Mar
1
La perfección imperfecta
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (5)
Me refiero al Modelo estándar y, algunos han llegado a creer que sólo faltan algunos detalles técnicos y, con ellos, la física teórica está acabada. Tenemos un modelo que engloba todo lo que desamos saber acerca de nuestro mundo físico. ¿Qué más podemos desear?
Bueno, lo que hasta el momento hemos logrado no está mal del todo pero, no llega, ni con mucho, a la perfección que la Naturaleza refleja y que, nosotros perseguimos sin llegar a poder agarrar sus múltiples entresijos y parámetros que conforman ese todo en el que, sin ninguna clase de excusas, todo debe encajar y, de momento, no es así.
Fuente: Prog. Part. Nucl. Phys. 106: 68-119 (2019).
Para la mayoría de los físicos el modelo estándar es una teoría efectiva: el límite a baja energía de una teoría más fundamental desconocida. El lagrangiano ℒ del modelo estándar es un operador de dimensión cuatro (ya que la acción es S = ∫ℒ d⁴x). La física más allá del modelo estándar modificará dicho lagrangiano añadiendo términos de mayor dimensión; por ejemplo, ℒ + ∑ Cᵢ ?ᵢ /Λ², donde el sumatorio recorre los 2499 operadores ?ᵢ de dimensión seis y Λ es una nueva escala de energía (que será mucho mayor que la masa del quark top). El físico John Ellis (CERN) nos recuerda que ajustar estos 2500 parámetros (los ?ᵢ y Λ) usando las colisiones del LHC y otros colisionadores es imposible. La única solución es asumir simetrías que reduzcan dicho número parámetros. En su último artículo nos propone usar las simetrías SU(3)⁵ y SU(2)²×SU(3)³. Por supuesto, hay muchas otras alternativas.
La física de partículas se suele separar en física experimental (observacional), física teórica (fundamental) y física fenomenológica; las teorías efectivas son parte de esta última, siendo su objetivo desvelar los primeros indicios (lo que inglés se llama evidences) de física más allá del modelo estándar. Hoy en día disponemos de un conocimiento en teoría cuántica de campos suficiente para desarrollar de forma sistemática todas las teorías efectivas posibles; un elemento clave a tener en cuenta son las redefiniciones de campos, una redundancia cuya eliminación nos permite obtener lo que se llama una base de operadores. Una vez obtenida podemos ajustar sus parámetros con los datos de colisiones que se recaban en los grandes colisionadores de partículas (como el LHC en el CERN).
Por desgracia, el número de parámetros de estas teorías efectivas más allá del modelo estándar es enorme. John von Neumann decía que «con cuatro parámetros puedo ajustar un elefante, y con cinco puedo lograr que mueva su trompa» [LCMF, 27 may 2010]. Ajustar muchos parámetros, incluso cuando se dispone de una vasta cantidad de observaciones, requiere lidiar con el problema estadístico de las comparaciones múltiples (que en física de partículas se suele llamar look-elsewhere effect): pueden aparecer indicios espurios (señales con más de tres sigmas de significación estadística) que solo son falsos positivos. En un espacio de 2500 parámetros es muy fácil caer en este problema; incluso cuando se usa un espacio paramétrico mucho más pequeño (por ejemplo, la extensión supersimétrica mínima del modelo estándar, el modelo MSSM, tiene 124 parámetros libres).
Nadie dijo nunca que la búsqueda de física más allá del modelo estándar fuera sencilla. Y tampoco que fuera fácil de automatizar. La intuición física (que a veces se llama «búsqueda de la belleza») juega y jugará un papel fundamental en la labor de los físicos fenomenológicos (al menos hasta que no se les pueda sustituir por futuras inteligencias artificiales). El nuevo artículo es John Ellis, «SMEFT Constraints on New Physics Beyond the Standard Model,» arXiv:2105.14942 [hep-ph] (31 May 2021), que resume los resultados de John Ellis, Maeve Madigan, …, Tevong You, «Top, Higgs, Diboson and Electroweak Fit to the Standard Model Effective Field Theory,» Journal of High Energy Physics 2021: 279 (29 Apr 2021), doi: https://doi.org/10.1007/JHEP04(2021)279, arXiv:2012.02779 [hep-ph] (04 Dec 2020). También muestro resultados del artículo de Jens Erler, Matthias Schott, «Electroweak Precision Tests of the Standard Model after the Discovery of the Higgs Boson,» Progress in Particle and Nuclear Physics 106: 68-119 (2019), doi: https://doi.org/10.1016/j.ppnp.2019.02.007, arXiv:1902.05142 [hep-ph] (13 Feb 2019).

“El número de parámetros del modelo estándar, que está basado en interacciones gauge con simetrías SU(3)×SU(2)×U(1), depende de la física de los neutrinos (ignoramos si son fermiones de Dirac o de Majorana). Si los neutrinos no tuvieran masa serían 18 parámetros (llamados electrodébiles); en esta figura se añaden dos parámetros adicionales al final que están relacionados con la cromodinámica cuántica en régimen no perturbativo. Como los neutrinos tienen masa hay que añadir sus 3 masas y los parámetros de la mezcla de sus sabores en la matriz PMNS, que serían 4 para neutrinos de Dirac y 6 para Majorana. Además, habría que añadir un parámetro relacionado con la violación de la simetría CP en la interacción fuerte (que estaría relacionado con la masa de los axiones, si estos existieran). Así el número de parámetros del modelo estándar estaría entre 25 y 28.
Es cierto que, el Modelo estándar es casi (en algunos momentos), pero no permanentemente, perfecto. En primer lugar, podríamos empezar a quejarnos de las casi veinte constantes que no se pueden calcular. Pero si esta fuese la única queja, habría poco que hacer. Desde luego, se han sugerido numerosas ideas para explicar el origen de estos números y se han propuesto varias teorías para “predecir” sus valores. El problema con todas estas teorías es que los argumentos que dan nunca llegan a ser convincentes.”
Fuente: Ciencia de la Mula Francis.
¿Por qué se iba a preocupar la Naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo, tal como el principio de la relatividad, pero nos resistimos a abandonar todos los demás principios que ya conocemos; ¡esos, después de todo, han sido enormemente útiles en el descubrimiento del Modelo estándar! una herramienta que posibilitado a todos los físicos del mundo, construir sus trabajos en ese fascinante mundo de la mecánica cuántica, donde partículas infinitesimales interactúan con las fuerzas y podemos ver, como se comporta la materia en determinadas circunstancias. El mejor lugar para buscar nuevos principios es precisamente donde se encuentran los puntos débiles de la presente teoría.
Es cierto que la materia le habla al Espacio y el espacio le habla a la materia
La regla universal en la física de partículas es que cuando las partículas chocan con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez menores, más pequeñas en el espacio y en el tiempo. Supongamos por un momento que tenemos a nuestra disposición un Acelerador de Partículas 10.000 veces más potente que el LHC, donde las partículas pueden adquirir esas tantas veces más energías de las alcanzadas actualmente. Las colisiones que tendrían lugar nos dirían algo acerca de los detalles estructurales de esas partículas que ahora no conocemos, que serían mucho más pequeños que los que ahora podemos contemplar. En este punto se me ocurre la pregunta: ¿Seguiría siendo correcto el Modelo estándar? 0, por el contrario, a medida que nos alejemos en las profundidades de lo muy pequeño, también sus normas podrían variar al mismo tiempo que varían las dimensiones de los productos hallados. Recordad que, el mundo no funciona de la misma manera ante lo grande que ante lo infinitesimal.
El LHC consiguió en menos de un mes el Bosón W
¿Podéis imaginar conseguir colisiones a 70.000 TeV? ¿Qué podrías ver? Y, entonces, seguramente, las protestas de algunas de que “ese monstruo” podría abrir un agujero de gusano en el espacio tiempo…¡tendría algún fundamento! No sabemos lo que puede pasar si andamos con fuerzas que no podemos dominar.
Hoy, el Modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero tenemos algunas razones para sospechar que tales predicciones resultan estar muy alejadas de la realidad, o, incluso, ser completamente falsas.
Encendamos nuestro super-microscopio imaginario y enfoquémoslo directamente en el centro de un protón o de cualquier otra partícula. Veremos hordas de partículas fundamentales desnudas pululando. Vistas a través del super-microscopio, el Modelo Estándar que contiene veinte constantes naturales (o algunas más), describen las fuerzas que rigen la forma en que se mueven. Sin embargo, ahora esas fuerzas no sólo son bastante fuertes sino que también se cancelan entre ellas de una forma muy especial; están ajustadas para conspirar de tal manera que las partículas se comportan como partículas ordinarias cuando se vuelven a colocar el microscopio en la escala de ampliación ordinaria. Si en nuestras ecuaciones matemáticas cualquiera de estas constantes fueran reemplazadas por un número ligeramente diferente, la mayoría de las partículas obtendrían inmediatamente masas comparables a las gigantescas energías que son relevantes en el dominio de las muy altas energías. El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural.
Los ajustes finos del universo
“Si uno se pone a examinarlo con detalle, resulta que el universo está maravillosamente ajustado para poder permitir la vida. A esto se le llama el problema del fine tuning o ajuste fino del universo. Normalmente, por ajuste fino se suele entender el hecho de que los valores de ciertas constantes, de ser ligeramente modificados, incluso muy ligeramente modificados, tendrían como resultado que la vida compleja como nosotros sería imposible.
Hugh Ross
Quizá el ejemplo más claro sea el de los valores de las fuerzas fundamentales (gravitatoria, nuclear débil, nuclear fuerte y electromagnética). Según Hugh Ross, una fuerza gravitatoria un poco más débil impediría estrellas como nuestro Sol; todas las estrellas que podrían formarse serían bastante más masivas y consumirían su combustible muchísimo antes de que la vida compleja pudiera emerger. Por otro lado, una fuerza de la gravedad más intensa no permitiría estrellas como el Sol, todas las estrellas serían muy ligeras e incapaces de sintetizar los elementos más pesados que la vida necesita. La fuerza nuclear fuerte también está increíblemente bien ajustada: un poco más fuerte y todo el hidrógeno se habría consumido al principio del universo, impidiendo la formación de estrellas con una vida larga; un poco más débil y muchos de los elementos químicos actuales serían radiactivos, con evidentes consecuencias negativas para la vida. Pueden encontrarse más ejemplos en la página de Wikipedia sobre el problema del ajuste fino (donde he sacado mucha información). El astrofísico Martin Rees, en su libro Solo seis números, determinó que en esencia eran 6 los parámetros (constantes universales o combinación de ellas) que si hubiesen variado siquiera un mínimo habrían impedido la vida:
–
, la relación entre la fuerza electromagnética y la gravitatoria. Además de los problemas asociados con la evolución estelar ya mencionados, si N fuera más pequeña, el universo se hubiera expandido y re-contraído muy rápidamente, sin permitir la formación de entidades complejas.
–
, mide la eficiencia del hidrógeno para convertirse en helio en las reacciones nucleares en las estrellas. Cuatro átomos de hidrógeno se convierten en uno de helio y se libera un 0.7 % de energía. Si
fuera 0.006 (una variación de una parte en diez mil) solo existiría el hidrógeno, con lo que toda química mínimamente compleja sería imposible. Por encima de un valor de 0.008 no existiría hidrógeno ya que la reacción sería «demasiado eficiente» y se habría fusionado todo poco después del Big Bang (con respecto a este valor de 0.008 hay que decir que hay autores que consideran que la horquilla es un poco más amplia).
no es una constante fundamental del universo, viene determinada por el valor de la fuerza nuclear fuerte (la que mantiene ligados a los protones y neutrones, es decir, a los quarks en el interior de los átomos).
–
. La letra griega omega indica la densidad del universo. Es el cociente entre la fuerza de contracción (la gravedad) y la energía de expansión. Con una
el universo se habría contraído rápidamente sobre sí mismo, volviendo a un estado similar al del Big Bang; con una
la gravedad es tan débil que no se forman estrellas. El valor medido está increíblemente próximo a 1, es decir, a la planitud.
–
.
mide el valor de la constante cosmológica (la energía que hay en el vacío) dividida por la densidad crítica del universo (la
de antes, que en su valor crítico es 1). En unidades naturales (las llamadas unidades de Planck) la constante cosmológica tiene un valor increíblemente pequeño, de modo tal que la expansión del universo es irrelevante para las escalas habituales en las que vivimos (no vemos que en nuestro mundo los objetos estén cada día más lejos de donde los dejamos la noche anterior). Con un valor no tan pequeño, las estrellas no podrían formarse. Curioso: si seguimos la teoría cuántica de campos, obtenemos para la energía del vacío un valor 120 órdenes de magnitud (
) más alto que lo que medimos para la constante cosmológica; si esto fuera así no habría estrellas y el universo se estaría expandiendo a una velocidad alucinante (de hecho, no estaríamos aquí para observarlo); a esto se le llama el problema de los 120 órdenes de magnitud y se ha dicho que es la peor predicción de la historia de la Física.
–
, Rees introdujo este poco conocido parámetro para estimar cuánta energía habría que usar para disociar por completo una galaxia utilizando su masa como energía (
). Más pequeño indicaría que no se podrían formar estrellas, más grande y el universo sería demasiado violento como para poder sobrevivir en él.
–
. El número de dimensiones espaciales es, como todos sabemos, de 3. Con más o menos dimensiones la vida no podría existir; entre otros argumentos, las órbitas de los planetas, por ejemplo, solo son estables en 3 dimensiones, de lo contrario los planetas acabarían colapsando sobre las estrellas. (Esto no excluye las dimensiones microscópicas que postulan algunas teorías como la teoría de cuerdas).
Este maravilloso ajuste del universo es un problema bastante complejo de resolver. Por un lado, uno puede apelar a la presencia de un Ser Superior que ha favorecido la vida. Desde una perspectiva más secular, algunos apelan al multiverso, esto es, una infinidad de universos de entre los cuales la vida solo es capaz de prosperar en unos pocos. En esta línea va el pensamiento que se conoce como Principio Antrópico, que viene a decir algo así como que el universo es como es porque si fuera de otra manera no tendría observadores para preguntarse por qué es como es. Este razonamiento circular, tautológico, no gusta a casi nadie, y con razón. Algunos científicos, como David Deutsch, creen que existe una explicación, aunque nosotros no podemos ni imaginarla ahora mismo. Otros son algo más escépticos.”
La doble hélice, es una especie de cuerda de dos hilos enredados uno alrededor del otro, ambos constituidos por 4 moléculas llamadas: adenina (A), timina (T), guanina (G) y citosina (C). Sin el ajuste fino no podría ser posible.
¿Implica el ajuste fino un diseño con propósito? Hay tantos parámetros que deben tener un ajuste fino y el grado de ajuste fino es tan alto, que no parece posible ninguna otra conclusión.
Bueno, quizá en la imagen y el comentario que lleva abajo, me he podido pasar un poco. Lo que antes decía: “El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural”, es lo que se llama el “problema del ajuste fino”. Vistas a través del microscopio, las constantes de la Naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático, no hay nada que objetar, pero la credibilidad del Modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas o, lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas.
¿Y por qué debería ser el modelo válido hasta ahí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables, e ellas podrían modificar completamente el mundo que Gulliver planeaba visitar. Si deseamos evitar la necesidad de un delicado ajuste fino de las constantes de la Naturaleza, creamos un nuevo problema:
Tres tipo de Ajuste Fino para la vida
La evidencia para el ajuste fino del universo es de tres tipos:
- El ajuste fino de las leyes de la naturaleza.
- El ajuste fino de las constantes físicas.
- El ajuste fino de la distribución inicial de la masa-energía del universo en el momento del Big Bang.
El Ajuste Fino de las Leyes de la Naturaleza
Cuando hablamos sobre el ajuste fino de las leyes de la naturaleza queremos decir que el universo debe tener precisamente el conjunto adecuado de leyes con el fin de que exista vida altamente compleja.
Ejemplos:
- Existencia de la Gravedad.
- Existencia de la Fuerza Electromagnética.
- Existencia de la Fuerza Nuclear Fuerte.
- Existencia del Principio de Cuantificación.
- Existencia del Principio de Exclusión de Pauli.
El Ajuste Fino de las constantes físicas
Por las constantes físicas, nos referimos a los números fundamentales que se producen en las leyes de la física, los cuales muchos de éstos deben estar ajustados con precisión en un grado extraordinario para que la vida se produzca.
Por ejemplo, tomemos la Constante Gravitacional —designado por G— la cual determina la fuerza de la gravedad a través de la Ley de la Gravedad de Newton:
Donde F es la fuerza entre dos masas, m1 y m2, que están a una distancia r de diferencia. Si aumentas o disminuyes G entonces la fuerza de la gravedad correspondientemente aumentará o disminuirá. (El valor real de G es 6,67 x 10-11 Nm2 / kg2.)
Ahora, para darnos una idea de qué tan finamente ajustada es la fuerza de la gravedad indicada por G debemos primero mirar el rango de las fuerzas fundamentales en la naturaleza:
Observa que la Fuerza Nuclear Fuerte es de 10 000 sextillones[1] de veces la Fuerza de la Gravedad. ¿Demasiado complicado? Bien, hagamos esto más digerible. Imagina que tienes una regla lo suficientemente grande para extenderla a través de todo el universo, ahora colocaremos los puntos en donde se localizarían la Fuerza de Gravedad y la Fuerza Nuclear Fuerte. Tendríamos algo así:
Retomemos el hilo que veo pasar una mosca y la sigo, la sigo, la sigo hasta no saber donde estoy.
¿Cómo podemos modificar el Modelo Estándar de tal manera que el ajuste-fino no sea necesario? Está claro que las modificaciones son necesarias , lo que implica que muy probablemente hay un límite más allá del cual el modelo deja de ser válido. El Modelo Estándar no será más que una aproximación matemática que hemos sido capaces de crear, tal que todos los fenómenos observados hasta el presente están de acuerdo con él, pero cada vez que ponemos en marcha un aparato más poderoso, debemos esperar que sean necesarias nuevas modificaciones para ir ajustando el modelo, a la realidad que descubrimos.
El hallazgo de una partícula que crearía nueva Física
¿Cómo hemos podido pensar de otra manera? ¿Cómo hemos tenido la “arrogancia” de pensar que podemos tener la teoría “definitiva”? Mirando las cosas de esta manera, nuestro problema ahora puede muy bien ser el opuesto al que plantea la pregunta de dónde acaba el modelo estándar: ¿Cómo puede ser que el modelo estándar funcione tan extraordinariamente bien? y ¿por qué aún no hemos sido capaces de percibir nada parecido a otra generación de partículas y fuerzas que no encajen en el modelo estándar?
Asistentes escuchan la presentación de los resultados del experimento ATLAS, durante el seminario del Centro Europeo de Física de Partículas (CERN) para presentar los resultados de los dos experimentos paralelos que buscan la prueba de la existencia de la “partícula de Higgs”, base del modelo estándar de física, hoy miércoles 4 de julio en Meyrin, Suiza.
La pregunta “¿Qué hay más allá del Modelo estándar”? ha estado fascinando a los físicos durante años. Y, desde luego, todos sueñan con llegar a saber, qué es lo que realmente es lo que conforma el “mundo” de la materia, qué partículas, cuerdas o briznas vibrantes. En realidad, lo cierto es que, la Física que conocemos no tiene que ser, necesariamente, la verdadera física que conforma el mundo y, sí, la física que conforma “nuestro mundo”, es decir, el mundo al que hemos podido tener acceso hasta el momento y que, no necesariamente tiene que tratarse del mundo real.
O, como decía aquél: ¡Que mundo más hermoso, parece de verdad!
No todo lo que vemos es, necesariamente, un reflejo de la realidad de la Naturaleza que, puede tener escondidos más allá de nuestras percepciones, otros escenarios y otros objetos, a los que, por ahora, no hemos podido acceder, toda vez que, físicamente tenemos carencias, intelectualmente también, y, nuestros conocimientos avanzar despacio para conseguir, nuevas máquinas y tecnologías nuevas que nos posibiliten “ver” lo que ahora nos está “prohibido” y, para ello, como ocurre siempre, necesitamos energías de las que no disponemos.
Hay dos direcciones a lo largo de las cuales se podría extender el Modelo estándar, tal como lo conocemos actualmente, que básicamente se caracterizan así:
– Nuevas partículas raras y nuevas fuerzas extremadamente débiles, y
– nuevas partículas pesadas y nuevas estructuras a muy altas energías.
Podrían existir partículas muy difíciles de producir y de detectar y que, por esa razón, hayan pasado desapercibidas hasta ahora. La primera partícula adicional en la que podríamos pensares un neutrino rotando a derecha. Recordaremos que si se toma el eje de rotación paralelo a la dirección del movimiento los neutrinos sólo rotan a izquierdas pero, esa sería otra historia.
En un artículo editado en Ciencia Kanija, pude leer:
“Los interferómetros atómicos tienen ahora la sensibilidad para observar nuevas fuerzas más allá del modelo estándar de la física de partículas. “Las nuevas fuerzas a corta distancia son una predicción frecuente de las teorías más allá del Modelo Estándar y la búsqueda de estas nuevas fuerzas es un canal prometedor para descubrir una nueva física”, dice Jay Wackerdel Laboratorio del Acelerador Nacional SLAC en California. La pregunta es cómo encontrarlas”
Los neutrinos siempre me han fascinado. Siempre se han manifestado como si tuvieran masa estrictamente nula. Parece como si se movieran exactamente con la velocidad de la luz. Pero hay un límite para la precisión de nuestras medidas. Si los neutrinos fueran muy ligeros, por ejemplo, una cienmillonésima parte de la masa del electrón, seríamos incapaces de detectar en el laboratorio la diferencia entre éstos y los neutrinos de masa estrictamente nula. Pero, para ello, el neutrino tendría que tener una componente de derechas.
En este punto, los astrónomos se unen a la discusión. No es la primera vez, ni será la última, que la astronomía nos proporciona información esencial en relación a las partículas elementales. Por ejemplo, debido a las interacciones de corriente neutra (las interacciones débiles originadas por un intercambio Zº), los neutrinos son un facto crucial en la explosión supernova de una estrella. Ahora sabemos que debido a las interacciones por corriente neutra, pueden colisionar con las capas exteriores de la estrella y volarlas con una fuerza tremenda.
En realidad, los neutrinos nos tienen mucho que decir, todavía y, no lo sabemos todo acerca de ellos, sino que, al contrario, son muchos los datos y fenómenos que están y subyacen en ellos de los que no tenemos ni la menor idea que existan o se puedan producir. Nuestra ignorancia es grande, y, sin embargo, no nos arredra hablar y hablar de cuestiones que, la mayoría de las veces…ni comprendemos.
Aquí lo dejaré por hoy, el tema es largo y de una fascinación que te puede llevar a lugares en los que no habías pensado al comenzar a escribir, lugares maravillosos donde reinan objetos exóticos y de fascinante porte que, por su pequeñez, pueden vivir en “mundos” muy diferentes al nuestro en los que, ocurren cosas que, nos llevan hacia el asombro y también, a ese mundo mágico de lo fascinante y maravilloso.
¡Cuanta complejidad para que nuestra limitada capacidad intelectual la pueda desmenuzar! Pero, se hace lo que se puede.
Emilio Silvera Vázquez
Feb
26
Los Quarks invisibles
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)
Una vez que se ha puesto orden entre las numerosas especies de partículas, se puede reconocer una pauta. Igual que Dimitri Ivanovich Mendeleev descubrió el sistema periódico de los elementos químicos en 1869, así también se hizo visible un sistema similar para las partículas. Esta pauta la encontraron independientemente el americano Murray Gell-Mann y el israelí Yuval Ne’eman. Ocho especies de mesones, todos con el mismo espín, u ocho especies de bariones, con el mismo espín, se podían reagrupar perfectamente en grupos que llamaremos multipletes. El esquema matemático correspondiente se llama SU(3). Grupletes de ocho elementos forman un octete “fundamental”. Por esta razón Gell-Mann llamó a esta teoría el “óctuplo camino”. Lo tomó prestado del budismo de acuerdo con el cual el camino hacia el nirvana es el camino óctuplo.
Pero las matemáticas SU(3) también admiten multipletes de diez miembros. Cuando se propuso este esquema se conocían nueve bariones con espín 3/2. Los esquemas SU(3) se obtienen al representar dos propiedades fundamentales de las partículas, la extrañeza S frente al iso-espín I₃ , en una gráfica.
La cámara de burbujas es un detector de partículas cargadas eléctricamente. La cámara la compone una cuba que contiene un fluido transparente, generalmente hidrógeno líquido, que está a una temperatura algo más baja que su temperatura de ebullición. Una partícula cargada deposita la energía necesaria para que el líquido comience a hervir a lo largo de su trayectoria, formando una línea de burbujas.
Las partículas cargadas van dejando una huella que se marca para poder comprobarla
Cuando las partículas entran en el compartimento, un pistón disminuye repentinamente la presión dentro del compartimiento. Esto causa que el líquido pase a un estado sobrecalentado, en el cual un efecto minúsculo, tal como el paso de una partícula cargada cerca de un átomo, es suficiente para originar la burbuja de líquido vaporizado. Esta traza puede fotografiarse, pues la cámara tiene en su parte superior una cámara fotográfica. La cámara se somete a un campo magnético constante, lo cual hace que las partículas cargadas viajen en trayectorias helicoidales cuyo radio queda determinado por el cociente entre la carga y la masa de la partícula. De esta manera se pueden obtener la masa y la carga de las partículas que entran en la cámara. Sin embargo, no hay manera de medir con eficacia su velocidad (con lo cual se podría determinar su energía cinética).
Imagen de trazas en la cámara de burbujas del primer evento observado incluyendo bariones Ω, en el Laboratorio Nacional Brookhaven. Dependiendo de su masa y tamaño las partículas producen distintos remolinos en la cámara de burbujas.
De esta manera, Gell-Mann predijo un décimo barión, el omega-menos (Ω–), y pudo estimar con bastante precisión su masa porque las masas de los otros nueve bariones variaban de una forma sistemática en el gráfico (también consiguió entender que las variaciones de la masa eran una consecuencia de una interacción simple). Sin embargo, estaba claro que la Ω-, con una extrañeza S = -3, no tenía ninguna partícula en la que desintegrarse que no estuviera prohibida por las leyes de conservación de la interacción fuerte. De modo que, la Ω- sólo podía ser de tan sólo 10¯²³ segundos como los demás miembros del multiplete, sino que tenía que ser del orden de 10¯¹⁰ segundos. Consecuentemente, esta partícula debería viajar varios centímetros antes de desintegrarse y esto la haría fácilmente detectable. La Ω¯ fue encontrada en 1964 con exactamente las mismas propiedades que había predicho Gell-Mann.
Se identificaron estructuras multipletes para la mayoría de los demás bariones y mesones y Gell-Mann también consiguió explicarlas. Sugirió que los mesones, igual que los bariones, debían estar formados por elementos constitutivos “más fundamentales aún”. Gell-Mann trabajaba en el Instituto de Tecnología de California en Pasadena (CalTech), donde conversaba a menudo con Richard Feynman. Eran ambos físicos famosos pero con personalidades muy diferentes. Gell-Mann, por ejemplo, es conocido como un entusiasta observador de Pájaros, familiarizado con las artes y la literatura y orgulloso de su conocimiento de lenguas extranjeras.
A comienzos de los años sesenta, un profesor del Instituto de Tecnología de California (Caltech) imparte un curso completo de física ante una cada día más numerosa. Su nombre: Richard Feynman
Feynman fue un hombre hecho a sí mismo, un analista riguroso que se reía de cualquier cosa que le recordara la autoridad establecida. Hay una anécdota que parece no ser cierta de hecho, pero que me parece tan buena que no puedo evitar el contarla; podía haber sucedido de esta forma. Gell-Mann le dijo a Feynman que tenía un problema, que estaba sugiriendo un nuevo tipo de ladrillos constitutivos de la materia y que no sabía qué nombre darles. Indudablemente debía haber de haber pensado en utilizar terminología latina o griega, como ha sido costumbre siempre en la nomenclatura científica. “Absurdo”, le dijo Feynman; “tú estás hablando de cosas en las que nunc ase había pensado antes. Todas esas preciosas pero anticuadas palabras están fuera de lugar. ¿Por qué no los llamas simplemente “shrumpfs”, “quacks” o algo así?”.
Los pequeños componentes de la materia ordinaria
Cuando algún tiempo después le pregunté a Gell-Mann, éste negó que tal conversación hubiera tenido lugar. Pero la palabra elegida fue quark, y la explicación de Gell-Mann fue que la palabra venía de una frase de Fynnegan’s Wake de James Joyce; “¡Tres quarks para Muster Mark!”. Y, efectivamente así es. A esas partículas les gusta estar las tres juntas. Todos los bariones están formados por tres quarks, mientras que los mesones están formados por un quark y un anti-quark.
Los propios quarks forman un grupo SU(3) aún más sencillo. Los llamaremos “arriba (u)”, “abajo” (d), y “extraño” (s). Las partículas “ordinarias” contienen solamente quarks u y d. Los hadrones “extraños” contienen uno o más quarks s (o antiquarks ŝ).
La composición de quarks de espín 3/2 se puede ver en cualquier tabla de física.. La razón por la que los bariones de espín ½ sólo forman un octete es más difícil de explicar. Está relacionada con el hecho de que en estos estados, al menos dos de los quarks tienen que ser diferentes unos de otros.
Junto con los descubrimientos de los Hadrones y de sus componentes, los Quarks, durante la primera mitad del sigo XX, se descubrieron otras partículas. Los Hadrones forman dos ramas, los mesones formados por dos qiuarks y los bariones por tres.
Realmente, la idea de que los hadrones estuvieran formados por ladrillos fundamentales sencillos había sido también sugerida por otros. George Zweig, también en el Cal Tech, en Pasadena, había tenido la misma idea. Él había llamado a los bloques constitutivos “ases!, pero es la palabra “quark” la que ha prevalecido. La razón por la que algunos nombres científicos tienen más éxito que otros es a veces difícil de comprender.
Pero en esta teoría había algunos aspectos raros. Aparentemente, los quarks (o ases) siempre existen en parejas o tríos y nunca se han visto solos. Los experimentadores habían intentado numerosas veces detectar un quark aislado en aparatos especialmente diseñados para ello, pero ninguno había tenido éxito.
Loa quarks –si se pudieran aislar- tendrían propiedades incluso más extrañas. Por ejemplo, ¿Cuáles serían sus cargas eléctricas? Es razonable suponer que tanto los quarks u como los quarks s y d deban tener siempre la misma carga. La comparación de la tabla 5 con la tabla 2 sugiere claramente que los quarks d y s tienen carga eléctrica -1/3 y el quark u tiene carga +2/3. Pero nunca se han observado partículas que no tengan carga múltiplo de la del electrón o de la del protón. Si tales partículas existieran, sería posible detectarlas experimentalmente. Que esto haya sido imposible debe significar que las fuerzas que las mantienen unidas dentro del hadrón son necesariamente increíblemente eficientes.
Todos sabemos que los Lepotines son: El elentrón, el Muón y la partícula Tau y, cada una de ellas tiene su tipo de neutrino: el electrónico, el muónico y el tauónico.
Aunque con la llegada de los quarks se ha clarificado algo más la flora y la fauna de las partículas subatómicas, todavía forman un conjunto muy raro, aún cuando solamente unas pocas aparezcan en grandes cantidades en el universo (protones, neutrones, electrones y fotones). Como dijo una vez Sybren S. de Groot cuando estudiaba neutrinos, uno realmente se enamora de ellos. Mis estudiantes y yo amábamos esas partículas cuyo comportamiento era un gran misterio. Los leptones, por ser casi puntuales, son los más sencillos, y por tener espín se ven afectados por la interacción que actúa sobre ellos de forma muy complicada, pero la interacción débil estaba bastante bien documentada por entonces.
Los hadrones son mucho más misteriosos. Los procesos de choque entre ellos eran demasiado complicados para una teoría respetable. Si uno se los imagina como pequeñas esferas hachas de alguna clase de material, aún quedaba el problema de entender los quarks y encontrar la razón por la que se siguen resistiendo a los intentos de los experimentadores para aislarlos.
Emilio Silvera Vázquez
Si queréis saber más sobre el tema, os recomiendo leer el libro Partículas de Gerard ´t Hooft
Feb
24
Buscando lo desconocido
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comentarios desactivados en Buscando lo desconocido
No pocas veces nos han explicado lo que pasaría cerca de un objeto masivo
La gravedad y el magnetismo son dos fuerzas que pueden parecer similares a primera vista, sin embargo, éstas se manejan bajo principios completamente distintos, aunque estén relacionados entre sí. Mientras que la fuerza de gravedad ve su origen en la masa de los cuerpos y funciona con un nivel de aceleración, el magnetismo se origina desde la energía eléctrica. El magnetismo no influye sólo en la energía, también tiene cabida en otros temas como la química, ya que está presente en la unión de los átomos, la formación de moléculas y los diferentes estados de la materia.
Fuente: Diferencia entre gravedad y magnetismo
https://gravedad.net/diferencia-entre-gravedad-y-magnetismo
Las fuerzas que podemos sentir en la vida cotidiana, es decir, la Gravedad y el electromagnetismo, aumentan con la cercanía: así, cuando más cerca está un clavo de un imán o una manzana del suelo, más se verán atraídos.
Por el contrario, la interacción fuerte, encargada de mantener estable el núcleo de los átomos, disminuye cuanto más cerca y juntas están las partículas en el interior de los átomos, aumentando cuando las partículas se alejan las unas de las otras. Si los Quarks que forman los protones y también los neutrones, están juntos, la fuerza es débil. Sin embargo, cuando los Quarks se quieren separar los unos de los otros, los Gluones los agarran con la fuerza más poderosa del Universo y los mantiene confinados en su sitio para que la estabilidad atómica sea posible.
Es en el límite de distancias pequeñas entre quarks o, equivalentemente, de altas energías, que los quarks interactúan débilmente entre sí. La interacción fuerte puede estudiarse aproximada-mente en el límite de altas energías.
El descubrimiento de esta extraña propiedad, llamada libertad asintótica, supuso toda una revolución teórica en los años 70 (se publicó en 1.973), pero ya plenamente respaldada por los experimentos en los aceleradores de partículas, aconsejó, a la Academia, conceder 30 años más tarde, el Premio Nobel de Física a sus autores.
“Ha sido un gran alivio. He estado pensando en ello durante mucho tiempo”, comentó al enterarse de la noticia Franck Wilczek, uno de los tres premiados.
“No estaba claro que fuera un adelanto en aquel momento. La teoría que propusimos era descabellada en muchos aspectos y tuvimos que dar muchas explicaciones”, reconoció el investigador.”
Tanto Wilczek como Politzer eran aun aspirantes a doctores en 1.973, cuando publicaron su descubrimiento en Physical Review letters. Junto a su informe, la misma revista incluyó el trabajo de David Gross, que unido al de los dos estudiantes ha dado lugar a la celebrada teoría de la Cromodinámica Cuántica (QCD).
Siguiendo una arraigada costumbre de la Física de partículas, los investigadores emplearon nombres comunes y desenfadados para señalar sus nuevos descubrimientos y llamaron “colores” a las intrincadas propiedades de los quarks.
Por ello, su teoría es conocida en la actualidad por el nombre de Cromodinámica (cromo significa “color” en griego), a pesar de que no tienen nada que ver con lo que entendemos y llamamos color en nuestra vida cotidiana, sino con el modo en que los componentes del núcleo atómico permanecen unidos. En este sentido, resulta mucho más intuitiva, aunque no menos divertida, la denominación de las partículas que hacen posible la interacción fuerte, llamadas gluones (glue es “pegamento” en inglés).
Al igual que en la teoría electromagnética, las partículas pueden tener carga positiva o negativa, los componentes más diminutos del núcleo atómico pueden ser rojos, verdes o azules.
Además, de manera análoga a como las cargas opuestas se atraen en el mundo de la electricidad y el magnetismo, también los quarks de distinto color se agrupan en tripletes para formar protones y neutrones del núcleo atómico.
Pero estas no son las únicas similitudes, ni siquiera las más profundas, que existen entre las distintas fuerzas que rigen el Universo. De hecho, los científicos esperan que, en última instancia, todas las interacciones conocidas sean en realidad la manifestación variada de una sola fuerza que rige y gobierna todo el cosmos.


Según la Academia Sueca, el trabajo premiado a estos tres Físicos, “constituye un paso importante dentro del esfuerzo para alcanzar la descripción unificada de todas las fuerzas de la Naturaleza”. Lo que llamamos teoría del todo.
Según Frank Wiczek, que ahora pertenece al Instituto Tecnológico de Massachussets (MIT), su descubrimiento “reivindica la idea de que es posible comprender a la Naturaleza racionalmente”. El físico también recordó que “fue una labor arraigada en el trabajo experimental, más que en la intuición”, y agradeció “a Estados Unidos por un sistema de enseñanza pública que tantos beneficios me ha dado”.
Sabemos que los quarks (hasta el momento) son las partículas más elementales del núcleo atómico donde forman protones y neutrones. La interacción fuerte entre los quarks que forman el protón es tan intensa que los mantiene permanentemente confinados en su interior, en una región ínfima. Y, allí, la fuerza crece con la distancia, si los quarks tratan de separarse, la fuerza aumenta (confinamiento de los quarks), si los quarks están juntos los unos a los otros, la fuerza decrece (libertad asintótica de los quarks). Nadie ha sido capaz de arrancar un quark libre fuera del protón.
Con aceleradores de partículas a muy altas energías, es posible investigar el comportamiento de los quarks a distancias muchos más pequeñas que el tamaño del protón.
Así, el trabajo acreedor al Nobel demostró que la fuerza nuclear fuerte actúa como un muelle de acero, si lo estiramos (los quarks se separan), la fuerza aumenta, si lo dejamos en reposo, en su estado natural, los anillos juntos (los quarks unidos), la fuerza es pequeña.
Así que la Cromodinámica Cuántica (QCD) describe rigurosamente la interacción fuerte entre los quarks y, en el desarrollo de esta teoría, como se ha dicho, jugaron un papel fundamental los tres ganadores del Nobel de Física de 2004 cuyas fotos y nombres hemos puesto antes.
Trabajos y estudios realizados en el acelerador LEP del CER durante la década de los 90 han hecho posible medir con mucha precisión la intensidad de la interacción fuerte en las desintegraciones de las partículas z y t, es decir a energías de 91 y 1,8 Gev, los resultados obtenidos están en perfecto acuerdo con las predicciones de ACD, proporcionando una verificación muy significativa de libertad asintótica.
Ahora, estamos a la espera de utilizar la más alta energía jamás empleada en un Acelerador y, el LHC, se prepara para los 8 TeV que, ya veremos que nos podrá traer si, el Bosón de Higgs del que ya han podido atisbar algunos indicios o, por el contrario, partículas exóticas que, como los hipotéticos axiones nos lleven a otras teorías.
Emilio Silvera Vázquez
Feb
22
El “universo” de las partículas
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (1)
Solo el 1% de las formas de vida que han vivido en la Tierra están ahora presentes, el 99%, por una u otra razón se han extinguido. Sin embargo, ese pequeño tanto por ciento de la vida actual, supone unos cinco millones de especies según algunas estimaciones. La Tierra acoge a todas esas especies u palpita de vida que prolifera por doquier. Hay seres vivos por todas partes y por todos los rincones del inmenso mosaico de ambientes que constituye nuestro planeta encontramos formas de vida, cuyos diseños parecen hechos a propósito para adaptarse a su hábitat, desde las profundidades abisales de los océanos hasta las más altas cumbres, desde las espesas selvas tropicales a las planicies de hielo de los casquetes polares. Se ha estimado la edad de 3.800 millones de años desde que aparecieron los primeros “seres vivos” sobre el planeta (dato de los primeros microfósiles). Desde entonces no han dejado de aparecer más y más especies, de las que la mayoría se han ido extinguiendo. Desde el siglo XVIII en que Carlos Linneo propuso su Systema Naturae no han cesado los intentos por conocer la Biodiversidad…, de la que por cierto nuestra especie, bautizada como Homo sapiens por el propio Linneo, es una recién llegada de apenas 200.000 años.
Ahora, hablaremos de la vida media de las partículas elementales (algunas no tanto). Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.
También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.
Si miramos una tabla de las partículas más conocidas y familiares (fotón, electrón muón tau, la serie de neutrinos, los mesones con sus piones, kaones, etc., y, los Hadrones bariones como el protón, neutrón, lambda, sigma, psi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales maneras de desintegración, veríamos como difieren las unas de las otras.”
Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”.
¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.
Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.
Una colisión entre un protón y un antiprotón registrada mediante una cámara de chispas del experimento UA5 del CERN.
En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su carta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.
¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, …
Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.
Se habla de ondas cuánticas y también, de ondas gravitacionales. Las primeras han sido localizadas y las segundas están siendo perseguidas.
Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.
Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.
Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”
Si la vida de una partícula es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.
Bariones Delta. Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.
Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).
Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.
Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:
∆⁺⁺→р + π⁺; ∆⁰→р + πˉ; o п+π⁰
En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.
El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (aunque nos parezca lo contrario), son aún bastante limitados, nos queda mucho por descubrir antes de que podamos decir que dominamos la materia y sabemos de todos sus componentes. Antes de que eso llegue, tendremos que conocer, en profundidad, el verdadero origen de la Luz que esconde muchos secretos que tendremos que desvelar.
Esperemos que con los futuros experimentos del LHC y de los grandes Aceleradores de partículas del futuro, se nos aclaren algo las cosas y podamos avanzar en el perfeccionamiento del Modelo Estándar de la Física de Partículas que, como todos sabemos es un Modelo incompleto que no contiene a todas las fuerzas de la Naturaleza y, cerca de una veintena de sus parámetros son aleatorios y no han sido explicados. Uno de ellos, el Bosón de Higgs, dicen que ha sido encontrado. Sin embargo, a mí particularmente me quedan muchas dudas al respecto.
Emilio Silvera Vázquez
Feb
1
Intrincada búsqueda: ¡La Gravedad cuántica!
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)
Nunca han importado muchos los peligros que tengamos que correr para buscar las respuestas de lo profundamente escondido en la Naturaleza, ni tampoco ha importado hasta donde ha tenido que viajar la imaginación para configurar modelos y teorías que, más tarde, queremos verificar.
También una teoría cuántica de la gravedad debería ampliar nuestro conocimiento de efectos cuánticos predichos por enfoques tentativos de otras teorías cuánticas, como la existencia de radiación de Hawking.
¡Y mucho más sobre este mismo tema!
Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “súper-simetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada.
“El concepto de una “teoría del todo” está arraigado en el principio de causalidad y su descubrimiento es la empresa de acercarnos a ver a través de los ojos del demonio de Laplace. Aunque dicha posibilidad puede considerarse como determinista, en una “simple fórmula” puede todavía sobrevivir la física fundamentalmente probabilista, como proponen algunas posturas actuales de la mecánica cuántica. Esto se debe a que aun si los mecanismos que gobiernan las partículas son intrínsecamente azarosos, podemos conocer las reglas que gobiernan dicho azar y calcular las probabilidades de ocurrencia para cada evento posible. Sin embargo, otras interpretaciones de la ecuación de Schrödinger conceden poca importancia al azar: este solo se tendría importancia dentro del átomo y se diluiría en el mundo macroscópico. Otras no obstante la niegan completamente y la consideran una interpretación equivocada de las leyes cuánticas. En consecuencia, la mayor dificultad de descubrir una teoría unificada ha sido armonizar correctamente leyes que gobiernan solo un reducido ámbito de la naturaleza y transformarlas en una única teoría que la explique en su totalidad, tanto en su mundo micro como macroscópico y explique la existencia de todas las interacciones fundamentales: las fuerzas gravitatoria, electromagnética, nuclear fuerte y nuclear débil.”
Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?). Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!
¿Quién puede ir a la longitud de Planck para poder contemplar esas cuerdas vibrantes si es que están allí?
Ni vemos la longitud de Planck ni las dimensiones extra y, nos dicen que para poder profundizar hasta esa distancia, necesitamos disponer de la Energía de Planck, es decir 1019 GeV, una energía que ni en las próximas generaciones estará a nuestro alcance. Pero mientras tanto, hablamos de que, en 2.015, el LHC buscará las partículas de la “materia oscura”. ¡Qué gente!
La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiperespacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.
Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.
¿Dónde radica el problema?
Nuestro universo ¿es tridimensional y no podemos esas dimensiones extra de las que tanto hablan en las teorías más avanzadas pero, no verificadas?
El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que con sus 14 TeV no llegaría ni siquiera a vislumbrar esas cuerdas vibrantes de las que antes os hablaba.
La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. Ya sabéis lo que pasa cuando queremos juntar la relatividad con la cuántica: ¡Aparecen los infinitos que no son re-normalizables!
Con sus 20 parámetros aleatorios (parece que uno de ellos ha sido hallado -el bosón de Higgs-), el Modelo estándar de la física de partículas que incluye sólo tres de las interacciones fundamentales -las fuerzas nucleares débil y fuerte y el electromagnetismo-, ha dado un buen resultado y a permitido a los físicos trabajar ampliamente en el conocimiento del mundo, de la Naturaleza, del Universo. Sin embargo, deja muchas preguntas sin contestar y, lo cierto es que, se necesitan nuevas maneras, nuevas formas, nuevas teorías que nos lleven más allá.
¡Necesitamos algo más avanzado!
Se ha dicho que la función de la partícula de Higgs es la de dar masa a las partículas que conocemos y están incluidas en el Modelo estándar, se nos ha dicho que ha sido encontrada y el hallazgo ha merecido el Nobel de Física. Sin embargo… nada se ha dicho de cómo ésta partícula transmite la masa a las demás. Faltan algunas explicaciones.
El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.
¿Es el efecto frenado que sufren las partículas que corren por el océano de Higgs, el que les da la masa?
Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs. Las partículas influidas por este campo, toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.
Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein. La masa, m, tiene en realidad dos partes. Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.
Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más
apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.
Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.
La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.
Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs(de ahí la expectación creada por el acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W–, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?
https://youtu.be/LAjDp6XSJcg
No dejamos de experimentar para saber cómo es nuestro mundo, la Naturaleza, el Universo que nos acoge.
Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-Salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles. En la unidad hay cuatro partículas mensajeras sin masa –los W+, W–, Zº y fotón que llevan la fuerza electrodébil. Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen los teóricos. Hay otra descripción según la cual el Higgs oculta la simetría con su poder dador de masa.
Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.
https://youtu.be/RA4NOv165dw
La teoría de supercuerdas tiene tantas sorpresas fantásticas que cualquiera que investigue en el tema reconoce que está llena de magia. Es algo que funciona con tanta belleza… Cuando cosas que no encajan juntas e incluso se repelen, si se acerca la una a la otra alguien es capaz de formular un camino mediante el cual, no sólo no se rechazan, sino que encajan a la perfección dentro de ese sistema, como ocurre ahora con la teoría M que acoge con naturalidad la teoría de la relatividad general y la teoría mecánico-cuántica; ahí, cuando eso se produce, está presente la belleza.
Lo que hace que la teoría de supercuerdas sea tan interesante es que el marco estándar mediante el cual conocemos la mayor parte de la física es la teoría cuántica y resulta que ella hace imposible la gravedad. La relatividad general de Einstein, que es el modelo de la gravedad, no funciona con la teoría cuántica. Sin embargo, las supercuerdas modifican la teoría cuántica estándar de tal manera que la gravedad no sólo se convierte en posible, sino que forma parte natural del sistema; es inevitable para que éste sea completo.
¿Por qué es tan importante encajar la gravedad y la teoría cuántica? Porque no podemos admitir una teoría que explique las fuerzas de la naturaleza y deje fuera a una de esas fuerzas. Así ocurre con el Modelo Estándar que deja aparte y no incluye a la fuerza gravitatoria que está ahí, en la Naturaleza.
La teoría de supercuerdas se perfila como la teoría que tiene implicaciones si tratamos con las cosas muy pequeñas, en el microcosmos; toda la teoría de partículas elementales cambia con las supercuerdas que penetra mucho más; llega mucho más allá de lo que ahora es posible.
La topología es, el estudio de aquellas propiedades de los cuerpos geométricos que permanecen inalteradas por transformaciones continuas. La topología es probablemente la más joven de las ramas clásicas de las matemáticas. En contraste con el álgebra, la geometría y la teoría de los números, cuyas genealogías datan de tiempos antiguos, la topología aparece en el siglo diecisiete, con el nombre de análisis situs, ésto es, análisis de la posición.
De manera informal, la topología se ocupa de aquellas propiedades de las figuras que permanecen invariantes, cuando dichas figuras son plegadas, dilatadas, contraídas o deformadas, de modo que no aparezcan nuevos puntos, o se hagan coincidir puntos diferentes. La transformación permitida presupone, en otras palabras, que hay una correspondencia biunívoca entre los puntos de la figura original y los de la transformada, y que la deformación hace corresponder puntos próximos a puntos próximos. Esta última propiedad se llama continuidad, y lo que se requiere es que la transformación y su inversa sean ambas continuas: así, trabajarnos con homeomorfismos.
Steam Community: Steam Artwork
“En cada instante de la historia del universo existe una distancia que determina un límite u horizonte para el universo observable en esa época, el cual está fijado por la distancia que ha viajado la luz desde la singularidad inicial del Big Bang (ver horizontes en cosmología). Este horizonte tiene el efecto de ser el límite de distancia para la cual dos regiones del Universo pueden estar causalmente conectadas, es decir, que una señal luminosa haya podido llegar desde una de las regiones hasta la otra.”
Nosotros sí vemos el Horizonte en nuestras cortas distancia por la redondez de la Tierra ¿Cómo ver el Horizonte del Universo?
El horizonte del universo es una frontera conceptual que representa el límite más lejano desde el cual la luz o cualquier otra forma de información podría alcanzarnos. Esto se debe a la expansión del universo, que hace que las distancias entre galaxias y objetos cósmicos se incrementen con el tiempo.
En cuanto a nuestra comprensión del universo a gran escala (galaxias, el Big Bang…), creo que afectará a nuestra idea presente, al esquema que hoy rige y, como la nueva teoría, el horizonte se ampliará enormemente; el cosmos se presentará ante nosotros como un todo, con un comienzo muy bien definido y un final muy bien determinado.
Para cuando eso llegue, sabremos lo que es, como se genera y dónde están situados los orígenes de esa “fuerza”, “materia”, o, “energía” que ahora no sabemos ver para explicar el anómalo movimiento de las galaxias o la expansión del espacio que corre sin freno hacia… ¿Otro universo que tira del nuestro, como ocurren con las galaxias que terminan por fusionarse?
Emilio Silvera Vázquez