jueves, 23 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Si la respuesta es…¡El Universo! ¿Cuál es la pregunta?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El pensamiento “generalizado” hoy en día en la mayoría de los astrónomos, astrofísicos y demás científicos afines a la ciencia del Universo, es que, pueden existir milesl planetas habitados dentro de nuestra propia Galaxia, la Vía Láctea. Ahora sabemos que el Universo no conoce límite alguno ni en el espacio ni en el tiempo que, según todos los indicios, ha estado expandiéndose durante 13.700 millones de años que, es un período de tiempo más que suficiente para que las estrellas que han exisitido desde entonces, tuvieran el tiempo necesario para producir todos los elementos que conocemos y que hicieron posible el surgir de la vida aquí en la Tierra y…probablemente, en “otras Tierras” que en la Galaxia Vía Láctea estén, y, de la misma manera, en los miles de millones de galaxias que pueblan el vasto universo que hemos llegado a conocer.

Más allá de la metagalaxia, a la que pertenecen todos los sistemas galácticos que conocemos, tienen, necesariamente, que existir otros mundos que, como el nuestro, estén habitados por seres de toda índole y pelaje, inteligentes también. La metagalaxia consta de hipergalaxias, es decir, de grupos de sistemas galácticos. Nuestro sistema galáctico consta cuenta con dos “satélites”: la Gran Nebulosa de Magallanes, distante 38.000 Parsec de nosotros y la Pequeña Nebulosa de Magallanes, a 36.000 Parsecs. La Nebulosa de Andrómeda es un sistema compuesto por cinco galaxias. Por lo general existen “puentes” de estrellas entre galaxias que constituyen un grupo. Se podría decir que que los grupos de galaxias estarían unidos por hilos de estrellas de manera tal que, muchas veces, nos cuesta trabajo asegurar a qué galaxia pertenece una estrella determinada.

http://apod.nasa.gov/apod/image/1108/NGC7331_crawford900c.jpg

Leer más

Nuevos Mundos ¿Nuevas formas de vida?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo, Vida en otros mundos    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cada día que pasa encontramos nuevos mundos y, en esta ocasión, el que podemos ver en la imagen está acompañado por dos soles a los que orbita y de los que recibe luz y calor. Hemos descubierto más de mil mundos situados en el espacio exterior que dan vueltas alrededor de estrellas de diferentes conformaciones más pequeñas y grandes que nuestro Sol y, en alguno de esos mundos, la vida podría estar presente.

http://aarrietaj.files.wordpress.com/2011/09/587851main_kepler16_planetpov_art-3x4_946-710.jpg

El equipo del telescopio espacial Kepler de la NASA anunció hoy el descubrimiento del primer exoplaneta que orbita simultáneamente dos estrellas de un sistema binario. La criatura se llama Kepler-16b -o mejor, Kepler-16 (AB)-b– y gira alrededor de dos estrellas más pequeñas que el Sol. Kepler A y Kepler B son dos astros con el 69% y el 20% de la masa del Sol respectivamente, mientras que Kepler-16b es un exosaturno que tiene 0,33 veces la masa de Júpiter. Posee un periodo de 229 días y se halla situado a 105 millones de kilómetros del par binario, la misma distancia que separa a Venus del Sol en nuestro Sistema Solar. Pero debido a que Kepler-16 AB son dos estrellas relativamente frías, la temperatura “superficial” de este gigante gaseoso ronda unos gélidos 170-200 K dependiendo de la posición orbital. Es decir, nada que ver con el infierno de Venus.

Kepler 16b

Una de las imágenes más recordadas de Star Wars es el momento en el que Luke Skywalker mira hacia la puesta de sol del desierto de Tatooine y vemos cómo se ven 2 soles. Aunque esta imagen forme parte de la historia del cine parece ser que podría ser una realidad; no es que la NASA haya descubierto la ubicación de Tatooine ni nada parecido sino que el telescopio Kepler ha localizado el planeta que orbita alrededor de dos estrellas, es decir, dos soles.

Científicos del  observatorio espacial Kepler de la NASA halló un planeta que está inserto en un sistema con dos estrellas, a una distancia de 200 años luz de la Tierra.

 

 

kepler 16b

El  planeta, ubicado en la constelación del Cisne, fue bautizado con el nombre de Kepler 16b y es frío y gaseoso en vez de un tórrido desierto, por lo cual es el primer planeta circumbinario, es decir,  dos estrellas, según señala el artículo en la revista Science.

Como podreis ver y leer, los medios de comunicación cuentan las noticias cientificas como mejor les parece y, no pocas veces distorsionan la realidad. Claro que, tener un científico “de verdad” en nómina y en cada especialidad…sería insoportable (económicamente hablando) para cualquier medio de comunicación y dan las noticias que les llegan de la mejor manera posible.

Las técnicas avanzan y cada vez es más fácil detectar nuevos mundos antes perdidos en el inmenso espacio interestelar y, la lejanía, las dificultades que añaden la luz emitida por la estrella que estos mundos orbitan, poco a poco, están siendo obviados por nuevas técnicas y formas nuevas que, pronto, nos llevarán a saber de mundos habitados por otros seres vivos.

Habrá que esperar un poco.

emilio silvera

Siempre hemos estado haciéndonos preguntas

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Cuántas veces y desde cuándo nos hemos preguntado por el origen del Universo? ¡Desde siempre! Desde que tuvimos uso de razón, es una vieja y notaria pregunta que la curiosidad que siempre hemos  tenido, hizo que se pudiera en marcha la actividad humana en esa dirección de saber sobre el Sol y la Luna y las estrellas del cielo. Con certeza no podemos saberlo, ya que, nuestra especie no tiene ningún certificado de nacimiento y eso, amigos míos, nos ha obligado a investigar sobre nuestros orígenes nosotros solos, y al hacerlo hemos hallado necesario profundizar en el origen del “mundo” que nos acoge y del que, ineludiblemente, formamos parte. La falta de conocimientos nos llevó hacia el terreno de la especulación que, como observadores, podíamos deducir de lo que observamos y pudimos deducir más sobre nosotros mismos que sobre el universo que pretendíamos describir.

Está claro que lo mismo que una ola no puede explicar todo el Mar, tampoco la Nebulosa remanente de supernova que arriba contemplamos podría explicar el inmenso Universo que, al tener tan inimaginables dimensiones, nunca podremos contemplar en una Imagen completa, sólo a trozos, y captado parcialmente por extensas regiones e incluso objetos individuales, podremos contemplar, la ingente naturaleza de lo que todo lo contiene y abarca. El Universo es el espacio-tiempo, es la materia y todos los objetos que con ella se formaron se seguirán formando en el tiempo sin fin, también está conformado por las fuerzas fundamentales que todo lo rigen y que, para completar el cuadro, están acompañadas por unas constantes que hace de él, que sea el universo que conocemos con una velocidad finita para la luz, con una carga determinada para el electrón y, también, con una masa predeterminada para el protón. Si cualquiera de estos números: la velocidad de la luz, la carga del electrón i la masa del protón, variara sólo una diezmillonésima, el universo no sería tal como lo conocemos y, nosotros, tampoco podríamos haber llegado aquí.

Y, aunque no lo parezca, también la Imagen de arriba es posible que exista debido a que, las constantes y leyes de la Naturaleza así lo permiten al hacer posible que nuestro Universo sea tal como lo conocemos. Y, habiéndonos dedicado al estudio de todo lo que veíamos, haciéndonos preguntas del por qué de las cosas, hemos podido llegar a saber que el Universo está regido por números que hemos podido descubrir y que llamamos leyes y constantes.

Y, para eso, el recorrido que hemos tenido que hacer ha durado muchos miles de millones de años (considerándolo desde el surgir de la vida primigenia) y algunos cientos de miles de años (si partimos desde que en el mundo aparecieron los primeros hombres verdaderos) cuando mirando a los cielos, nos preguntábamos por qué brillaban las estrellas.

El cúmulo abierto NGC 290: un joyero estelar

En aquellos tiempos remotos en los que, ninguna luz artificial (exceptuando alguna eventual hoguera), podía contaminar lumínicamente el lugar, nuestros ancestros podían mirar hacia lo alto y ver, maravillados como, ingentes cantidades de puntos luminosos de distintos y hermosos colores, titilaban temblorosos como queriéndoles decir alguna cosa.

Allí, en aquellas épocas remotas, nacieron los mitos de la creación y aquellos pueblos desataron su imaginación para crear “a su manera” una justificación de todo aquello que no llegaban a comprender, así que, las maravillas que observaban las hacían depender y las relacionaban con sus vidas cotidianas. Los sumerios que vivían en una confluencia de ríos, consebían la creación como resultado de una lucha en el barro entre dioses. Los Mayas, obsesionados por los juegos de balón, conjeturaban que su creador se transformaba en un balón solar cada vez que el planeta Venus desaparecía detrás del Sol. El pescador tahitiano hablaba de un dios pesacador que arrastró sus islas desde el fondo del océano; los antepasados de los  samurais japoneses formaron sus islas de gotas de sangre que caían desde una hoja de espada cósmica. Para los griegos amantes de la lógica, la creación fue obra de los elementos; para Tales de Mileto, el Universo originalmente fue agua; para Anaxímedes (también de Mileto), fue aire; para Heráclito, fuego. En la fecundas islas hawaianas, la génesis fue manejada por un grupo de espíritus hábiles en embriología y el desarrollo de niños. Los bosquimanos de África se apiñaban alrededor del fuego, observaban como las chispas ascendían en el cielo nocturno y recitaban estas palabras:

Apareció la muchacha; puso las manos en las cenizas de madera; lanzó las cenizas al cielo. Dijo: “Las cenizas de la madera deben convertirse en la Vía Láctea. Deben quedar blancas a lo largo del cielo, para que las estrellas puedan estar fuera de la Vía Láctea, y la Vía Láctea ser la Vía Láctea, aunque eran cenizas de madera.”

Claro que, aquellos tiempos pasaron y el advenimiento de la Cienca y la tecnología ha logrado mejoras en la complejidad de la teorización cosmogónica, al menos en lo relativo a lo que precedió, si no a la simple realidad (si la hay) del gran Cosmos profundo (si hay cosmos). Pero la ciencia en modo alguno ha liberado el problema de la creación ni de su vieja maraña de presuposiciones y deseos humanos, si acaso, las hemos cambiado por otras nuevas que, más avanzadas tampoco explican esa creación de una manera firme, inamovible y autoconsistente si hablamos científicamente.

La cuestión de cómo empezó en el universo es, en el mejor de los casos, escurridiza, y cuando vamos de caza tras ella, con nuestro carcaj lleno de quaks, leptones, tensores de e4spacios curvos y probabilidades cuánticas, sólo tenemos una justificación marginalmente mayor de nuestra audacia de la que tenían aquellos sumerios, tahitianos y griegos. Pero, ¿nos diferenciamos mucho de ellos? Si hablamos de “materia oscura y otras cuestiones que no conocemos”, no creo que la diferencia sea tan abismal y, lo único que nos separan son los instrumentos modernos que tenemos para medir y ver y, de alguna manera, la forma de calcular sobre las leyes fundamentales y las constantes universales.

El éxito alcanzado por la Física desde finales del siglo XIX hasta esta primera década del siglo XXI no sólo ha transformado nuestra concepción del espacio-tiempo, sino que ha llegado a poner en nuestras mentes una nueva percepción de la Naturaleza: la vieja posición central que asignábamos a la materia ha cedido su lugar a los principios de simetría, algunos de ellos ocultos a la vista en el estado actual del Universo.

Está claro que los físicos, cada día más ambiciosos en su “querer saber” y su “querer descubrir”, buscan sin descanso nuevos caminos que les lleve a desvelar ocultas maravillas que tienen su hábitat natural en lo más profundo de la Naturaleza misma de la que no sabemos, aún, entender todas sus voces.

Son muchos los obstáculos que se encuentran en ese camino que nos lleva inexorable hacia esa soñada teoría final. Los científicos discrepan de los filósofos que no siempre, están de acuerdo con el hecho de que se pueda llegar a esa teoría última que lo pueda explicar todo, y, la firme creencia de que el Universo siempre tendrá secretos para nosotros, es una constante de la filosofía que la Ciencia, no deja de combatir. Por otra parte, se define nuestro carácter inquieto cuando no habiénso sido capaces de saber sobre aquel comienzo, ya estamos intentando exponer una teoría final. ?No será como comenzar la casa por el tejado?

Según todos los indicios encontrados, hemos llegado a conjeturar que el Universo surgió de algo que hemos llamado Big Bang, no podemos explicar el comienzo mismo de aquel suceso, las matemáticas se niegan a entrar en ese esponioso terreno y, hemos partido desde un tiempo posterior, y, sin embargo sabemos que, en aquellas fracciones de segundo, pasaron muchas cosas y todas ellas importantes, ya que, todo lo que luego pasó fue consecuencia de aquellas primeras.

Así, estamos embarcados en una enorme aventura intelectual que eleva al ser humano a la categoría más alta que en el Universo pueda. La Física de altas energías nos llevan a conocer las entrañas de la materia y nos cuenta como se producen esas interacciones en el corazón de los átomos y aunque no sabemos cómo puedan ser las leyes finales ni cuanto será el tiempo que tardaremos en encontrar las pistas que nos guíen por el camino correcto, lo cierto es que, el progreso continúa y cada vez se construyen aceleradores más potentes y sofisticados y telescopios más modernos y con mayor capacidad para transportarnos hacia regiones profundas del Universo en las que podemos contemplar galaxias situadas muy cerca de ese comienzo que llamamos Big Bang.

Podrá esa teoría final explicarnos la expansión del Universo, la Gravedad cuántica, qué son las fluctuaciones de vacío y qué relación puedem tener con los agujeros negros, si existe finalmente la “materia oscurta”, o, si la Fuerza de Gravedad es tal como nos la describió Einstein o se guarda alguna última carta en la maga, o, su en verdad, existen más dimensiones de las que podemos ver, o, si nuestra realidad percibida es la auténtica realidad, o, si…

Como no podía ser de otra manera dado nuestro carácter siempre dispuesto a la controversia y nuestras mentes de pensamientos diversos, la propia idea de una teoría final nos ha llevado a la más profunda discrepancia entre unos y otros. Por una parte, están los partidarios de esa teoría que nos podrá hablar de un Universo de más altas dimensiones, donde la relatividad general de Einstein y la mecánica cuántica de Planck, conviven en la soñada concordia que muchos físicos han soñado y, por la otra, están aquellos que discrepando de los primeros se agarran al pensamiento de la imposibilidad de conseguir una teoría de esas características y, ellos hablan de física-ficción.

Lo cierto es que, a pesar de lo que digan los detractores de estas ideas avanzadas (no pocas veces por envidia y por el simple hecho de que ellos no tienen la capacidad de entender los nuevos conceptos y sus complejas matemáticas), la Física prosigue su camino y, cuando lleguemos a alguna parte, lo cierto será que, no hemos llegado a ningún final sino que, por el contrario, estaremos en el principio de algo nuevo. Cada vez que hacemos un descubrimiento que nos trae nuevos conocimientos, sólo hemos conseguido una llave para poder abrir otras puertas que permanecen cerradas. Es decir, podremos plantear nuevas preguntas al estar posibilitados con esos nuevos conocimientos. Cuando desconocemos algo, no podemos preguntar sobre ello.

http://www.madrimasd.org/blogs/futurosdellibro/wp-content/blogs.dir/91/files/491/o_Representaci%C3%B3n%20de%20la%20informaci%C3%B3n.JPG

                                                                      http://www.moebio.conesfera/esfera.htm

Posiblemente, no consigamos nunca  desconplejificar lo que el Universo es. La Naturaleza es “sabia”, sabe que nosotros los humanos necesitamos de la curiosidad para tener un incentivo y seguir buscando. Si llegamos a esa teoría final que tiene todas las respuestas… ¿No caeremos en un mar depresivo mental? ¿Nada que buscar, nada que averiguar, ningún misterio que resolver?…

¡Mal suena eso!

emilio silvera

No dejamos de imaginar el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:AlanGuthCambridge.jpg

Alan Harvey Guth

 

Está claro que el título de este trabajo está dirigido al hecho de que, cuando no sabemos el por qué de alguna cosa, nuestra imaginación le busca la respuesta que, unas veces será la adecuada y otras tantas  no. Con el tiempo, esa verdad que buscamos se descubre y entonces, aquella primera “verdad” queda relegada para siempre.

Pero donde hay un enigna existe también la perspectiva de un descubrimiento: una paradoja puede revelar un modo inadecuado de abordar un  problema. creo que fue eso lo que quiso decir Bohr cuando exclamó: “Es magnifico que hayamos dado con una paradoja. Ahora tenemos alguna esperanza de hacer algún progreso.” Y fue con este espíritu como se resolvió el enigma sobre el caracter plano del universo, mediante la invención de una nueva hipótesis cosmológica, la del universo inflacionario.

La hipótesis de la inflación fue propuesta por primera vez por un joven físico norteamercano llamado Alan Guth. Se enteró del problema del universo plano una tarde de novimebre de 1978 en Cornell, por una charla de Robert Dicke (personaje que os puse aquí hace unos días), un competente relativista de Princeton cuyas ideas sobre la radiación cósmica de fondo recordaban las de Gamow.

Con preparación de físico, Guth por aquel entonces sabía poco de cosmología y, siendo joven rechazaba el conservadurismo sobre las ideas reinantes en relación a la evolución primitiva del universo. Las consideraba demasiado especulativas. La observación de Dicke sobre la rareza de que Omega (Ω) fuese igual a 1 le  pareció ”  sorprendente, pero en aquel momento no sabía que hacer con ella.

Pero por aquellos tiempos, la comunidad de la Física estaba empezando un gran idilio con la de la Cosmología, y Guth pronto se encontró trabajando en la cuestión de cómo pueden haberse formado los monopolos magnéticos en el universo primitivo. Guth halló dascinante los monopolos. Concebidos por la austera imaginación de Dirac en 1931, se suponía que eran partículas masivas con una carga magnética unipolar.

En los años treinta del pasado siglo Paul Dirac realizó unos cálculos teóricos que indicaban que si existieran los monopolos magnéticos, entonces se podría cuantizar fácilmente la carga del electrón. Bastaría que existiera un sólo monopolo magnético en el Universo para que los electrones tuvieran la carga que tienen y no otra.

 

Foto

 

La imagen de arriba vino acompañada de la noticia siguiente: “Afirman haber podido detectar por primera vez monopolos magnéticos como un estado de la materia que se daría a partir de una disposición especial de los momentos magnéticos dentro de un cristal a baja temperatura.”

Dibujo20090903_spin_ice_and_both_poles_monopoles_in_figure_E

 

 

En  Francis (th)E mule Science’s News  he podido obtener esta imagen de arriba que nos daba la noticia de que “Monopolos magnéticos nanométricos observados en cristales de hielo de espines”.  Sigue diciendo: “Cuatro artículos, dos publicados en Science y dos preprint en ArXiv, confirman la observación directa de monopolos magnéticos como cuasipartículas en diferentes cristales de hielo de espines. Estos monopolos magnéticos fueron observados de forma indirecta en 2007 por Castelnovo et al. (publicado en Nature). Morris et al. y Fennell et al. los han logrado observar de forma directa, publicando sendos artículos que aparecerán en Science. Morris et al. han observado directamente mediante neutrones cadenas de monopolos, como cuentas de un collar, que se denominan cuerdas de Dirac (Dirac strings).”

Las grandes teorías unificadas conjeturaban que se habían creado en nudos de espacio-tiempo, por la misma ruptura de la simetría que escindió las fuerzas nucleares electrodébiles y fuertes. Anacrónicamente, cada monopolo contendría atrapados bosones W y Z, así como también una diminuta región en su centro donde aún funcionaba la fuerza electronuclear unificada.

En realidad, cohabitamos una naturaleza llena de fenómenos enigmáticos. Uno de estos fenómenos es la asimetría insólita que se observaba entre el magnetismo y la electricidad: no hay cargas magnéticas comparables a las cargas eléctricas. Nuestro mundo está lleno de partículas cargadas eléctricamente, como los electrones o los protones, pero nadie ha detectado jamás una carga magnética aislada. El objeto hipotético que la poseería se denomina monopolo magnético.

Foto

Montaje experimental. Foto: HZB, D.J.P. Morris y A. Tennant.

El grupo de investigadores dispuso un montaje experimental especial para poder detectar estas cuerdas de Dirac. Hicieron que un chorro de neutrones impactara sobre una muestra a la que aplicaban un campo magnético. En el interior de la muestra se formaban cuerdas de Dirac que dispersaban los neutrones con un patrón específico que delataba su presencia.

La muestra era un cristal de titanato de disprosio. La estructura cristalina de este compuesto tiene una geometría notable, de tal modo que los momentos magnéticos de su interior se organizan en lo que se llama un “espagueti de espines”. El nombre viene de la ordenación de los dipolos, que forman una red de tubos contorsionados (cuerdas) por los que se transporta flujo magnético.

Estos tubos pueden “hacerse visibles” cuando los neutrones interaccionan con ellos; pues los neutrones, aunque no tienen carga eléctrica, sí tienen momento magnético. El patrón de dispersión de los neutrones obtenido es una representación recíproca de las cuerdas de Dirac contenidas en la muestra. Con el campo magnético aplicado los investigadores podían controlar la simetría y orientación de las cuerdas. A temperaturas de entre 0,6 a 2 grados Kelvin los investigadores pudieron ver pruebas de la existencia de monopolos magnéticos (la temperatura suele ser la peor enemiga del magnetismo, pues tiene a desordenarlo todo) en forma de este tipo de cuerdas según se acaba de describir.

Además pudieron ver la firma que en la capacidad calorífica dejada el gas de monopolos, viendo que estas cuerdas interaccionan de manera similar a como lo hacen las cargas eléctricas, lo que era de prever para el caso de monopolos magnéticos. En este resultado los monopolos no son partículas, sino que emergen como un estado de la materia, en concreto a partir de un arreglo especial de los dipolos que forman parte del material.

 

 

Para hacernos una idea de cómo sería un monopolo magnético si existiera, imaginemos una barra imantada que, como sabemos, posee en cada extremos un «un polo magnético» por el cual se atraen o se repelen. Estos polos son de dos tipos, llamados «norte» y «sur», y se comportan como las cargas eléctricas, positiva y negativa. Esa configuración del campo es un ejemplo de «campo bipolar», y sus líneas de campo no paran: giran y giran interminablemente. Si partimos por la mitad la barra imantada, no tenemos dos polos, el norte y el sur, separados, sino dos imanes. Un polo norte o sur aislado (un objeto con líneas de campo magnético que sólo salgan o que sólo entren) sería un monopolo magnético. De hecho, es imposible aislar una de estas cargas magnéticas. Nunca se ha detectado monópolos magnéticos, es decir partículas que poseyeran una sola carga magnética aislada. Puede que ello se deba a razones no aclaradas, o bien la naturaleza no creó monopolos magnéticos o creó poquísimos.

En cambio, los monopolos eléctricos (partículas que llevan carga eléctrica) son muy abundantes. Cada chispa de materia contiene un número increíble de electrones y protones que son auténticos monopolos eléctricos. Podríamos imaginar las líneas de fuerza del campo eléctrico surgiendo de una partícula cargada eléctricamente o convergiendo en ella y empezando o acabando allí. Además, la experiencia ha confirmado la ley de conservación de la carga eléctrica: la carga monopólica eléctrica total de un sistema cerrado no puede crearse ni puede destruirse. Pero en el mundo del magnetismo, no existe nada similar a los monopolos eléctricos, aunque un monopolo magnético sea fácilmente concebible.

El problema que atrajo la atención de Guth y de su colega de Cornell Henry Tye era que las grandes teorías unificadas predecían la producción de demasiados monopolos magnéticos, aproximadamente cien veces más monopolos que átomos. Considerando que la mayor parte del universo “es invisible” -la cuestión de la “materia oscura”-, los cosmólogos generalmente reciben con agrado la sugerencia de que partíoculas subatómicas masivas podrían compensar el deficit, pero esto era un exceso de riqueza. La búsqueda de monopolos había dado por aquel tiempo resultados nulos.  Se había registrado un suceso de este tipo el 14 de febrero de 1982, en un aparato construído por Blas Cabrera en un laboratorio del sotáno de Stanford, pero nunca se había vuelto a repetir.

La discrepancia entre la teoría en la que aparecían mucho monopolos magnéticos y la observación, que reveleba muy pocos, podía resolverse, hallaron Guth y Tye, si la textura del espacio-tiempo había sido más lisa de lo esperado en la época de la transición  de la gran fase unificada. Un espacio-tiempo más liso significaba menos nudos espacio-temporales, lo que daba menos monopolos, También significaba un Omega igual a 1.

En la tarde del 6 de diciembre de 1979, Guth escribió las palabras Evolución del Universo en la parte superior de una hoja en blanco que luego llenó de cálculos. Su hipótesis era que inicialmente el universo se habíoa expandido mucho más rápidamente que la tasa lineal que muestra hoy, o sea que, con palabras que usaría luego Guth había sido una “época inflacionaria”, durante la cual el universo se había expandido exponencialmente. En esto se hallaba también la solución al problema del universo plano que había planteado Dicke. Puesto que el universo habría sido mucho grande al final de un período inflacionario de lo que se consideraba en el viejo modelo de expansión lineal, el espacio sería mucho plano.

COMPRENSIÓN ESPECTACULAR, escribió el joven Guth en su cuaderno al día siguiente, dibujando un recuadro alrededor de las palabras. La hipótesis no careciam de precedentes; su recuadro revisado de las transiciones de fase había sido concebido independientemente por Katsuhito Sato en Japón y Martín Einhorn en los Estados Unidos, y el “bombeo” de la tasa de expansión hasta una tasa exponencial por un mecanismo de ruptura de simetría había sido propuesto por Demosthenes Kazanas de la NASA. No funcionó muy bien en su forma original que, tuvo que ser refinada por A. D. Linde de la Universidad de Pensylvania. Pero Guth fue el que dio la idea, y en su forma acabada, aclaraba e iluminaba el estudio del universo primitivo.

Claro que, detras de todo esto que explico de manera sencilla y sin complicaciones, sí que las hay y todo ello, está rodeado de cuestiones complejas como, pongamos por ejemplo que, el agua líquida es más simétrica que el hielo, y el paso del agua al enfriarse, del estado líquido al sólido señala una transición der fase que rompe la simetría. Si el agua líquida se enfría muy rápidamente por debajo de su punto de congelación, no se condensa en hielo inmediatamente, sino que permanece en estado líquido durante un rato. De modo análogo, en el caso del universo inflacionario, el vacío cósmico sigue vacío aún después de estar por debajo de la temperatura a la cual comienza de ordinario la producción de partículas. En realidad, es esta  suspensión la que impulsa la expansión: la energía latente es inmovilizada en lo que se llama un Campo de Higgs de valor cero, impulsando la expansión de modo que el universo vacío se hincha en una perfecta esfericidad platónica.

 

Potencial de doble pozo en una teoría de campos con ruptura espontánea de simetría.

 

Después de todo lo explicado, tendríamos que seguir con otras muchas cuestiones como, por ejemplo: Al instante siguiente a la era inflacionaria, en que empieza la era electrodébil, las temperatura superan todavía los 10¹⁵ °K, los gluones débiles y electromagnéticos interactúan simétricamente. Al descender la temperatura por debajo de unos 10¹⁵ °K, se rompe la simetría y se hace patente la diferencia entre estas dos interacciones: los bosones débiles, W y Z, pierden su equilibrio con respecto a las otras partículas de la sopa cuántica, debido a que su masa es excesiva para que puedan ser creados, mientras que los fotones persisten porque carecen de masa y se forman fácilmente. Mientras ocurría este proceso, leptones y antileptones evolucionaron a variantes como electrones y positrones, que son sensibles al electromagnetismo, y neutrinos y antineutrinos que responden a la fuerza subatómica débil.

Con la expansión acompañada de temperaturas inferiores, las colisiones fueron mucho menos energéticas de lo que las que se estima que se dieron durante la era de la inflación cósmica, lo cual dio como resultado cada vez menos y menos masivas partículas. Las colisiones aniquiladoras entre materia y antimateria son las que con facilidad dieron origen a los fotones que son portadores de la fuerza electromagnética, que se descompusieron en parejas electrón–positrón prácticamente sin masa.

En aquellos momentos prevalecía la inestabilidad cuántica de la situación, y llegó el momento en el que la expansión disminuyó bruscamente a una tasa lineal. Cuando esto ocurre, la energía latente del vacío se condensa en forma de partículas y antipartículas. (Así se dio nueva vida al cuadro, muy ridiculizado, de la teoría del estado estable, de átomos que se condensan a partir de un vacío.) Las partículas se aniquilan mutuamente y el torrente resultante de energía unicia el big bang. Las grandes tweorías unificadas, cuya elaboración exige atención a los campos de Higgs, hasta demostraban cómo la ruptura de la simetría al final de la época inflacionaria podía haber originado un pequeño desequilibrio de la materia sobre la antimateria, dejando un residuo, una vez terminados “los fuegos artificiales”, con el cual construir el universo material.

Claro que, a todo esto, nos aparece la discrepancia entre materia observada y el movimiento de las galaxias que no tienen correlación y, es entonces cuando nos tenemos que “inventar”  sacar de nuevo de la manga, otro As, al que hemos llamado “materia oscura”.

emilio silvera

¿Será el Universo como creemos que es?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como pregona la filosofía, nada es como se ve a primera vista, todo depende del punto de vista desde el que miremos las cosas, o,  de la perspectiva que podamos tener de ellas conforme a las herramientas que tengamos a nuestra disposición, incluida la intelectual. Nosotros, que estudiamos el Universo y no lo sabemos todo de él, ya pensamos en la posible existencia de otros universos.

                  Si es que existen, ¿cómo serían esos otros universos? ¿dejarían un margen para alguna forma de vida? y, de ser así, ¿cómo serían?

“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es importante comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que ha comprendido hasta ese momento no es verdadero.”

Douglas Adams

¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en donde las constantes son diferentes y la vida no puede existir?

 

Por mucho que queramos alterar, algunas situaciones siempre serán invariantes

En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno número 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno.

Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica (que vemos y detectamos) del universo. Hay más elementos como el Neptunio, Plutonio, Americio, Curio, Berquelio, Californio, Einstenio, Fermio…etc.,  pero son los llamados transuránidos y son artificiales.

Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. Estas no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes).  Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El número puro y adimensional, 137!!

Las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y continuar así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano.  El primero de estos modelos es el universo abierto que será invadido por el frío absoluto, y el segundo modelo es el del universo cerrado que termina en una bola de fuego descomunal.

 

 

                 Todo dependerá de cual sea el valor de la densidad de materia.

Algunos números que definen nuestro Universo:

  • El número de fotones por protón.
  • La razón ente densidades de Materia Oscura y Luminosa.
  • La Anisotropía de la Expansión.
  • La falta de homogeneidad del Universo.
  • La Constante Cosmológica.
  • La desviación de la expansión respecto al valor crítico.
  • Fluctuaciones de vacío y sus consecuencias.
  • ¿Otras Dimensiones?

Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la formación de estrellas, planetas y… ¡vida!

No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que marca la “Densidad Crítica”

 

Gráfico: Sólo en el modelo de Universo que se expande cerca de la divisoria crítica (en el centro) se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos.

El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).

 

La Densidad Crítica del Universo, es decir, toda la masa que contiene, determinará en qué Universo estamos: Cerrado, Abierto, Plano.

La fuerza de la Gravedad está presente por todo el Universo. Es la responsable de formar nuevas estrellas en las Nebulosas, de tener nuestros pies pegados a la superficie del planeta, de mantener unidos los planetas al Sol, las estrellas en las galaxias, las galaxias en los cúmulos y los cúmulos en los super-cúmulos.

Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado anteriormente para comprender que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de condiciones de partida especiales.

Gráfico: La “inflación” es un breve periodo de expansión acelerada durante las primeras etapas de la Historia del Universo.

El equipo del WMAP ha informado de la primera detección directa de la pre-estelar de helio, proporcionando una prueba importante para la predicción del Big Bang

 Una de las predicciones clave del modelo del big bang caliente es que la mayoría del helio en el universo fue sintetizado en el universo primitivo caliente sólo unos minutos después del Big Bang. Anteriormente, los cosmólogos estudiaron viejas estrellas para inferir la abundancia de helio antes de que hubiera estrellas. Los datos de WMAP, en combinación con la menor escala de datos de los experimentos de ACBAR y cuádruples, muestran los efectos del helio en los patrones de microondas en el cielo, lo que indica la presencia de helio mucho antes de las primeras estrellas.

Composición del Universo

Sobre la composición del Universo, algunos han llegado a decir: “Podemos concretar de manera muy exacta con resultados fiables de los últimos análisis de los datos enviados por WMAP que, estos resultados, muestran un espectro de fluctuaciones gaussiano y (aproximadamente) invariante frente a escala que coincide con las predicciones de los modelos inflacionarios más generales.” (¿)

 

Munca he estado de acuerdo con este reparto. Es inadmisible que, se le otorgue el mayor índice a una materia que no hemos visto, no sabemos lo que es, ni tenemos idea de cómo se generó, o con qué clase de partículas está conformada, o, …muchas más incognitas que continúan sin tener una respuesta y, sin embargo, ahí estamos erre que erre con la dichosa “materia oscura” que debe entenderse como: ¡No tenemos ni idea del por qué, las galaxias se alejan las unas de las otras a la velocidad que lo hacen y que no es coincidente con la materia que vemos!

Así y según los cosmólogos, el universo (se supone) estaría compuesto de un 4 por 100 de materia bariónica, un 23 por 100 de materia oscura no bariónica y un 73 por 100 de energía oscura. Además, los datos dan una edad para el universo que está en 13’7 ± 0’2 ×109 años, y un tiempo de 379 ± 8×103 años para el instante en que se liberó la radiación cósmica de fondo. Otro resultado importante es que las primeras estrellas se formaron sólo 200 millones de años después del Big Bang, mucho antes de lo que se pensaba hasta ahora.

Claro que, todo eso, ¡se supone!

emilio silvera