miércoles, 30 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La gran aventura de estar aquí para poder “ver” tantas...

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Lo cierto es que, sin excepción, todo es una gran aventura que comienza cuando nacemos. Sin embargo, no sabemos como puede terminar pero, eso sí, todas ellas son emocionantes y conllevan los misterios de fascinantes incertidumbres, nunca sabremos lo que pasará “mañana” toda vez que no hemos llegado a comprender, en toda su plenitud, a ninguna de estas historias e incluso, de algunas, desconocemos hasta su comienzo y, por ello, nos vemos en la necesidad de inventarlo. Claro que, lo que sucede primero no es necesariamente el principio.

 

Imagen relacionada

    Con ésta atmósfera ígnea, la Tierra todavía se estaba enfriando, ya existían las primeras bacterias

Esta es la Imagen de la Tierra, nuestro planeta que desde hace cuatro mil millones de años da cobijo a la Vida. Su clima y su topografía varían continuamente, como las especies que viven en él. Y lo que es más espectacular,  hemos descubierto que todo el universo de estrellas y galaxias está en un estado de cambio dinámico, en el que grandes cúmulos de galaxias se alejan de otros hacia un futuro que será muy diferente del presente. Ahora sabemos que, vivimos en un tiempo prestado.

 

Cuánto durará este cambio climático?

Políticos y vividores nos quieren vender el cuento del “Cambio Climático”. La Humanidad al completo no tiene medios y el poder de cambiar nada en ese sentido, ya que, es la propia Tierra la que se recicla y lo renueva todo para seguir adelante  y conseguir sus fines (acordaos de GAIA). Si miramos hacia atrás en el Tiempo, veremos que el cambio del clima es algo natural y que de manera periódica, la Tierra cambia mediante procesos naturales.

 

 

El universo

Ya sabemos que nada es eterno, ni el Universo lo es y cambia continuamente

Pero, a pesar del cambio incesante y la dinámica del universo visible, existen aspectos de la fábrica del Universo misteriosos en su inquebrantable constancia. Son esas misteriosas cosas invariables las que hace de nuestro Universo el que es y lo distinguen de otros mundos que pudiéramos imaginar. Cuando se conocen estas misteriosas constantes, podemos percibir que es como si hubiera un hilo dorado que teje una continuidad a través del espacio-tiempo que, inexorable, transcurre en la Naturaleza. Y, tales constancias, nos llevan a pensar que todas las cosas son iguales a lo largo del vasto Universo. Que fueron y serán las mismas en otros tiempos además de hoy.

 

 

La velocidad de la luz en el vacío, c, es una de esas misteriosas constancias que perduran a través del tiempo y del espacio, nunca varía. De hecho, quizá sin un substrato semejante de realidades  invariables no podrían existir corrientes superficiales de cambio ni ninguna complejidad de mente y materia. La velocidad de la luz, c, es una constante universal que marca el límite de velocidad del universo en el que nada, ninguna información, puede transmitirse más rápida que la velocidad de la luz. Einstein nos demostró que la velocidad de la luz en el vacío debería actuar como ese límite último de velocidad.

 

Resultado de imagen de La velocidad de la luz en el vacío

Con razón nos decía Planck:

La ciencia no puede resolver el misterio final de la Naturaleza. Y esto se debe a que, en el último análisis, nosotros mismos somos parte del misterio que estamos tratando de resolver.” 

 

La búsqueda de vida más allá de la Tierra - NASA

Todos se preguntan lo mismo: ¿Estamos solos en el Universo?

 

La carta perdida de Galileo que cuestiona lo heroico que fue su desafío  contra la Iglesia católica - BBC News Mundo

Un joven periodista soñó que viajaba en el Tiempo y entrevistaba a Galileo:

  • ¿Verdad maestro, que si se encuentran alienígenas sería un milagro?
  • No, joven amigo, el milagro sería que nos los encontramos.

Y, quizás por eso precisamente, será necesario que contactemos con otros seres inteligentes, con otras Civilizaciones de fuera de la Tierra para que, nos podamos conocer mejor, ya que, al compararnos con otras especies del Universo, podremos ver con diáfana claridad, quiénes somos que, precisamente, tiene mucho que ver con las constantes del universo, ya que, de ser distintas, no estaríamos aquí.

 

La hipótesis de Dios

 

El mundo que nos rodea es así porque está conformado por esas constantes de la Naturaleza que hacen que las cosas sean como las podemos observar. Le dan al universo su carácter distintivo y lo hace singular, distinto a otros que podría nuestra imaginación inventar. Estos números misteriosos, a la vez que dejan al descubierto nuestros conocimientos, también dejan al desnudo nuestra enorme ignorancia sobre el universo que nos acoge. Las medimos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invarianza; no podemos explicar sus valores.

137, es la constante de estructura fina en física cuántica. 137 es el  número primo más pequeño de tres dígitos distintos que sigue siendo primo  si se elimina cualquiera de sus dígitos.

137, es la constante de estructura fina en física cuántica.
137 es el número primo más pequeño de tres dígitos distintos que sigue siendo primo si se elimina cualquiera de sus dígitos.
El valor de la palabra Cábala es 137.

Nunca nadie ha explicado el valor numérico de ninguna de las constantes de la naturaleza. ¿Recordáis el 137? Ese número puro, adimensional, que guarda los secretos del electrón (e), de la luz (c) y del cuanto de acción (h). Hemos descubierto otros nuevos, hemos relacionado los viejos y hemos entendido su papel crucial para hacer que las cosas sean como son, pero la razón de sus valores sigue siendo un secreto profundamente escondido.

¡Nos queda mucho por descubrir! Pero, es cierto, que algo hemos avanzado y sabemos algunas cosas como, por ejemplo que…

 

 

Los campos magnéticos están presentes por todo el Universo. Hasta un diminuto (no por ello menos importante) electrón-crea, con su oscilación, su propio campo magnético, y,  aunque pequeño,  se le supone un tamaño no nulo con un radio ro, llamado el radio clásico del electrón, dado por r= e2/(mc2) = 2,82 x 10-13 cm, donde e y m son la carga y la masa, respectivamente del electrón y c es la velocidad de la luz.

 

Imagen relacionada

“La creciente distancia entre la imaginación del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.” 

El mundo que nosotros percibimos es “nuestro mundo“, el verdadero es diferente y como nos dice Planck en la oración entrecomillada, cada vez estamos más cerca de la realidad, a la que, aunque no nos pueden llevar nuestros sentidos, si no llevarán la intuición, la imaginación y el intelecto.

 

La naturaleza de la realidad y su percepción | Algor Cards

 

Está claro que la existencia de unas constantes de la Naturaleza nos dice que sí, que existe una realidad física completamente diferente a las realidades que la Mente humana pueda imaginar. La existencia de esas constantes inmutables dejan en mal lugar a los filósofos positivistas que nos presentan la ciencia como una construcción enteramente humana: puntos precisos organizados de una forma conveniente por una teoría que con el tiempo será reemplazada por otra mejor, más precisa. Claro que, tales pensamientos quedan fuera de lugar cuando sabemos por haberlo descubierto que, las constantes de la naturaleza han surgido sin que nosotros las hallamos invitado y, ellas se muestran como entidades naturales que no han sido escogidas por conveniencia humana.

 

 Las distintas constantes del Universo han sido puestas a prueba para comprobar si han cambiado a lo largo del tiempo.

Los cuásares están entre los objetos más distantes en el universo. La palabra cuásar o “quásar” es una contracción de las palabras “casi” y “estelar”, por ello son llamados así por su apariencia estelar. El cuásar más lejano hasta ahora es SDSS 1030 +0524 y se halla a unos 13000 millones de años-luz de distancia apenas unos 700 millones después de nacer el universo. La medición de la distancia de estos objetos se toma de la velocidad de alejamiento que presentan, dato que nos lo da el desplazamiento al rojo (z). Se cree que un cuásar nace cuando se fusionan dos galaxias y sus agujeros negros centrales quedan convertidos en este potente y energético objeto.

Todo es una aventura: El Universo, nuestro planeta, nuestras vidas.. : Blog  de Emilio Silvera V.130103cosmologia

 

El cuásar 3C191 fue localizado con un desplazamiento al rojo de 1,95 y por eso su luz salió cuando el universo tenía sólo una quinta parte de su edad actual, hace casi once mil millones de años, llevando información codificada sobre el valor de la constante de estructura fina en ese momento. Con la precisdión de las medidas alcanzables entonces, se encontró que la constante de estructura fina era la misma entonces que ahora dentro de un margen muy pequeño que se puede deber a la imprecisión de la medida:

α (z = 1,95/α(z = 0) = 0,97 ± 0,05

 

La Constante de la Estructura Fina - www.pedroamoros.com

       La Constante de la Estructura Fina

Poco después , en 1967, Bahcall y Schmidt observaron un par de líneas de emisión de oxígeno que aparecen en el espectro de cinco galaxias que emiten radioondas, localizadas con un desplazamiento hacia el rojo promedio de 0,2 (emitiendo así su luz hace unos dos mil millones de años: Aproximadamente la época en que el reactor de Oklo estaba activo en la Tierra y obtuvieron un resultado consistente con ausencia de cambio en la constante de estructura fina que era aún diez veces más fuerte:

α (z = 0,2)/α(z = 0) = 1,001 ± 0,002

 

Estas observaciones excluían rápidamente la propuesto por Gamow de que la constante de estructura fina estaba aumentando linealmente con la edad del universo. Si hubiese sido así, la razón α(z = 0,2)/α(z = 0) debería haberse encontrado con un valor próximo a 0,8.

 

[nebulosa20111%255B3%255D.jpg]

Una de las cuestiones más controvertidas en la cosmología es porque las constantes fundamentales de la naturaleza parecen finamente ajustadas para la vida. Una de estas constantes fundamentales es la constante de estructura fina o alfa, que es la constante de acoplamiento de la fuerza electromagnética (usualmente denotada g, es un número que determina la fuerza de una interacción) y equivale a 1/137,03599911.

 

La ilustración muestra cómo los rayos X de un cuasar distante, son filtrados al pasar por una nube de gas intergaláctico. Midiendo la cantidad de la disminución de la luz debido al oxígeno y otros elementos presentes en la nube los astrónomos pudieron estimar la temperatura, densidad y la masa de la nube de gas  (el cuasar PKS 2155-304).

 

 

Actualmente, el más potente método utilizado en estos experimentos dirige todo su potencial en la búsqueda de pequeños cambios  en la absorción por los átomos de luz procedentes de cuásares lejanos.  En lugar de considerar pares de lineas espectrales  en dobletes del mismo elemento, como el silicio,  considera la separación entre líneas causada por la absorción de la luz del cuásar por diferentes elementos químicos en nubes de gas situadas entre el cuásar y nosotros. Y, a todo esto, las cuatro fuerzas fundamentales siguen estando presentes.

No debemos descartar la posibilidad de que, seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el Universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que se cree la escala logarítmica de tamaño desde el átomo a las galaxias.  Todas las estructuras del Universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras, la  atracción (Expansión) y la repulsión (contracción).  Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla, así, el resultado es la estabilidad de la estrella.  En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos.  Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, ћ, c, G y mprotón.

 

 

α = 2πeћc ≈ 1/137
αG = (Gmp2)ћc ≈ 10-38

 

La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro.  Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el Universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales.  Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios.  Los átomos pueden tener propiedades diferentes.  La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la Naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas, no se puede llegar a saber porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

 

Es un gran mérito por nuestra parte que, nuestras mentes, puedan haber accedido a ese mundo mágico de la Naturaleza para saber ver primero y desentrañar después, esos números puros y adimensionales que nos hablan de las constantes fundamentales que hacen que nuestro Universo sea como lo podemos observar.

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137.  Ese número encierra más de lo que estamos preparados para comprender, me hace pensar y mi imaginación se desboca en múltiples ideas y teorías.  Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”.  El gran físico creía que no podríamos llegar a las verdades de la naturaleza solo por la observación y la experimentación.  Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos.

“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben.  En el cartel solo pondría esto: 137.  Ciento treinta y siete es el inverso de algo que lleva el nombre de constante de estructura fina”.

Este número guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba.  La constante de estructura fina responde también al nombre de “alfa” y sale de dividir el cuadrado de la carga del electrón,  por el producto de la velocidad de la luz y la constante de Planck.

 

 

Lo más notable de éste número es su a-dimensionalidad.  La velocidad de la luz, c, es bien conocida y su valor es de 299.792.458 m/segundo, la constante de Planck racionalizada, ћ, es ћ/2 = 1,054589 ×10 julios/segundo, la altura de mi hijo Emilio, el peso de mi amigo Kike (hay que cuidarse), etc., todo viene con sus dimensiones.  Pero resulta que cuando uno combina las magnitudes que componen alfa ¡se borran todas las unidades! El 137 está sólo: se exhibe desnudo a donde va.  Esto quiere decir que los científicos del undécimo planeta de una estrella lejana situada en un sistema solar de la Galaxia Andrómeda, aunque utilicen quién sabe qué unidades para la carga del electrón y la velocidad de la luz y que versión utilicen para la constante de Plancl,  también les saldrá el 137.  Es un número puro.  No lo inventaron los hombres.  Está en la naturaleza, es una de sus constantes naturales, sin dimensiones.

 

 

La física se ha devanado los sesos con el 137 durante décadas.  Werner Heisenberg (el que nos regaló el Principio de Incertidumbre en la Mecánica Cuántica), proclamó una vez que, todas las fuentes de perplejidad que existen en la mecánica cuántica se secarían si alguien explicara de una vez el 137.

¿Por qué alfa es igual a 1 partido por 137? El 137 es un número primo. Su inversa, 1/137, es un valor muy cercano al de la constante alfa, que (según la electrodinámica cuántica) caracteriza la interacción entre fotones y electrones. El nombre técnico de alfa es “constante de estructura fina“, y es una de las constantes físicas cuya predicción teórica mejor coincide con los datos experimentales.

Los físicos han demostrado que el valor de alfa es el que tiene que ser para que exista un Universo como el nuestro. De hecho, si alfa variara apenas un poco (menos del 5%), el carbono no se produciría en los hornos estelares y, la vida, tal como la concemos, estaría ausente.

 

 

Nosotros, los humanos del planeta Tierra, sabemos de todas esas cuestiones y la última lección que aprendemos de la manera en que números puros como α definen el mundo es el verdadero significado de que los mundos sean diferentes. El número puro que llamamos constante de estructura fina, e identificamos con α, es una combinación de la carga del electrón, e, la velocidad de la luz, c, y la constante de Planck, h. Inicialmente podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si c, h y c cambian de modo que sus valores que tienen unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas pero el valor de alfa (α) permaneciera igual, este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la Naturaleza. Si se duplica el valor de todas las masas, no se puede llegar a saber porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

¡Qué cosas! Tiene la Naturaleza que todo lo hace de manera que nosotros estemos aquí. Bueno, al menos así lo parece.

Emilio Silvera Vázquez

Equilibrio, estabilidad: el resultado de dos fuerzas contrapuestas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

File:Lagrange points2.svg

 

Curvas de potencial en un sistema de dos cuerpos (aquí el Sol y la Tierra), mostrando los cinco puntos de Lagrange. Las flechas indican pendientes alrededor de los puntos L –acercándose o alejándose de ellos. Contra la intuición, los puntos L4 y L5son máximos.

Los puntos de Lagrange, también denominados puntos L o puntos de libración, son las cinco posiciones en un sistema orbital donde un objeto pequeño, sólo afectado por la gravedad,  puede estar teóricamente estacionario respecto a dos objetos más grandes, como es el caso de un satélite artificial con respecto a la Tierra y la Luna.  Los puntos de Lagrange marcan las posiciones donde la atracción gravitatoria combinada de las dos masas grandes proporciona la fuerza centrípeta necesaria para rotar sincrónicamente con la menor de ellas. Son análogos a las órbitas geosincrónicas que permiten a un objeto estar en una posición «fija» en el espacio en lugar de en una órbita en que su posición relativa cambia continuamente. Una definición más precisa pero técnica es que los puntos de Lagrange son las soluciones estacionarias del problema de los tres cuerpos.

 

File:L2 rendering.jpg

                    Diagrama del sistema Sol-Tierra, que muestra el punto L2, más alejado que la órbita lunar.

El telescopio que suplió al viejo Hubble. Un dato curioso sobre este telescopio es que no estará situado en la órbita terrestre, se situará en el punto de Lagrange  L2.  Los puntos de Lagrange son las posiciones donde la gravedad del Sol y la Tierra se equilibran, de manera que un objeto puede permanecer estable, sin salir despedido hacia el espacio profundo. El James West se ha situado en esta posición es para aislarlo de la contaminación que existe en la órbita terrestre.

 

El telescopio James Webb capta sus primeras imágenes de una estrella - El Periódico de España

 

El James West Space Telescope o JWST durante mucho tiempo ha sido promocionado como el reemplazo para el telescopio espacial Hubble. El telescopio está considerado como uno de los proyectos más ambiciosos de la ciencia espacial emprendido. A pesar del enorme desafío, el telescopio se está acercando a la terminación. El telescopio ha servido como un aula técnico sobre las complejidades involucrada con un proyecto tan complejo. También ha servido para desarrollar nuevas tecnologías que son utilizadas por los ciudadanos promedio en sus vidas cotidianas.

 

 

En nuestro Universo todo resulta ser el equilibrio de dos fuerzas contrapuestas que se igualan y se equilibran para alcanzar la estabilidad que es requerida para que todo exista en ese nivel de normalidad que hace de nuestro universo el que podemos observar y, los fenómenos que se producen, los cambios, siempre van encaminados a eso, a conseguir ese equilibrio que observamos.

CORRIENTE ELÉCTRICA

Fuerzas positivas y negativas hacen que el núcleo de los átomos sea estable y las galaxias están sujetas por la Gravedad que mantiene las estrellas juntas y que no dejan que la expansión las pueda deshacer. El el núcleo de los átomos están los protones cargados con fuerzas positivas que atraen el mismo número de electrones que orbitan a su alrededor, y, al estar cargados con fuerzas negativas que se equilibran con las de los protones, el átomo es muy estable.

 

Qué son los agujeros negros? – Cosillas Interesantesagosto 2015 – Ciencia de Sofá

El núcleo se expande y la fuerza de Gravedad la reduce, lo que hace el equilibrio de la estrella

Cuando hablamos de equilibrio lo estamos haciendo del estado en el que un sistema tiene su energía distribuida de la manera estadísticamente más probable, un estado del sistema en el que las fuerzas, influencia, reacciones, etc., se compensan las unas a las otras de manera que no se permiten cambios y prevalece la estabilidad.

 

                      Equilibrio estático en tres dimensiones

Un cuerpo se encuentra en equilibrio estático si las resultantes de todas las fuerzas y todos los pares que actúan en él son ambas cero; se si halla en reposo, estará ciertamente no acelerado. Un cuerpo de ese tipo en el reposo se encuentra en equilibrio estable si después de un ligero desplazamiento vuelve a su posición original. Existen diversas variantes que no merece la pena mencionar aquí para no hacer aburrido el trabajo.

También existe el equilibrio térmico y se dice que un cuerpo está en equilibrio térmico si no hay ningún intercambio de calor dentro de él o entre el y sus alrededores. Un sistema se encuentra en equilibrio térmico cuando cuando una reacción y su inversa está teniendo lugar a la misma velocidad. Estos son ejemplos de equilibrios dinámicos, en los que la actividad en un sentido está compensada por la actividad en el sentido inverso. De nuevo el equilibrio o estabilidad creado por fuerzas contrapuestas.

 

 

 

La energía se equipara según una teoría de propuesta por Ludwig Boltzmann y fundamentada teóricamente por James Clerk Maxwell, en virtud de la cual la energía de las moléculas de un gas en una muestra grande en equilibrio térmico está dividida por igual entre todos los grados de libertad disponibles, siendo la energía media de cada grado de libertad kT/2, donde k es la constante de Boltzmann y T es la temperatura termodinámica. La proposición no es en general cierta si los efectos cuánticos son importantes, pero frecuentemente es una buena aproximación.

 

File:SymmetryOfLifeFormsOnEarth.jpg

El cuadro nos muestra una Ilustración de los distintos tipos de simetría en las formas orgánicas (Field Museum, Chicago).

Claro que si hablamos de simetrías, nos podríamos perder un un laberinto de clases y formas: esférica, cilíndrica, reflectiva, traslacional, helicoidal, de rotación, de ampliación, bilateral, radial… (muchas otras). Pero si nos referimos de manera simple a lo que es o entendemos por una simetría, nos estaremos refiriendo al conjunto de invariancias de un sistema.

 

 

Al aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado. La simetría es estudiada matemáticamente usando teoría de grupos. Algunas de las simetrías son directamente físicas. Algunos ejemplos son las reflexiones y rotaciones de las moléculas y las transformaciones de las redes cristalinas.

 

 

Las dos fuerzas contrapuestas en los seres vivos inteligentes de nuestro mundo, está precisamente en nosotros mismos: El hombre y la Mujer, juntos, forman un sólo ente de equilibrio perfecto que nos lleva al más alto nivel de simetría y belleza, y, tal equilibrio y conjunción, hace posible el milagro de la replicación.

 

Dibujo20130330 atrap result - cpt invariance - new limit

 

“La Trampa de Antihidrógeno (ATRAP) es un pequeño experimento en el CERN cuyo objetivo es comparar la antimateria con la materia, en concreto, átomos de anti-hidrógeno (formados por un antiprotón y un positrón, o antielectrón) con átomos de hidrógeno (formados por un protón y un electrón). Acaban de publicar la medida más precisa del momento magnético del antiprotón, 2,792847356(23) veces el magnetón nuclear, que coincide con el del protón en al menos cinco partes por millón (0,0005%), una nueva medida (directa) de la invarianza CPT”

(Francis (th)E mule Science’s News).

Existen simetrías más generales y abstractas como la invariancia CPT y las simetrías asociadas a las teorías gauge (tendríamos que mirar en simetrías rotas y supersimetría para ampliar el concepto en su más amplio espectro y concepción de lo que la simetría es. En el Universo, las simetrías están por todas partes: Estrellas, mundos, galaxias…

Me encantó leer:

 

Instituto de Física Corpuscular (IFIC) | LinkedInLocalización y contacto | Instituto de Física Corpuscular

 “Resulta gratificante descubrir que en nuestro país, en el Instituto de Física Corpuscular de la Universidad de València, un grupo de científicos ha liderado una importante investigación internacional para descubrir directamente la ruptura de la simetría del tiempo en las leyes físicas”

La ruptura de simetría del tiempo en las leyes físicas. ¿Por qué?

El Físico J. Bernabeu decía:

 

Confirman que la antimateria cae, como la materia, a causa de la gravedad

“Hay una razón que se entiende inmediatamente. Aquellas partículas elementales con que se descubrió, y después confirmó, la asimetría de materia/antimateria, y que son precisamente en las que esperamos la ruptura de simetría temporal, son partículas inestables que se desintegran en el tiempo. Si una partícula se desintegra es imposible poder utilizarla para poder hacer el sentido opuesto del movimiento. Esta razón, que parece tan clara, es efectivamente el impedimento básico por el que un test de la simetría por inversión temporal en partículas que se desintegran no había podido hacerse.”

Por mi parte (Mente inquieta e inconforme con cualquier explicación a la primera), deja llevar y piensa que, la ruptura de simetría temporal del Tiempo es debida a que, se interrumpe su discurrir en presencia de escenarios distintos, ya que, se ha sabido que cerca de un agujero negro se ralentiza o incluso podría llegar a pararse por completo. ¿No es eso una asimetría temporal? ¿ero… ¡Qué sabré Yo!?

Emilio Silvera Vázquez

Nada es, lo que a primera vista nos pueda parecer.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Representación del campo de Higgs | Imagen: CERN

 

 

 

 

       Representación del campo de Higgs

Si este de arriba fuese el Campo de Higgs, esas briznas ¿serían las cuerdas vibrantes que dan masa a las partículas? Todos oímos hablar del Campo de Higgs pero, pocos saben que la idea, no es de ahora y que, en realidad, ese campo se descubrió hace muchos siglos en la antigua India, con el nombre de maya, que sugiere la idea de un velo de ilusión para dar peso a los objetos del mundo material.

El problema de la masa no está resuelto. Todas las partículas tienen masas diferentes pero nadie sabe de donde salen sus valores. No existe fórmula alguna que diga, por ejemplo, que el quark extraño debe pesar el doble  (o lo que sea) que el quark arriba, o que el electrón debe tener 1/200 (u otra proporción) de la masa del muón. Las masas son de todo tipo y sería preciso que, de una vez por todas, pudiéramos conocer el por qué, la Naturaleza, ha decidido que así sea. Según lo que podemos saber de otras cuestiones, cuando es así es porque existe una razón para ello pero, ¿qué razón? En realidad, ¿por qué han de tener masa las partículas? ¿de dónde les viene la masa?

 

Resultado de imagen de El Bosón de Higgs"

 

Nos dijeron que lo habían encontrado y pasado el tiempo de jolgorio… Silencio

Leer más

Dos verdades incompatibles

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Resultado de imagen de La explosión atómica

Lo cierto es que dentro del átomo están encerradas todas las energías de los infiernos. El 6 de agosto de 1945 el mundo se pudo enterar de ello cuando, desde Hiroshima llegaron las noticias de que el hombre había desembarcado en la parte oscura de ese minúsculo objeto que llamamos átomo. Los misterios que dentro de él se esconden obsesionaron durante todo el siglo XX a los mejores físicos del mundo. Sin embargo, el “átomo” había sido durante más de dos mil años una de las más cercanas preocupaciones de los llamados “filósofos naturales”. La misma palabra venía a significar la unidad mínima de la materia que, en aquellos tiempos se suponía indestructible. Ahora, para nosotros, átomo es un término uso corriente que, sin embargo, no ha dejado de ser una amenaza y una promesa sin precedente.

 

Explicación del modelo atómico de Demócrito

                                                Demócrito

“El Universo se compone sólo de átomos y de vacío, todo lo demás, es opinión e ilusión”

 

El primer filósofo atómico fue un griego legendario, Leucipo, que se cree vivió en el siglo V a. C.

Demócrito de Abdera, su discípulo, que dio al atomismo su forma clásica como filosofía, le divertían tanto las locuras de los hombres que era conocido como el “filósofo risueño”. Sin embargo, fue uno de los primeros que se opuso a la idea de la decadencia de la Humanidad a partir de una Edad de Oro mítica, y predicó siempre con el progreso. Si todo el Universo estaba compuesto solamente de átomos y vacío, no sólo no era infinitamente complejo, sino que, de un modo u otro, era inteligible, y seguramente el poder del hombre evolucionado no tendría límite.

El futuro del libro. ¿Esto matará a eso? - Nueva Revista

Lo cierto es que, nuestro futuro es un libro en blanco y, lo que se pueda leer en él, aún no está escrito pero… ¿depende de nosotros?

Lucrecio (c. 95 a, C. – c. 55 a. C.) perpetuó en De rerum natura, uno de los más importantes poemas latinos, al atomismo antiguo. Con la intención de liberar al pueblo del temor a los dioses, el poeta demostró que el mundo entero estaba constituido por vacío y átomos, los cuales se movían según sus leyes propias; que el alma moría con el cuerpo y que por consiguiente no había razón para temer a la muerte o a los poderes sobrenaturales.

Lucrecio decía que comprender la Naturaleza era el único modo de hallar la paz de espíritu, y, como era de esperar, los padres de la Iglesia que pregonaban la vida eterna, atacaron sin piedad a Lucrecio y este fue ignorado y olvidado durante toda la Edad Media que, como sabéis, fue la culpable de la paralización del saber de la Humanidad. Sin embargo, Lucrecio fue, una de las figuras más influyentes del Renacimiento.

 

 

Llamamos Renacimiento al gran movimiento literario, artístico y de pensamientos, iniciado en Italia en el siglo XIV de donde se pudo esparcir por toda Europa, cambiando la vida de los ideales de la Sociedad. Su principal característica fue la veneración a la cultura griega y bajo su impulso podemos decir que florecieron las artes en el mundo literario y artístico en general.

Entre las causas que facilitaron el Renacimiento cabrían destacar:

– La riqueza de algunas ciudades Italianas, originadas por el comercio y la industria.

– Las familias enriquecidas y los Papas protegieron las artes.

– La caída de Constantinopla que obligó a los sabios bizantinos a venirse a Europa.

– Los grandes descubrimientos geográficos de españoles y portugueses.

– La difusión de Inventos: la imprenta, el papel, la tinto, la pólvora, la brújula… ¡el telescopio

Trabajo presentado en la XIX Edición del Carnaval de la Física.

El mundo de la Física tiene planteado un gran problema y los físicos son muy conscientes de ello, conocen su existencia desde hace décadas. El problema es el siguiente:

 

La realtividad general nos dice que en presencia de masa, se curva el espacio y se distorsiona el Tiempo

Existen dos pilares fundamentales en los cuales se apoya toda la física moderna. Uno es la relatividad general de Albert Einstein, que nos proporciona el marco teórico para la comprensión del universo a una escala máxima: estrellas, galaxias, cúmulos (o clusters) de galaxias, y aún más allá, hasta la inmensa expansión del propio universo.

 

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

 

El otro pilar es la mecánica cuántica, que en un primer momento vislumbro Max Planck y posteriormente fue desarrollada por W. Heisemberg, Schrödinger, el mismo Einstein, Dirac, Niels Bohr y otros, que nos ofrece un marco teórico para comprender el universo en su escala mínima: moléculas, átomos, y así hasta las partículas subatómicas, como los electrones y quarks.

Durante años de investigación, los físicos han confirmado experimentalmente, con una exactitud casi inimaginable, la practica totalidad de las predicciones que hacen las dos teorías. Sin embargo, estos mismos instrumentos teóricos nos llevan a una conclusión inquietante: tal como se formulan actualmente, la relatividad general y la mecánica cuántica no pueden ser ambas ciertas a la vez.

 

 

Nos encontramos con que las dos teorías en las que se basan los enormes avances realizados por la física durante el último siglo (avances que han explicado la expansión de los cielos y la estructura fundamental de la materia) son mutuamente incompatibles. Cuando se juntan ambas teorías, aunque la formulación propuesta parezca lógica, aquello explota; la respuesta es un sinsentido que nos arroja un sin fin de infinitos a la cara.

Así que si tú, lector, no has oído nunca previamente hablar de este feroz antagonismo, te puedes preguntar a que  será debido. No es tan difícil encontrar la respuesta. Salvo en algunos casos muy especiales, los físicos estudian cosas que son o bien pequeñas y ligeras (como los átomos y sus partes constituyentes), o cosas que son enormes y pesadas (como estrellas de neutrones y agujeros negros), pero no ambas al mismo tiempo. Esto significa que sólo necesitan utilizar la mecánica cuántica, o la relatividad general, y pueden minimizar el problema que se crea cuando las acercan demasiado; las dos teorías no pueden estar juntas. Durante más de medio siglo, este planteamiento no ha sido tan feliz como la ignorancia, pero ha estado muy cerca de serlo.

 

“… de Estados Unidos (NASA,  registraron las ráfagas de viento más rápidas nunca antes detectadas alrededor de un agujero negro.”

No obstante, el universo puede ser un caso extremo. En las profundidades centrales de un agujero negro se aplasta una descomunal masa hasta reducirse a un tamaño minúsculo. En el momento del Bing Bang, la totalidad del universo salió de la explosión de una bolita microscópica cuyo tamaño hace que un grano de arena parezca gigantesco. Estos contextos son diminutos y, sin embargo, tienen una masa increíblemente grande, por lo que necesitan basarse tanto en la mecánica cuántica como en la relatividad general.

Por ciertas razones, las fórmulas de la relatividad general y las de la mecánica cuántica, cuando se combinan, empiezan a agitarse, a traquetear y a tener escapes de vapor como el motor de un viejo automóvil. O dicho de manera menos figurativa, hay en la física preguntas muy bien planteadas que ocasionan esas respuestas sin sentido, a que me referí antes, a partir de la desafortunada amalgama de las ecuaciones de las dos teorías.

Aunque se desee mantener el profundo interior de un agujero negro y el surgimiento inicial del universo envueltos en el misterio, no se puede evitar sentir que la hostilidad entre la mecánica cuántica y la relatividad general está clamando por un nivel más profundo de comprensión.

¿Puede ser creíble que para conocer el universo en su conjunto tengamos que dividirlo en dos y conocer cada parte por separado? Las cosas grandes una ley, las cosas pequeñas otra.

 

 Resultado de imagen de efecto fotoelectrico einstein

 

Einstein que con sus trabajos (algunos maravillosos), como el Efecto Fotoeléctrico que le valió el Nóbel, fue uno de los padres de la Mecánica cuántica y, sin embargo, pasó gran parte de su vida combatiéndola, a él no le entraba en la cabeza que aquella teoría de lo muy pequeño, fuese incompatible con la suya de la Relatividad General. Aquellos dons “mundos” de lo muy grande y lo muy pequeño aparecían incompatibles y, cuando los físicos trataban de unirlos, aunque el planteamiento fuese racional y muy bien conformado, el resultado era como una gran explosión de indinitos sin sentido… ¿Por qué sería?

No creo que eso pueda ser así. Mi opinión es que aún no hemos encontrado la llave que abre la puerta de una teoría cuántica de la gravedad, es decir, una teoría que unifique de una vez por todas las dos teorías más importantes de la física: mecánica cuántica + relatividad general.

 

El objeto más luminoso del Universo local

 

Allí, en esa lejana región donde dicen que están las cuerdas vibrantes de la Teoría M, según nos dicen, subyace esa teoría cuántica de la Gravedad, toda vez que, ambas teorías, la de Einstein y la de Planck, la de lo muy grande y lo muy pequeño, conviven sin problemas y, no sólo no se rechazan sino que, se complementan en un todo armonioso.

Si es así, la teoría de supercuerdas ha venido a darme la razón. Los intensos trabajos de investigación llevada a cabo durante los últimos 20 años demuestran que puede ser posible la unificación de las dos teorías cuántica y relativista a través de nuevas y profundas matemáticas topológicas que han tomado la dirección de nuevos planteamientos más avanzados y modernos, que pueden explicar la materia en su nivel básico para resolver la tensión existente entre las dos teorías.

En esta nueva teoría de supercuerdas se trabaja en 10, 11 ó en 26 dimensiones, se amplía el espacio ahora muy reducido y se consigue con ello, no sólo el hecho de que la mecánica cuántica y la relatividad general no se rechacen, sino que por el contrario, se necesitan la una a la otra para que esta nueva teoría tenga sentido. Según la teoría de supercuerdas, el matrimonio de las leyes de lo muy grande y las leyes de lo muy pequeño no sólo es feliz, sino inevitable.

 

cuerdascuantica.jpg

 

Esto es sólo una parte de las buenas noticias, porque además, la teoría de las supercuerdas (abreviando teoría de cuerdas) hace que esta unión avance dando un paso de gigante. Durante 30 años, Einstein se dedicó por entero a buscar esta teoría de unificación de las dos teorías, no lo consiguió y murió en el empeño; la explicación de su fracaso reside en que en aquel tiempo, las matemáticas de la teoría de supercuerdas eran aún desconocidas.  Sin embargo, hay una curiosa coincidencia en todo esto, me explico:

Cuando los físicos trabajan con las matemáticas de la nueva teoría de supercuerdasEinstein, sin que nadie le llame, allí aparece y se hace presente por medio de las ecuaciones de campo de la relatividad general que, como por arte de magia, surgen de la nada y se hacen presentes en la nueva teoría que todo lo unifica y también todo lo explica; posee el poder demostrar que todos los sorprendentes sucesos que se producen en nuestro universo (desde la frenética danza de una partícula subatómica que se llama quark hasta el majestuoso baile de las galaxias o de las estrellas binarias bailando un valls, la bola de fuego del Big Bang y los agujeros negros) todo está comprendido dentro de un gran principio físico en una ecuación magistral.

 

Resultado de imagen de Teoría de supercuerdas

 

Esta nueva teoría requiere conceptos nuevos y matemáticas muy avanzados y nos exige cambiar nuestra manera actual de entender el espacio, el tiempo y la materia. Llevará cierto tiempo adaptarse a ella hasta instalarnos en un nivel en el que resulte cómodo su manejo y su entendimiento. No obstante, vista en su propio contexto, la teoría de cuerdas emerge como un producto impresionante pero natural, a partir de los descubrimientos revolucionarios que se han realizado en la física del último siglo. De hecho, gracias a esta nueva y magnifica teoría, veremos que el conflicto a que antes me refería existente entre la mecánica cuántica y la relatividad general no es realmente el primero, sino el tercero de una serie de conflictos decisivos con los que se tuvieron que enfrentar los científicos durante el siglo pasado, y que fueron resueltos como consecuencia de una revisión radical de nuestra manera de entender el universo.

El primero de estos conceptos conflictivos, que ya se había detectado nada menos que a finales del siglo XIX, está referido a las desconcertantes propiedades del movimiento de la luz.

Isaac Newton y sus leyes del movimiento nos decía que si alguien pudiera correr a una velocidad suficientemente rápida podría emparejarse con un rayo de luz que se esté emitiendo, y las leyes del electromagnetismo de Maxwell decían que esto era totalmente imposible. Einstein, en 1.905, vino a solucionar el problema con su teoría de la relatividad especial y a partir de ahí le dio un vuelco completo a nuestro modo de entender el espacio y el tiempo que, según esta teoría, no se pueden considerar separadamente y como conceptos fijos e inamovibles para todos, sino que por el contrario, el espacio-tiempo era una estructura maleable cuya forma y modo de presentarse dependían del estado de movimiento del observador que lo esté midiendo.

 

Resultado de imagen de La velocidad de la luz

La velocidad de la luz es una constante universal y, cuando es emitida por un cuerpo celeste de forma isotrópica, corre en todas las direcciones a la misma velocidad de 299.792.458 metros por segundo. No importa si la fuente emisora está en movimiento o en reposo, la velocidad es invariante.

El escenario creado por el desarrollo de la relatividad especial construyó inmediatamente el escenario para el segundo conflicto. Una de las conclusiones de Einstein es que ningún objeto (de hecho, ninguna influencia o perturbación de ninguna clase) puede viajar a una velocidad superior a la de la luz. Einstein amplió su teoría en 1915 – relatividad general – y perfeccionó la teoría de la gravitación de Newton, ofreciendo un nuevo concepto de la gravedad que estaba producida por la presencia de grandes masas, tales como planetas o estrellas, que curvaban el espacio y distorsionaban el tiempo.

Tales distorsiones en la estructura del espacio y el tiempo transmiten la fuerza de la gravedad de un lugar a otro. La luna no se escapa y se mantiene ahí, a 400.000 Km de distancia de la Tierra, porque está influenciada por la fuerza de gravedad que ambos objetos crean y los mantiene unidos por esa cuerda invisible que tira de la una hacia la otra y viceversa. Igualmente ocurre con el Sol y la Tierra que, separados por 150 millones de kilómetros, están influidos por esa fuerza gravitatoria que hace girar a la Tierra (y a los demás planetas del Sistema Solar) alrededor del Sol.

 

 

Así las cosas, no podemos ya pensar que el espacio y el tiempo sean un telón de fondo inerte en el que se desarrollan los sucesos del universo, al contrario; según la relatividad especial y la relatividad general, son actores que desempeñan un papel íntimamente ligado al desarrollo de los sucesos.

El descubrimiento de la relatividad general, aunque resuelve un conflicto, nos lleva a otro. Durante tres décadas desde 1.900, en que Max Planck publicó su trabajo sobre la absorción o emisión de energía de manera discontinua y mediante paquetes discretos a los que él llamo cuantos, los físicos desarrollaron la mecánica cuántica en respuesta a varios problemas evidentes que se pusieron de manifiesto cuando los conceptos de la física del siglo XIX se aplicaron al mundo microscópico. Así que el tercer conflicto estaba servido, la incompatibilidad manifiesta entre relatividad general y mecánica cuántica.

 

 

La forma geométrica ligeramente curvada del espacio que aparece a partir de la relatividad general, es incompatible con el comportamiento microscópico irritante y frenético del universo que se deduce de la mecánica cuántica, lo cual era sin duda alguna el problema central de la física moderna.

Las dos grandes teorías de la física, la relatividad general y la mecánica cuántica, infalibles y perfectas por separado, no funcionaban cuando tratábamos de unirlas resulta algo incomprensible, y, de todo ello podemos deducir que, el problema radica en que debemos saber como desarrollar nuevas teorías que modernicen a las ya existentes que, siendo buenas herramientas, también nos resultan incompletas para lo que, en realidad, necesitamos.

 

Cuántica vs. Relatividad: ¿Por qué se Odian? - YouTube

La Cuántica y la Relatividad reflejan dos “mundos” incompatible, cuando tratan de juntarlas, aunque esté bien planteado el intento, aquello comienza a echar chispas por todas partes, aparecen los dichosos números infinitos, nada tiene sentido, es el caos.

Y, ante ese escenario, habría que preguntarse: ¿Si ambas teorías son ciertas, ¿Por qué no se acoplan y responden a una pregunta mayor?

Nadie ha sabido contestar a esa pregunta. Sin embargo, sospecho que hay algo que no hemos sabido contemplar, no hemos mirado más profundamente para encontrar el eslabón que enlaza a las dos teorías.

Parece, tiene todos los indicios, los físicos intuyen que, en la Teoría de cuerdas subyace una teoría de la Gravedad Cuántica, y, allí, ambas teorías “viven” juntas en perfecta armonía… ¿Será por que están en un universo de 11 dimensiones?

Puede ser pero, el problema está en que no podemos verificar esa teoría de super-cuerdas, nos dicen que se necesitaría una energía de 1019 GeV, lo que no tendremos ni en los próximos 50 años.

Emilio Silvera Vázquez

La maravilla de… ¡los cuantos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

La constante de Planck –

 

Es una magnitud fundamental llamada cuanto de acción y es el Ser de la Mecánica Cuántica. Planck lo llamó “cuanto” y lo simbolizó con la letra h. 

La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos. Planck escribió un artículo de ocho páginas y el resultado fue que cambió el mundo de la física y aquella páginas fueron la semilla de la futura ¡mecánica cuántica! que, algunos años más tardes, desarrollarían físicos como Einstein (Efecto fotoeléctrico), Heisenberg (Principio de Incertidumbre), Feynman, Bhor, Schrödinger, Dirac…

 

 

 

 La expresión radiación se refiere a la emisión continua de energía de la superficie de todos los cuerpos. Los portadores de esta energía son las ondas electromagnéticas  producidas por las vibraciones de las partículas cargadas  que forman parte de los átomos y moléculas de la materia. La radiación electromagnética que se produce a causa del movimiento térmico de los átomos y moléculas de la sustancia se denomina radiación térmica o de temperatura.

 

TEMA 8. Teoría cuántica | 8.7. Radiación del cuerpo negro

 Ley de Planck para cuerpos a diferentes temperaturas.

Curvas de emisión de cuerpos negros a diferentes temperaturas comparadas con las predicciones de la física clásica anteriores a la ley de Planck.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía.

 

 

Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico o una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a – 273,15 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de la luz visible.

 

            Acero al  “rojo vivo”, el objeto está radiando en la zona de la luz visible.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:

E = hv

Donde E es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

 

 

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.

El príncipe francés Louis Victor de Broglie, dándole otra vuelta a la teoría, que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta dirección del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

Átomo | Genially

 

Es curioso el comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Edwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar los cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de onda cuántica”.

 

 

No hay duda de que la Mecánica Cuántica funciona maravillosamente bien. Sin embargo, surge una pregunta muy formal: ¿qué significan realmente esas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá por el año 1687, formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo lo que significaban sus ecuaciones: que los planetas están siempre en una posición bien definida en el espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades con el tiempo.

Pero para los electrones todo esto es muy diferente. Su comportamiento parece estar envuelto en la bruma. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

 

Interpretación de Copenhague - Wikipedia, la enciclopedia libre

 

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la “interpretación de Copenhague” de la Mecánica Cuántica. En vez de decir que el electrón se encuentra en el punto x o en el punto y, nosotros hablamos del estado del electrón. Ahora no tenemos el estado “x” o el estado “y”, sino estados “parcialmente x” o “parcialmente y. Un único electrón puede encontrarse, por lo tanto, en varios lugares simultáneamente. Precisamente lo que nos dice la Mecánica Cuántica es como cambia el estado del electrón según transcurre el tiempo.

Un “detector” es un aparato con el cual se puede determinar si una partícula está o no presente en algún lugar pero, si una partícula se encuentra con el detector su estado se verá perturbado, de manera que sólo podemos utilizarlo si no queremos estudiar la evolución posterior del estado de la partícula. Si conocemos cuál es el estado, podemos calcular la probabilidad de que el detector registre la partícula en el punto x.

 

 

Las leyes de la Mecánica Cuántica se han formulado con mucha precisión. Sabemos exactamente como calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas simultáneamente. Por ejemplo, podemos determinar la velocidad de una partícula con mucha exactitud, pero entonces no sabremos exactamente dónde se encuentra; o, a la inversa. Si una partícula tiene “espín” (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar con sencillez de dónde viene esta incertidumbre, pero hay ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar.

Dualidad onda corpúsculo - Wikipedia, la enciclopedia libre

                           ¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?

Para que las reglas de la Mecánica Cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuanto más grande y más pesado es un objeto más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica.

Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por “holismo”, y que se podría definir como “el todo es más que la suma de las partes”.

Bien, si la Física nos ha enseñado algo, es justamente lo contrario: un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (las partículas): basta que uno sepa sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que yo entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes.

 

 

Por ejemplo, la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros tales como Edwin Schrödinger, siempre presentaron serias objeciones a esta interpretación.

Quizá funcione bien, pero ¿dónde está exactamente el electrón, en el punto x o en el punto y? Em pocas palabras, ¿dónde está en realidad?, ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

 

 

Hasta hoy, muchos investigadores coinciden con la actitud pragmática de Bohr. Los libros de historia dicen que Bohr demostró que Einstein estaba equivocado. Pero no son pocos,  incluyéndome a mí, los que sospechamos que a largo plazo el punto de vista de Einstein volverá: que falta algo en la interpretación de Copenhague. Las objeciones originales de Einstein pueden superarse, pero aún surgen problemas cuando uno trata de formular la mecánica cuántica para todo el Universo (donde las medidas no se pueden repetir) y cuando se trata de reconciliar las leyes de la mecánica cuántica con las de la Gravitación… ¡Infinitos!

La mecánica cuántica y sus secretos han dado lugar a grandes controversias, y la cantidad de disparates que ha sugerido es tan grande que los físicos serios ni siquiera sabrían por donde empezar a refutarlos. Algunos dicen que “la vida sobre la Tierra comenzó con un salto cuántico”, que el “libre albedrío” y la “conciencia” se deben a la mecánica cuántica: incluso fenómenos paranormales han sido descritos como efectos mecano-cuánticos.

 

 

Yo sospecho que todo esto es un intento de atribuir fenómenos “ininteligibles” a causas también “ininteligibles” (como la mecánica cuántica) dónde el resultado de cualquier cálculo es siempre una probabilidad, nunca una certeza.

Claro que, ahí están esas teorías más avanzadas y modernas que vienen abriendo los nuevos caminos de la Física y que, a mi no me cabe la menor duda, más tarde o más temprano, podrá explicar con claridad esas zonas de oscuridad que ahora tienen algunas teorías y que Einstein señalaba con acierto.

 

El estado actual de la teoría M - La Ciencia de la Mula Francis

 

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? ¿Por qué están ahí? ¿Quiere eso decir que la Teoría de Einstein y la Mecánica Cuántica podrán al fin unirse en pacifico matrimonio sin que aparezcan los dichosos infinitos?

Bueno, eso será el origen de otro trabajo que también, cualquier día de estos, dejaré aquí para todos ustedes.

Emilio Silvera Vázquez