemos percibir y que, en cambio, se deja sentir en algunos aspectos que inciden en el comportamiento de Universo mismo que, como hemos llegado a comprender, es complejo y para nosotros, en algunos casos “infinito”.

Algunos números que definen nuestro Universo:

  • El número de fotones por protón
  • La razón entre densidades de Materia Oscura y Luminosa.
  • La Anisotropía de la Expansión.
  • La falta de homogeneidad del Universo.
  • La Constante Cosmológica.
  • La desviación de la expansión respecto al valor crítico.
  • Fluctuaciones de vacío y sus consecuencias.
  • ¿Otras Dimensiones?

”distribución_materia_oscura_y_materia_bariónica”

En las últimas medidas realizadas, la  Densidad crítica que es la densidad necesaria para que la curvatura del universo sea cero, ha dado el resultado siguiente:  r0 = 3H02/8pG = 1.879 h2 10-29 g/cm3, que corresponde a una densidad tan baja como la de la masa de 2 a 3 átomos de hidrógeno por metro cúbico (siempre, por supuesto obviando la incertidumbre en la constante de Hubble).

Hay una teoría que nos dice que, la Densidad crítica está referida a la densidad media de materia requerida para que la Fuerza de Gravedad detenga la expansión del nuestro Universo. Así que si la densidad es baja se expandirá para siempre, mientras que una densidad muy alta colapsará finalmente. Si tiene exactamente la densidad crítica ideal, de alrededor de 10-29 g/cm3, es descrito por el modelo de Einstein-de Sitter, que se encuentra en la línea divisoria de estos dos extremos. La densidad media de materia que puede ser observada directamente en nuestro Universono hacen que las cuentas cuadren y, se necesitaría alguna clase de materia que no podemos detectar, para que todo lo que ocurre tenga una explicación plausible.

Claro que el hecho de que la materia luminosa medida esté tan cercana al valor crítico pero, que no lo sea exactamente, puede simplemente deberse a un accidente cósmico; las cosas simplemente “resultan” de ese modo. Me cuesta mucho aceptar una explicación (y supongo que a otros también), que venga a decirnos que una masa perdida que se llama “oscura” es la que completa el cuadro. Es tentador decir que el Universo tiene, en realidad, la masa crítica, pero que de algún modo no conseguimos verla toda.

Como resultado de esta suposición, los astrónomos comenzaron a hablar de la “masa perdida” con lo que aludían a la materia que habría llenado la diferencia entre densidades observadas y crítica. Tales teorías de “masa perdida”, “invisible” o, finalmente “oscura”, nunca me ha gustado, toda vez que, hablamos y hablamos de ella, damos por supuesta su existencia sin haberla visto ni saber, exactamente qué es, y, en ese plano, parece como si la Ciencia se pasara al ámbito religioso, la fe de creer en lo que no podemos ver ni tocar y, la Ciencia, amigos míos, es otra cosa.

Comparación entre un modelo de expansión desacelerada (arriba) y uno en expansión acelerada (abajo). La esfera de referencia es proporcional al factor de escala. El universo observable aumenta proporcionalmente al tiempo. En un universo acelerado el universo observable aumenta más rápidamente que el factor de escala con lo que cada vez podemos ver mayor parte del universo. En cambio, en un universo en expansión acelerada (abajo), la escala aumenta de manera exponencial mientras el universo observable aumenta de la misma manera que en el caso anterior. La cantidad de objetos que podemos ver disminuye con el tiempo y el observador termina por quedar aislado del resto del universo.

          Conforme a lo antes dicho, la densidad media de materia está referida al hecho de distribuir de manera uniforme toda la materia contenida en las galaxias a lo largo de todo el Universo. Aunque las estrellas y los planetas son más densos que el agua (alrededor de 1 g/cm3), la densidad media cosmológica es extremadamente baja, como se dijo antes, unos 10-29 g/cm3, o 10-5 átomos/cm, ya que el Universo está formado casi exclusivamente de espacios vacíos, virtualmente vacíos, entre las Galaxias. La densidad media es la que determinará si el Universo se expandirá o no para siempre.

          En presencia de grandes masas de materia, tales como planetas, estrellas y Galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio-tiempo, eso que conocemos como Gravedad, una fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La Gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de Gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de Gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

          En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se forma alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de Gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.

          Esta fuerza es la responsable de tener cohexionado a todo el Universo, de hacer posible que existan las Galaxias, los sistemas solares y que, nosotros mismos, tengamos bien asentados los pies a la superficie de nuestro planeta, la Tierra, cuya gravedad, tira de nosotros para que así sea.

          No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable. Así que la relatividad general es la Ley que rige en los ámbitos de lo muy grande y, la mecánica cuántica, lo hace en los ámbitos de lo muy pequeño.

          La Gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El Gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

          La teoría cuántica es un ejemplo de talento que debemos al Físico alemán Max Planck (1.858-1.947) que, en el año 1.900 para explicar la emisión de radiación de cuerpo negro, de cuerpos calientes, dijo que la energía se emite en cuantos, cada uno de los cuales tiene una energía igual a hv, donde h es la constante de Planck (E=hv o ħ=h/2л) y v es la frecuencia de la radiación.

Esta teoría condujo a la teoría moderna de la interacción entre materia y radiación conocida como mecánica cuántica, que generaliza y reemplaza a la mecánica clásica y a la teoría electromagnética de Maxwell. En la teoría cuántica no relativista se supone que las partículas no son creadas ni destruidas, que se mueven despacio con respecto a la velocidad de la luz y que tienen una masa que no cambia con la velocidad. Estas suposiciones se aplican a los fenómenos atómicos y moleculares y a algunos aspectos de la física nuclear. La teoría cuántica relativista se aplica a partículas que viajan cerca de la velocidad de la luz, como por ejemplo, el fotón.

          Por haberlo mencionado antes me veo obligado a explicar brevemente el significado de “cuerpo negro”. Que está referido a un cuerpo hipotético que absorbe toda la radiación que incide sobre él. Tiene, por tanto, una absortancia y una emisividad de 1. Mientras que un auténtico cuerpo negro es un concepto imaginario, un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.

          La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la distribución de energía sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumento de temperaturas (ley de desplazamiento de Wien).

Un cuerpo negro absorbe todas las frecuencias y emite también todas las frecuencias de radiación

Finalmente, resulta que todo lo grande está hecho de cosas pequeñas (las galaxias, las estrellas y los mundos -nosotros también-, somos átomos que, a su vez, están conformados por Quarks y Leptones, partículas elementales de ínfima presencia y de “infinita” importancia) y, también todo, lo que en el Universo existe, está sometido a sus leyes y constantes que hacen posible que nuestro univewrso sea tal como lo podemos observar y, también, hace posible que existan observadores que, como nosotros mismos, nos interesamos por estos hechos para poderlos contar.

Todo esto ha podido ser comprendido con el paso del tiempo y a medida que se sumaban los descubrimientos y los pensamientos de unos y otros, y, por ejemplo, Einstein también concluyó que si un cuerpo pierde una energía L, su masa disminuye en L/c2. Einstein generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con la ecuación m=E/c2 ( o la más popular E=mc2).

Otras de las conclusiones de la teoría de Einstein en su modelo especial, está en el hecho de que para quien viaje a velocidades cercanas a c (la velocidad de la luz en el vacío), el tiempo transcurrirá más lento. Dicha afirmación también ha sido experimentalmente comprobada.

Todos estos conceptos, por nuevos y revolucionarios, no fueron aceptados por las buenas y en un primer momento, algunos físicos no estaban preparados para comprender cambios tan radicales que barrían de un plumazo, conceptos largamente arraigados.

 

http://4.bp.blogspot.com/_zBAdWxgEeX0/R87vhcBGPII/AAAAAAAACI4/MCE-Wi6d2v0/s320/galatomo.jpg

 

Y, de la misma manera, ahora mismo la Ciencia está necesitada de nuevos paradigmas, nuevas teorías que nos traigan esas nuevas reglas con las que poder vislumbrar nuevos caminos que vayan mucho más allá de lo que lo ha hecho la relatividad y la mecánica cuántica. Ha pasado un siglo y seguimos anclados en esas dos teorías que, habiendo dado un inmenso resultado y aportado unos grandes beneficios para el conocimiento que la Humanidad tiene del “mundo” que le rodea, no son, sin embargo suficientes para hacer frente a ese futuro que se nos viene encima, inexorable como el tiempo mismo y que, nos pondrá ante dilemas que, de no remediarlo alguien, no sabremos resolver.

De hecho, no sabemos ni explicar esos fenómenos que están relacionados con los agujeros negros y que, a ciencia cierta sabemos que, inciden en el comportamiento de algunas estrellas y en la propia materia y también, en el espacio-tiempo circundante debido a la inmensa fuerza de gravedad que genera y, a eso que llamamos singularidad y que, en realidad, no podemos dar una explicación…, muy clara.

Creemos que sabemos y, ¡de pronto! hacemos el descubrimiento de que, la atmósfera de Marte, está sobresaturada de vapor de agua. Así lo determina un nuevo análisis de los datos enviados por el espectrómetro SPICAM a bordo de la nave Mars Express de ESA. Y, tal descubrimiento, después de tanto tiempo estudiando aquel planeta y tántos ingenios como lo han visitado, ha sorprendido a propios y extraños. Las implicaciones pueden ser grandes.

 

Ahora resulta, según un artículo publicado en The Physics Ar Xiu Blog, que la forma en que la gravedad afecta a las partículas cuánticas demuestra que no puede ser un fenómeno emergente. Una de las ideas más interesantes de la física moderna es que la gravedad no es una fuerza tradicional, al igual que las fuerzas electromagnéticas o nucleares. Por el contrario, es un fenómeno emergente que simplemente tiene el aspecto de una fuerza tradicional.

Mientras tanto, nuestra vecina Andrómeda,  a una velocidad considerable, se nos acerca imparable y, dentro de unos 3.000 millones de años, tendrá lugar el encuentro con la Vía Láctea. Sí, ya se que no estaremos aquí y que eso queda lejos. Sin embargo, nuestra obligación es saber y descubrir para dejar abierto todos los caminos posibles a los que vengan detrás -si para entonces, nuestra especie aún pervive-

Lo cierto es que, después del paseo que nos hemos dado por algunos aspectos que están implicados en nuestro conocimiento del Universo, podemos concluir que, no sabemos tanto como creemos que sabemos.

emilio silvera

Plasma, Nebulosas, Gases, elementos, moléculas

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El plasma no se encuentra en la Tierra en estado natural, su ámbito está en el espacio, en las estrellas y en otros objetos energéticos que suponen la máxima energía que imaginarnos podamos: Estrellas, Esplosiones supernovas y sus remanentes, púlsares y estrellas de neutrones corrientes, magnétares y, si me apurais mucho, incluso en los discos de acreción de los agujeros negros está presente el plasma que es, el estado más abundante de la materia.

El Plasma, ese otro estado de la Materia (el cuarto dicen) que, según sabemos, resulta ser el más abundante del Universo. Todos desde pequeños aprendimos aquellos tres estados de la amteria que cantábamos en el patio del centro educativo durante el recreo, donde todos a una gritábamos como papagayos: “Sólido, líquido y gaseoso”. Nada nos decían del Plasma, ese estado que, en realidad, cubre el 99% del estado de la materia en nuestro Universo (bueno, hablamos de la materia conocida, esa que llamamos bariónica y está formada por átomos de Quarks y Leptones).

Según la energía de us partículas, los plasmas (como digo) constituyen el cuarto estado de agregación de la materia, tras los sólidos, liquidos y gases. Parqa cambiar de uno al otro, es necesario que se le aporte energía que aumente la temperatura. Si aumentamos de manera conasiderable la temperatura de un gas, sus átomos o moléculas adquieren energía suficiente para ionizarse al chocar entre sí. de modo que a ~ 20.000 K muchos gases presentan una ionización elevada. Sin embargo, átomos y moléculas pueden ionizarse también por impacto electrónico, obsorción de fotones, reacciones químicas o nucleares y otros procesos.

Frente de ionización en la Nebulosa del Pelícano

Aquí podemos contemplar una enorme región ionizada en la Nebulosa del Pelícano. Estrellas nuevas emiten potente radiación ultravioleta que ataca el espesor de la Nebulosa molecular y hace que, el gas se ionice fuertemente creando una luminosidad que “viste” de azul claro todo el contorno que circunda el radio de acción de las estrellas.

Un plasma es un gas muy ionizado, con igual número de cargas negativas y negativas.Las cargas otorgan al Plasma un comportamiento colectivo, por las fuerzas de largo alcance existente entre ellas. En un gas, cada partícula, independientemente de las demás, sigue una trayectoria rectilinea, hasta chocar con otra o con las grandes paredes que la confinan. En un plasma, las cargas se desvían atraídas o repelidas por otras cargas o campos electromagnéticos externos, ejecutando trayectorias curvilineas entre choque y choque. Los gases son buenos aislantes eléctricos, y los plasmas, buenos conductores.

En la Tierra, los plasmas no suelen existir en la naturaleza, salvo en los relámpagos, que son trayectorias estrechas a lo largo de las cuales las moléculas de aire están ionizadas aproximadamente en un 20%, y en algunas zonas de las llamas. Los electrones libres de un metal también pueden ser considerados como un plasma. La mayor parte del Universo está formado por materia en estado de plasma. La ionización está causada por las elevadas temperaturas, como ocurre en el Sol y las demás estrellas, o por la radiación, como sucede en los gases interestelares o en las capas superiores de la atmósfera (ver trabajo más abajo), donde produce el fenómeno denominado aurora.

Así que, aunque escasos en la Tierra, el Plasma constituye la materia conocida más abundante del Universo, más del 99%. Abarcan desde altísimos valores de presión y temperatura, como en los núcleos estelares, hasta otros asombrosamente bajos en ciertas regiones del espacio. Uno de sus mayores atractivos es que emiten luz visible, con espectros bien definidos, particulares en cada especie. Algunos objetos radiantes, como un filamento incandescente, con espectro continuo similar al cuerpo negro, o ciertas reacciones químicas productoras de especies excitadas, no son plasmas, sin embargo, lo son la mayoría de los cuerpos luminosos.

http://www.ciberdroide.com/wordpress/wp-content/uploads/filamento.jpg

                                    Bombilla de incandescencia

Los Plasmas se clasifican según la energía media (o temperatura) de sus partículas pesadas (iones y especies neutras). Un primer tipo son los Plasmas calientes, prácticamente ionizados en su totalidad, y con sus electrones en equilibrio térmico con las partículas más pesadas. Su caso extremo son los Plasmas de Fusión, que alcanzan hasta 108 K, lo que permite a los núcleos chocar entre sí, superándo las enormes fuerzas repulsivas internucleares, y lñograr su fusión. Puede producirse a presiones desde 1017 Pa, como en los núcleos estelares, hasta un Pa, como en los reactores experimentales de fusión.

Foto: Plasma Science and Fusion Center

Los reactores de fusión nuclear prácticos están ahora un poco más cerca de la realidad gracias a nuevos experimentos con el reactor experimental Alcator C-Mod del MIT. Este reactor es, de entre todos los de fusión nuclear ubicados en universidades, el de mayor rendimiento en el mundo.

Los nuevos experimentos han revelado un conjunto de parámetros de funcionamiento del reactor, lo que se denomina “modo” de operación, que podría proporcionar una solución a un viejo problema de funcionamiento: cómo mantener el calor firmemente confinado en el gas caliente cargado (llamado plasma) dentro del reactor, y a la vez permitir que las partículas contaminantes, las cuales pueden interferir en la reacción de fusión, escapen y puedan ser retiradas de la cámara.

Otros Plasmas son los llamados térmicos, con e ~lectrones y especies pesadas en equilibrio, pero a menor temperatura ~ 103 – 104 K, y grados de ionización intermedios, son por ejemplo los rayos de las tormentas o las descargas en arcos usadas en iluminación o para soldadura, que ocurren entre 105 y ~ 102 Pa. Otro tipo de Plasma muy diferente es el de los Plasmas fríos, que suelen darse a bajas presiones ( < 102 Pa), y presentan grados de ionización mucho menores ~ 10-4 – 10-6. En ellos, los electrones pueden alcanzar temperaturas ~ 105 K, mientras iones y neutros se hallan a temperatura ambiente. Algunos ejemplos son las lámparas de bajo consumo y los Plasmas generados en multitud de reactores industriales para producción de películas delgadas y tratamientos superficiales.

http://farm5.static.flickr.com/4024/4415870627_9df3269b9f.jpg

El Observatorio Espacial Herschel de la ESA ha puesto de manifiesto las moléculas orgánicas que son la llave para la vida en la Nebulosa de Orión, una de las regiones más espectaculares de formación estelar en nuestra Vía Láctea. Este detallado espectro, obtenido con el Instrumento Heterodino para el Infrarrojo Lejano (Heterodyne Instrument for the Far Infrared, HIFI) es una primera ilustración del enorme potencial de Herschel-HIFI para desvelar los mecanismos de formación de moléculas orgánicas en el espacio. Y, para que todo eso sea posible, los Plasmas tienen que andar muy cerca.

En los Plasmas calientes de precursores moleculares, cuanto mayor es la ionización del gas, más elevado es el grado de disociación molecular, hasta poder constar solo de electrones y especies atómicas neutras o cargadas; en cambio, los Plasmas fríos procedentes de especies moleculares contienen gran proporción de moléculas y una pequeña parte de iones y radicales, que son justamente quienes proporcionan al Plasma su característica más importante: su altísima reactividad química, pese a la baja temperatura.

Rho Ophiuchi

En la Naturaleza existen Plasmas fríos moleculares, por ejemplo, en ciertas regiones de las nubes interestelares y en las ionosfera de la Tierra y otros planetas o satélites. Pero también son producidos actualmente por el ser humano en gran variedad para investigación y multitud de aplicaciones.

En un número de la Revista Española de Física dedicado al vacío, el tema resulta muy apropiado pues no pudieron generarse Plasmas estables en descargas eléctricas hasta no disponer de la tecnología necesaria para mantener presiones suficientemente bajas; y en el Universo, aparecen Plasmas fríos hasta presiones de 10 ⁻ ¹⁰ Pa, inalcanzable por el hombre.

foto

Lo que ocurre en las Nubes moleculares es tan fantástico que, llegan a conseguir los elementos necesarios para la vida prebiótica que, tras los parámetros adecuados dan lugar al surgir de la vida.

El papel de las moléculas en Astronomía se ha convertido en un área importante desde el descubrimiento de las primeras especies poliatómicas en el medio interestelar. Durante más de 30 años, han sido descubiertas más de 150 especies moleculares en el medio interestelar y gracias al análisis espectral de la radiación. Muchas resultan muy exóticas para estándares terrestres (iones, radicales) pero buena parte de estas pueden reproducirse en Plasma de Laboratorio. Aparte del interés intrínseco y riqueza de procesos químicos que implican, estas especies influyen en la aparición de nuevas estrellas por su capacidad de absorber y radiar la energía resultante del colapso gravitatorio, y de facilitar la neutralización global de cargas, mucho más eficientemente que los átomos.

foto

Su formación en el espacio comienza con la eyección de materia al medio interestelar por estrellas en sus últimas fases de evolución y la transformación de éstas por radiación ultravioleta, rayos cósmicos y colisiones; acabando con su incorporación a nuevas estrellas y Sistemas planetarios, en un proceso cíclico de miles de millones de años.

En las explosiones supernovas se producen importantes transformaciones en la materia que, de simple se transforma en compleja y dan lugar a todas esas nuevas especies de moléculas que nutren los nuevos mundos.

El H₂ y otras moléculas diatómicas homonucleares carecen de espectro rotacional. Detectando las débiles emisiones cuadrupolares del H₂ en infrarrojo, se ha estimado una proporción de H₂ frente a H abrumadoramente alto ( ~ 104) en Nubes Interestelares con densidades típicas de ~ 104 partículas /cm3; pero dada la insuficiente asociación radiativa del H para formar H2, ya mencionada, el H2 debe producirse en las superficies de granos de polvo interestelar de Carbono y Silicio, con diámetros ~ 1 nm — μm, relativamente abundantes en estas nubes.

Experimentos muy recientes de desorción programada sobre silicatos ultrafríos, demuestran que tal recombinación ocurren realmente vía el mecanismo de Langmuir-Hinshelwood, si bien los modelos que expliquen las concentraciones de H2 aún deben ser mejorados.

Por otro lado, ciertas regiones de las nubes en etapas libres de condensación estelar presentan grados de ionización ~ 10-8 – 10-7 a temperaturas de ~ 10 K. La ionización inicial corresponde principalmente al H2 para formar H2 +, que reacciona eficientemente con H2, dando H3 + + H (k = 2• 10-9 cm3 • s-1.

El H3, de estructura triangular, no reacciona con H2 y resulta por ello muy “estable” y abundante en esas regiones de Nebulosas intelestelares, donde ha sido detectado mediante sus absorciones infrarrojas caracterizadas por primera vez en 1980 en descargas de H2 en Laboratorio.

Orión en gas, polvo y estrellas

La constelación de Orión contiene mucho más de lo que se puede ver, ahí están presentes los elementos que como el H2 que venimos mencionando, tras procesos complejos y naturales llegan a conseguir otras formaciones y dan lugar a la parición de moléculas significativas como el H2O o HCN y una gran variedad de Hidrocarburos, que podrían contribuir a explicar en un futuro próximo, hasta el origen de la vida.

La detección por espectroscopia infrarroja de COH+ y N2H+, formados en reacciones con H3 + a partir de CO y N2, permite estimar la proporción de N2/CO existente en esas regiones, ya que el N2 no emite infrarrojos. Descargas de H2 a baja presión con trazas de las otras especies en Laboratorio conducen casi instantáneamente a la aprición de tales iones y moléculas, y su caracterización puede contribuir a la comprensión de este tipo de procesos.

Así amigos míos, hemos llegado a conocer (al menos en parte), algunos de los procesos asombrosos que se producen continuamente en el Espacio Interestelar, en esa Nebulosas que, captadas por el Hubble u otros telescopios, miramos asombrados maravilándonos de sus colores que, en realidad, llevan mensajes que nos están diciendo el por qué se producen y que elementos son los causantes de que brillen deslumbrantes cuando la radiación estelar choca de lleno en esas nubes en la que nacen las estrellas y los nuevos mundos…y, si me apurais un poco, también la vida.

¡Que me gustaría saber para comprender…lo que el Universo es!

emilio silvera