lunes, 25 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Tenemos que saber! y, sabremos. (Eso nos decía Hilbert)

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 lhc_bannerEl mayor acelerador de partículas del mundo cumple 10 años

En 1.949, el físico francés Louis de Broglie, que ganó el premio Nobel, propuso construir un laboratorio europeo de física de partículas. Su idea caló hondo en la comunidad internacional, y tres años tarde, 11 países europeos dieron el visto bueno y el dinero para construir el CERN, inaugurado en Ginebra en 1.954, y al que tanto le debe la física y las Sociedades modernas del mundo.

Astrofísica y Física: Estudiando el microuniverso: aceleradores ...

Los aceleradores de partículas son un gran invento que ha permitido comprobar (hasta se ha podido, al menos) la estructura del átomo. En el acelerador del Fermilab, por ejemplo, un detector de tres pisos de altura que en su momento costó unos ochenta millones de dólares para poder captar electrónicamente los “restos” de la colisión entre un protón y un antiprotón. Aquí la prueba consiste en que decenas de miles de sensores generen un impulso eléctrico cuando pasa una partícula. Todos esos impulsos son llevados a procesadores electrónicos de a través de cientos de miles de cables. Por último, se hace una grabación en carrete de cinta magnética codificada con ceros y unos. La cinta graba las violentas colisiones de los protones y antiprotones, en las que generan unas setenta partículas que salen disparadas en diferentes direcciones dentro de las varias secciones del detector.

 

El 13 de octubre de 1985 se produjo la primera colisión protón-antiprotón en el Tevatrón del Fermilab

La ciencia, en la física de partículas, gana confianza en sus conclusiones por duplicación, es decir, un experimento en California se confirma mediante un acelerador de un estilo diferente que funciona en Ginebra con otro equipo distinto, que incluye en cada experimento los controles necesarios y todas las comprobaciones para que puedan confirmar con muchas garantías el resultado finalmente obtenido. Es un proceso largo y muy complejo; la consecuencia de muchos años de investigación de muchos equipos diferentes.

 

No es suficiente con un único resultado. Si muchos, en distintos lugares dan lo mismo…se pueden considerar ciertos

Yo puedo visualizar la estructura interna de un átomo. Puedo hacer que me vengan mentales de nebulosas de “presencia” de electrón alrededor de la minúscula mota del núcleo que atrae esa bruma de la nube electrónica hacia sí. Puedo ver los átomos, los protones y los neutrones, y en su interior, los diminutos quarks enfangados en un mar de neutrones. Claro que todo eso es posible por el hecho de que dicha imagen me es muy familiar. Creo que cada uno construirá sus propias conforme él las vea a partir de las ecuaciones o bien de cómo las formó en su mente a partir de sus lecturas o explicaciones oídas en charlas científicas.

¿Tendrán ellos (los átomos) el secreto de la materia?

Bag Model of Quark ConfinementPropiedades de la fuerza nuclear fuerte: Confinamiento y libertad ...Bag Model of Quark Confinement

Cuando entraron en escena David Politrer, de Harvard, y David Gross y Frank Wilczek, de Pinceton, el panorama de lo que ocurría en el interior del núcleo se aclaró bastante. Ellos, descubrieron algo que llamaron libertad asintótica. Asintótico significa, burdamente, “que se acerca cada vez más, pero no toca nunca”. La interacción fuerte se debilita más y más a medida que un quark se aproxima a otro. Esto significa, paradójicamente, que cuando los quarks están muy juntos se portan casi como si fuesen libres; pero cuando se apartan, las fuerzas se hacen efectivamente mayores. Las distancias cortas suponen energías altas, así que la interacción fuerte se debilita a altas energías. Esto es justo lo contrario de lo que pasa con la fuerza eléctrica. Aún más era que la interacción fuerte necesitase una partícula mensajera, como las otras fuerzas, y en alguna parte le dieron al mensajero el nombre de gluón (del inglés glue, pegamento).

 

A todo esto, llegó Murray Gell-Mann con sus quarks para completar el panorama. Adjudicó a estas diminutas partículas color y sabor (nada que ver con el gusto y los colores reales) y llegó la teoría denominada cromodinámica cuántica. Todo aquello dio mucho que hablar y mucho trabajo a los teóricos y experimentadores, y al en los años ochenta, se había dado ya con todas las partículas de la materia (los quarks y los leptones), y teníamos las partículas mensajeras, o bosones gauge, de las fuerzas, a excepción de la gravedad.

MATERIA

Primera generación

Segunda generación

Tercera generación

u

c

t

d

s

b

Son los quarks up, down, charmed, strange, top y bottom.

Los leptons son:

υe

υμ

υτ

e

μ

τ

FUERZAS

Los bosones gauge:

Fotón

Electromagnetismo

W+, W, Z0

Interacción débil

Ocho gluones

Interacción

 File:Leptones nombres.png

La familia de los leptones está compuesta por el electrón, muón y tau con sus correspondientes neutrinos. Así quedó prácticamente el llamado modelo estándar que describe las partículas que forman la materia conocida y las fuerzas que intervienen e interaccionan con ellas. La gravedad quedó plasmada en la relatividad de Einstein.

¿Por qué es incompleto el modelo estándar? Una carencia es que no se haya visto todavía el quark top; otra, la ausencia de una de las cuatro fuerzas fundamentales, la gravedad. Otro defecto estético es que no es lo bastante ; debería parecerse más a la tierra, aire, fuego y agua de Empédocles. Hay demasiados parámetros y demasiados controles que ajustar. Necesitamos una nueva teoría que sea menos complicada, más sencilla y bella, sin vericuetos intrincados que salvar, con la limpieza y serena majestad de la teoría de la gravedad que, con enorme simpleza y aplicando los principios naturales, trata los temas más profundos del universo. Esperemos que continúe desarrollándose la teoría de cuerdas y que, como parece, incluya todas las fuerzas, todas las partículas y, en fin, todos los parámetros que dan sentido al universo.

Modelo estándar de la física de partículas - Wikipedia, la ...NeoFronteras » Resaca Higgs - Portada -

Sí, al Modelo Estándar la faltan algunas cosas y le sobran otras, o, al menos, sería necesario explicarlas mejor. La Gravedad no está presente y, hay una veintena de parámetros aleatorios que, como el Bosón de Higgs, no se pueden explicar…aún. La viene de lejos:

El modelo estándar: resumida

Autores

Fechas

Partículas

Fuerza

Comentario

Tales (milesio)

600 a.C.

Agua

No se menciona

8

Fue el primero en explicar el mundo mediante causas naturales. Lógica en lugar de mito.

Empédocles (agrigento)

460 a.C.

Tierra, agua, aire y fuego

Amor y discordia

9

Aportó la idea de que hay múltiples partículas que se combinan para formar toda la materia.

Demócrito (Abdera)

430 a.C.

El átomo indivisible e invisible, o a-tomo

Movimiento violento constante

10

Su modelo requería demasiadas partículas, cada una con una forma diferente, pero su idea básica de que hay un átomo que no puede ser partido sigue siendo la definición básica de partícula elemental.

Isaac Newton (inglés)

1.687

Átomos duros con masa, impenetrables

Gravedad (cosmos); fuerzas desconocidas (átomos)

7

Le gustaban los átomos pero no hizo que su causa avanzase. Su gravedad fue un dolor de cabeza para los peces gordos en la década de 1.990

Roger J. Boscovich (dálmata)

1.760

de fuerza” indivisibles y sin forma o dimensión

Fuerzas atractivas y repulsivas que actúan entre

9

Su teoría era incompleta, limitada, pero la idea de que hay partículas de “ nulo”, puntuales, que crean “campos de fuerza”, es esencial en la física moderna.

Michael Faraday (inglés)

1.820

Cargas eléctricas

Electromagnetismo

8’5

Aplicó el atomismo a la electricidad al conjeturar que las corrientes estaban formadas por “corpúsculos de electricidad”, los electrones.

Dimitri Mendeleev (siberiano)

1.870

Más de 50 átomos dispuestos en la tabla periódica de los elementos

No hace cábalas sobre las fuerzas

8’5

Tomó la idea de Dalton y organizó todos los elementos químicos conocidos. En su tabla periódica apuntaba con claridad una estructura más profunda y significativa.

Ernest Rutherford (neozelandés)

1.911

Dos partículas; núcleo y electrón

La fuerza nuclear fuerte más el electromagnetismo. La gravedad

9’5

Al descubrir el núcleo, reveló una nueva simplicidad dentro de todos los átomos de Dalton. El experimentador por excelencia.

Bjorken, Fermi, Friedman, Gell-Mann, Glasgow, Kennedy, Lederman, Peri, Richter, Schwartz, Steinberger, Taylor, Ting, más un reparto de miles.

1.992

Seis quarks y seis leptones, más sus antipartículas. Hay tres colores de quarks

El electromagnetismo, la interacción fuerte y débil: doce partículas que llevan las fuerzas más la gravedad.

?

Demócrito de Abdera ríe.

A todo esto y como he dicho, el quark top está perdido (ya se encontró) y el neutrino tau no se ha detectado directamente (pero experimentos nos han dicho que un neutrino muónico se puede transformar en uno tau), y muchos de los números que nos hacen falta conocer los tenemos de forma imprecisa. Por ejemplo, no sabemos si los neutrinos tienen alguna masa en reposo.

Tenemos que saber cómo la violación de la simetría CP (el proceso que originó la materia) aparece, y lo que es más importante, hemos de introducir un nuevo fenómeno, al que llamamos de Higgs, para preservar las coherencia matemática del modelo estándar. La idea de Higgs y su partícula asociada, el bosón de Higgs, cuenta en todos los problemas que he mencionado antes. Parece, con tantos parámetros imprecisos (19), que el modelo estándar está asentado sobre arenas movedizas.

1 - Curso de Relatividad General - YouTube

Max Plank, el fundador de la teoría cuántica. | NCIENCIAMecánica cuánticaConstante de Planck - Wikipedia, la enciclopedia libre

En realidad, no sabemos si la relatividad y la teoría cuántica, son dos mundos antagónicos que nos empeñamos en unir

Entre los teóricos, el casamiento de la relatividad y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “supersimetría”, “supercuerdas”, “teoría M” o, en último caso, “teoría de todo” o “gran teoría unificada”.

Supersimetría (SUSY para los amigos) | Matemáticas y sus fronterasSuperstrings, Ilustraciones De Ordenador Conceptual. La Teoría De ...El estado actual de la teoría M - La Ciencia de la Mula FrancisTeoría del todo o teoría unificada

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman?; ¿por qué no se ha implicado?). Hablan de 10, 11 y 26 dimensiones, siempre todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos ni sabemos, o no nos es posible intuir en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron en la longitud de Planck las dimensiones que no podíamos ver; ¡problema solucionado! ¿Quién puede ir a la longitud de Planck para verlas?

La puerta de las dimensiones más altas quedó abierta y a los teóricos se les regaló una herramienta maravillosa: el hiperespacio; todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí sí es posible esa soñada teoría de la gravedad cuántica.

 Pronto las computadoras podrán imitar el cerebro humano con ...Y si todos los extraterrestres se hubieran muerto? - Quo

                      ¡Tiene tantos secretos el Universo! Arriba podrían estar los dos mayores

Así que las teorías se han embarcado a la búsqueda de un objeto audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos; una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que mencioné en páginas anteriores.

El más allá del modelo estándar de las partículas elementales sin ...

La verdad es que la teoría que ahora tenemos, el modelo estándar, concuerda de manera exacta con todos los a bajar energías y contesta cosas sin sentido a altas energías. ¡Necesitamos algo más avanzado!

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las partículas que carecen de ella, disfrazando así la verdadera simetría del mundo. Cuando su autor lanzó la idea al mundo, resultó además de nueva, muy extraña. El secreto de todo radica en conseguir la simplicidad: el átomo resultó ser complejo, lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones. Resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún; los quarks que estaban instalados en nubes de otras partículas llamadas gluones, y ahora queremos profundizando, sospechando que después de los quarks puede haber algo más.

Los últimos resultados del LHC se presentan en Viena

Con los últimos experimentos en el LHC, en busca de la partícula de Higgs, pudimos declaraciones como éstas:

“…confirmaron que durante este año, tal y como se ha anunciado hace semanas, se ha obtenido una auténtica marea de que dejan poco o ningún lugar a dudas sobre la existencia de la partícula que la teoría considera responsable de la masa de todas las demás partículas y sin la que el Universo, sencillamente no existiría tal y como lo conocemos.”

 

 

               En 1964 se predijo la existencia de esa partícula que ahora dicen haber encontrado

 

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes, es decir, que si miramos a las estrellas en una noche clara, estamos mirando el campo de Higgs. Las partículas influidas por este campo toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado: del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la , el bloque adquirirá energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra. Como E = mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein: la masa, m, tiene en realidad dos partes; una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c), o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

 

Pero la energía potencial tomada del de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del es distinta para las distintas partículas. Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

Acercándonos al LHC - Partícula de HiggsDocumental: El Universo mecánico. Del Atomo al Quark | Documentalpark

La influencia de Higgs en las masas de los quarks y de los leptones nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de qué reglas controlan los incrementos de masa generados por Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC), pero el problema es irritante: ¿por qué sólo esas masas ­­- las masas de los W+, W, Z0, y el up, down, encanto, estraño, top y bottom, así como los leptones – que no forman ningún patrón obvio?

Particle of doubt: the Higgs boson and scientific uncertainty | ZDNet

ISÓTOPOS Y RADIOACTIVIDAD

Las masas van desde la del electrón (0’0005 GeV) a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-Salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnética y débil. En la unidad hay cuatro partículas mensajeras sin masa – los W+, W, Z0 y el fotón – que llevan la fuerza electrodébil. Además está el campo de Higgs, y rápidamente, los W y Z absorben la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos), y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen las teorías. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

 

Las masas de los W y Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil, y las relajadas sonrisas de los físicos teóricos nos recuerdan que Hooft y Veltman dejaron sentado que la teoría entera está libre de infinitos.

Todos los intentos y los esfuerzos por hallar una pista de cuál era el origen de la masa fallaron. Feynman escribió su famosa : “¿por qué pesa el muón?”. Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa. Una voz potente y segura nos dice “¡Higgs!”. Durante más de sesenta años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el de Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva feynmaniana podría ser: ¿cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente, y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen en entredicho que el concepto de masa sea un atributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que empleam cuando no saben hacerlo bien.

 

                       ¿Sabremos alguna vez cómo adquieren masa las partículas?

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. Hace que la de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno. ¿Será el efecto frenado en los campoos de Higgs la que le da masa a las partículas? Bueno eso dice nuestro amigo Ramón Máquez.

III) La partícula de Dios - Conec

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en la que los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

Una cosa más; hemos hablado de los bosones gauge y de su espín de una unidad. Hemos comentado también las partículas fermiónicas de la materia (espín de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espín cero. El espín supone una direccionalidad en el espacio, pero el de Higgs da masa a los objetos quiera que estén y sin direccionalidad. Al Higgs se le llama a veces “bosón escalar” (sin dirección) por esa razón.

 

La interacción débil, recordaréis, fue inventada por E. Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV. Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, el bosón de Higgs “origen de la masa”… y algunas cosas más.

Hay que responder montones de preguntas: ¿cuáles son las propiedades de las partículas de Higgs? y, lo que es más , ¿cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión del LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas o sólo las hace incrementarse? ¿Cómo podemos más al respecto? Cómo es su partícula, nos cabe esperar que la veremos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.

También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del universo, añadiendo pues, un peso más a la carga que ha de soportar el Higgs.

 Mediators

Existirán los campos de Higgs, o…

 

… sólo será una creación de la mente con su desbordante imaginación

El de Higgs, tal como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Éstas generan fluctuaciones cuánticas que neutralizan el de Higgs. Por lo tanto, el cuado que las partículas y la cosmología pintan juntas de un universo primitivo puro y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10-5 grados Kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas. Así, por ejemplo, antes del Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

El universo se expande y se enfría, y entonces viene el Higgs (que “engorda” los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe.

Fuerza Nuclear Débil | •Ciencia• AminoEL BOSON DE HIGGS “La particula de Dios” Dionicio Cubulè Boch ...

Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que les hiciera parecer que tienen mucha masa.  Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

De todas formas, es tanta la ignorancia que tenemos sobre el origen de la masa que nos agarramos como a un clavo ardiendo, en este caso, a la partícula de Higgs, que algunos han llegado a llamar “la partícula divina”.

¡Ya veremos en qué termina todo esto!

 

                                    Sí, dudas hemos tenido todos

Hay otras muchas cuestiones de las que podríamos hablar y, la Física y la Astronomía, siendo mi gran Pasión, ocupa mucho de mi tiempo. La Física, amigos míos, nos dirá como es el “mundo” y digo mundo querinedo significar Naturaleza y Universo. La Física encierra una belleza…, que está presente en:

  1. Una simetría unificadora.
  2. La capacidad de explicar grandes cantidades de experimentales con las expresiones matemáticas más económicas.

El Modelo Estándar falla en ambos aspectos, mientras que la relatividad los exhibe, ambos, de manera bien patente. Nunca una teoría dijo tanto con tan poco; su sencillez es asombrosa y su profundidad increíble.De hecho, desde que se publicó en 1.915, no ha dejado de dar frutos, y aún no se han obtenido de ella todos los mensajes que contiene.

emilio silvera

El Vacío Superconductor: La Máquina de Higgs-Kibble

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En su libro “Partículas Elementales”, Gerard ´t Hooft, en su capítulo titulado “La bonanza Yang-Mills”, finalizaba diciendo:

Gerard T HOOFT | Utrecht University, Utrecht | UU | Institute for ...

“Lo único que no resulta ser lo mismo cuando se mira a través del microscopio (o, en la jerga de la física teórica, cuando se realiza una transformación de escala) es la masa de la partícula. Esto se debe a que el alcance de la fuerza parece mayor a través del microscopio. Nótese que esta situación es la opuesta a la que se presenta en la vida corriente donde un grano de arena parece mayor  -¿más pesado, por tanto?- cuando se observa con un microscopio.”

En ésta última imagen:

“Esquema perturbativo de QFT para la interacción de un electrón (e) con un quark (q), la línea azul representa un campo electromagnético (campo de Yang-Mills con simetría U(1)) y la línea verde un campo de color (campo de Yang-Mills con simetría SU(3)).”

Una consecuencia de todo esto es que en una teoría de Yang-Mills el término de masa parece desaparecer cuando se realiza una transformación de escala, lo que implica que a través del microscopio se recupera la invariancia gauge. Esto es lo que causa la dificultad con la que se enfrentó Veltman. ¿Se puede observar directamente el potencial vector de Yang-Mills? Parece que puede observarse en el mundo de las cosas grandes pero no en el mundo de lo pequeño. Esto es una contradicción y es la razón por la que este esquema nunca ha podido funcionar adecuadamente.

¡Había una salida! Pero ésta procede de una rama muy diferente de la física teórica. La física de los metales a muy bajas temperaturas. A esas temperaturas, los “fenómenos cuánticos” dan lugar a efectos muy sorprendentes, que se describen con teorías cuánticas de campos, exactamente iguales que las que utilizan en la física de partículas elementales. La Física de Partículas Elementales no tiene nada que ver con la física de bajas temperaturas, pero las matemáticas son muy parecidas.

Leer más

Transiciones de fase y otros

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Efecto túnel a través del espacio y del tiempo

Qué es el efecto túnel? - YouTubeRealmente se podría crear un túnel espacio-tiempo a través de un ...Física Cuántica Partículas - Imagen gratis en PixabayFalacias de la Mecánica Cuántica: EL EFECTO TÚNEL ES UN FENÓMENO ...

En definitiva, estamos planteando la misma cuestión propuesta por Kaluza, cuando en 1.919 escribió una carta a Einstein proponiéndole su teoría de la quinta dimensión para unificar el electromagnetismo de James Clark Maxwell y la propia teoría de la relatividad general, ¿dónde está la quinta dimensión?, pero ahora en un nivel mucho más alto. Como Klein señaló en 1.926, la respuesta a esta cuestión tiene que ver con la teoría cuántica. Quizá el fenómeno más extraordinario (y complejo) de la teoría cuántica es el efecto túnel.

EL CABLE. UN COMPONENTE DINÁMICO COMPLEJO

El efecto túnel se refiere al hecho de que los electrones son capaces de atravesar una barrera, al parecer infranqueable, hacia una región que estaría prohibida si los electrones fuesen tratados como partículas clásicas. El que haya una probabilidad finita de que un electrón haga un túnel entre una región clásicamente permitida a otra que no lo está, surge como consecuencia de la mecánica cuántica. El efecto es usado en el diodo túnel. La desintegración alfa es un ejemplo de proceso de efecto túnel.

Archivo:Kaluza Klein compactification.svg - Wikipedia, la ...Teoría de Kaluza-Klein - Wikipedia, la enciclopedia libre

Antes preguntábamos, en relación a la teoría de Kaluza-Klein, el destino o el lugar en el que se encontraba la quinta dimensión.

“En la teoría de Kaluza-Klein original, a una entidad geométrica de dimensión d convencionales, se les asocia una entidad de dimensionalidad d+1: Un “punto” de espacio-tiempo de cuatro dimensiones es una curva cerrada (d = 1), y la trayectoria (d=1) de dos partículas que colisionan puede estudiarse sobre dos tubos que se unen (d=2).”

Bonnie and Clyde? No, Kaluza y Klein | Cuentos Cuánticos

“La teoría de Kaluza-Klein es una generalización de la teoría de la relatividad general. Fue propuesta por Theodor Kaluza (1919), y refinada por Oskar Klein (1926), y trata de unificar la gravitación y el electromagnetismo, usando un modelo geométrico en un espacio-tiempo de cinco dimensiones.”

La respuesta de Klein a esta pregunta fue ingeniosa al decir que estaba enrollada o compactada en la distancia o límite de Planck, ya que, cuando comenzó el Big Bang, el universo se expandió sólo en las cuatro dimensiones conocidas de espacio y una de tiempo, pero esta dimensión no fue afectada por la expansión y continua compactada en  cuyo valor es del orden de 10-35 metros, distancia que no podemos ni tenemos medios de alcanzar, es 20 ordenes de magnitud menor que el protón que está en 10-15 metros.

MECÁNICA DE LA NATURALEZA: Escala Mínima de Longitud. Una Historia ...Efectos cuánticos de la gravedad sobre fotones | abcienciade

Pues las dimensiones que nos faltan en la teoría decadimensional, como en la de Kaluza-Klein, también están compactadas en una recta o en un círculo en esa distancia o límite de Planck que, al menos por el momento, no tenemos medios de comprobar dada su enorme pequeñez, menor que un protón. De hecho sería 0,00000000000000000000000000000000001 metros, lo que pone muy difícil que lo podamos ver.

¿Cómo pueden estar enrolladas unas dimensiones?

Leer más

¡La Materia! Ese gran misterio

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La MATERIA – ¿viva? ¿inerte? –

 


4. cuadro de diferencias entre un ser vivo y materia inerte - [PDF ...Materia inerte y viva

“Cuando hablamos de materia inerte, nos referimos a todos los cuerpos y sustancias que no forman parte de un organismo viviente, o sea, que no se encuentran insertos en algún ciclo de vida: nacer, crecer, reproducirse y morir. En ese sentido, la materia inerte se contrapone a la materia viva o a los seres vivos.

El mundo está compuesto por seres vivos y cosas inanimadas, en diversos mecanismos de interacción. Mientras los primeros poseen movimiento voluntario y requieren de un balance interior para preservar su energía y continuar existiendo, la materia inerte se encuentra sometida únicamente a las fuerzas físicas elementales y a los procesos de transformación (biológicos o no), sin que intervenga en ello ningún tipo de voluntad, de necesidad vital o semejantes.

La materia inerte se llama así porque no presenta movimiento, ni voluntad, lo que demuestra una existencia pasiva en el universo, en comparación a la activa de los seres vivos.”

10 Características Químicas del Agua

Los seres vivos y la materia inerte se vinculan de distintos modos, como pueden ser:

  • Nutrición. Si bien los seres vivos están compuestos de materia orgánica, también debemos consumir determinada materia inerte, es decir, elementos específicos que nos permiten mantener la homeostasis, o sea, el equilibrio bioquímico. Por ejemplo, los seres vivos no podemos vivir sin agua, pero ésta no es un ser vivo.
  • Síntesis bioquímica. Los organismos vivientes no solo absorben materia inerte para nutrirse, sino que cambian la configuración de dicha materia mediante sus procesos metabólicos. Así, los organismos pueden construir moléculas orgánicas a partir de elementos dispersos (como hacen las plantas con la fotosíntesis), alterando la constitución de la materia inerte a su alrededor.
  • Descomposición. La vida, sin embargo, termina siempre y las moléculas orgánicas que componían el cuerpo de los seres vivos se descomponen por acción de otros organismos y de los elementos naturales, volviendo a ser sustancias más básicas y convirtiéndose, eventualmente, en materia inerte.”

Piedras para jardín: tipos y últimas novedades - Blog - PaisajismoMetalesCuáles son las alternativas al plástico? - AmbientumPiso Plataforma De Perforación Industrial Y El Campo De Petróleo ...

Cerámica de estilos incaicos. Ejemplares de estilos Inca ...Vidrios para mesas, ¿cómo deben ser? - Vidrio PanelPapel volumen, ¿qué es?

“Los ejemplos de materia inerte son sumamente abundantes en nuestra vida cotidiana. Las piedras, los metales, el concreto, el plástico, el petróleo, la cerámica, el vidrio, el papel, todo ello son formas de materia inerte. También lo son los objetos que fabricamos con ellos: estatuas, cañerías, edificios, juguetes, poliésteres, tazas, platos, vasos, espejos, libros y un enorme etcétera.”

Las nebulosas, esas bellezas difusasQué es una nebulosa? Tipos de nebulosas - AstroAficion

Nada de lo que ahí podemos ver tiene la facultad de pensar pero… ¿Es inerte?

Está claro que aquí trataremos sobre la física y la naturaleza de la materia que, por lo menos yo, no tengo muy claro que sea “inerte”, ya que la vida, tal como la conocemos, sin lugar a ninguna duda proviene de esa mal llamada materia inerte que, en su momento y mediante unos procesos y circunstancias muy especiales, en presencia de agua, elementos diversos que como un caldo primordial fueron bombardeados por los rayos cósmicos provenientes del espacio exterior, dio lugar a esa primera célula que nos trajo millones de años después a nosotros, los humanos.

Rusia quiere recrear primeros momentos Universo con ...Rusia quiere recrear primeros momentos de Universo con un ...

Los físicos utilizando tecnologías avanzadas y muy poderosas, han investigado y experimentado creando en los laboratorios y aceleradores de partículas las iniciales condiciones del Big Bang, mediante la fórmula de hacer chocar haces de protones (u otras partículas) que circulando a velocidades cercanas a la de la luz, hacen aparecer otras partículas más exóticas que están escondidas en el interior de los núcleos atómicos. De los escombros de esas colisiones sacan y obtienen datos de esos nuevos componentes de la materia; así han ido confeccionando la lista, cada vez más larga, de las familias de partículas elementales, unas más elementales que otras.

Modelo atómico de Thomson: características, postulados, partículas ...Estructura nuclear - Wikipedia, la enciclopedia libre

                  Mucho hemos avanzado desde el primario modelo atómico de Thomson

Siguiendo el camino marcado por J. J. Thomson, Ernest Rutherford, Niels Bohr y James Chadwick, se continuó indagando en la estructura interna del modelo atómico descubierto por ellos y que nos hicieron ver que, lejos de ser el material constitutivo más elemental, los átomos están formados por un núcleo que contiene protones y neutrones, rodeados por un enjambre de electrones que describen órbitas a su alrededor.

Leer más

La Imaginación: ¡Mucho más rápida que la Luz!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Nuestras Mentes están conectadas con el Universo (del que formamos parte) por los hilos invisibles de la imaginación. Los pensamientos nos llevan a recorrer caminos inimaginables hasta que pretendemos comprender el Ser, entonces, ni la filosofía es suficiente y tenemos que echar mano de la Metafísica.

Cómo los científicos quieren impedir que te puedan hackear el ...Red de neuronas y conexiones neuronales, las células del cerebro ...

Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en hacer el recuento

“Tanto Estados Unidos como la Unión Europea tienen en marcha proyectos de investigación para lograr el máximo conocimiento sobre cerebro humano y su funcionamiento.”

File:Gravity Probe B.jpg

Satélite Gravity Probe B. Dedicado a medir la curvatura del campo gravitatorio terrestre debido a la teoría de la Relatividad de Einstein. La gravedad ha sido medida y comprobada de muchas maneras pero… ¡Gravedad cuántica! ¿qué es eso? La imaginación anda más rápida que los conocimientos. Sin embargo, así hemos ido avanzando en el transcurrir del Tiempo.

Gravedad cuántica

La llamada gravedad cuántica trata de fundir en una sola las dos teorías físicas más soberbias con las que contamos, la Relatividad general y la Mecánica cuántica, que en el estado actual de nuestro conocimiento parecen incompatibles. Su estudio, ahora mismo, es en algunos aspectos análogo a la física de hace cien años, cuando se creía en los átomos, pero se ignoraban los detalles de su estructura.

Existe la quinta dimensión? Teoría de Kaluza- Klein - ... en Taringa!

La Teoría de la quinta dimensión de Kaluza-Klein

Desde aquel día en que Kaluza, le escribió a Einstein una carta con su teoría de las cinco dimensiones, en la que unía la Gravedad con el Electromagnetismo, la puerta de las dimensiones más altas quedó abierta y a los teóricos se les regaló una herramienta maravillosa: el hiperespacio; todo es posible. Hasta el matrimonio de la Relatividad general y la mecánica cuántica, allí sí es posible encontrar esa soñada teoría de la gravedad cuántica.

Así que las teorías se han embarcado a la búsqueda de un objeto audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos; una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.

Claro que saber, lo que el Universo es, leyendo una ecuación, por muy ingeniosa que ésta sea y por mucho que la misma pueda abarcar… Parece poco probable. ¿Dónde radica el problema? El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC, la máquina más potente del mundo hasta el momento.

La verdad es que la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. ¡Necesitamos algo más avanzado!

A pesar de su grandeza, se queda corto para que nos pueda decir, lo que necesitamos saber: Nos habló del Bosón de Higgs y supo contestar otras muchas preguntas. Ahora, entre otras cosas, está afanado en buscar la partícula oscura que conforma esa supuesta materia.

El Bosón de Higgs o Partícula de Higgs - (Explicación Breve ...

Se decía que la función de la partícula de Higgs es la de dar masa a las partículas que carecen de ella, disfrazando así la verdadera simetría del mundo. Cuando su autor lanzó la idea a la comunidad científica, resultó además de nueva, muy extraña. El secreto de todo radica en conseguir la simplicidad: el átomo resultó ser complejo, lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones. Resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún; los quarks que estaban instalados en nubes de otras partículas llamadas gluones, y ahora queremos continuar profundizando, sospechando que después de los quarks puede haber algo más.

Nos dicen que existen lugares que llaman los “Océanos de Higgs“, y, por ellos, circula libremente el dichoso Bosón que, también según nos dicen, proporciona la masa al resto de las partículas. Todo el Universo está permeado por esa especie de sustancia -como el viejo éter- que los griegos llamaban Ylem cósmico y que, a medida que el tiempo avanza, le vamos cambiando el nombre. Pues bien, ahí, en ese “océano” dicen que está el Bosón dador de masas.

J.Camargo en la UNADAM

           Hemos sabido montar un escenario completo de como podría haber sucedido todo

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes, es decir, que si miramos a las estrellas en una noche clara, estamos mirando el campo de Higgs. Las partículas influidas por este campo toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado otras veces, tales como: del campo gravitatorio o del electromagnético.

Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquirirá energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra. Como E = mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein: la masa, m, tiene en realidad dos partes; una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo.

Acelerador de partículas - Wikipedia, la enciclopedia libre13 Relatividad

La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) en los aceleradores, o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas. Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

Un modelo didáctico para comprender el bosón de Higgs como parte ...

La influencia de Higgs en las masas de los quarks y de los leptones nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de qué reglas controlan los incrementos de masa generados por Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC), pero el problema es irritante: ¿por qué sólo esas masas ­­- las masas de los W+, W, Z0, y el up, down, encanto, extraño, top y bottom, así como los leptones – que no forman ningún patrón obvio?

Mass SpectrometerDinámica. Sistema de partículas - Monografias.com

Las masas van desde la del electrón (0’0005 GeV) a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-Salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnética y débil. En la unidad hay cuatro partículas mensajeras sin masa – los W+, W, Z0 y el fotón – que llevan la fuerza electrodébil. Además está el campo de Higgs, y rápidamente, los W y Z absorben la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos), y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen las teorías. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

“¿Qué hace que el bosón de Higgs sea una partícula especial? No, no es que un editor le pusiera un título llamativo a la biografía del premio Nobel Leon Lederman. Tampoco lo es que encontrar esta partícula nos permita entender la condensación del campo de Higgs que llevó a que las partículas ganaran masa. Incluso en las teorías sin Higgs o con un Higgs compuesto, la condensación del campo de Higgs y el proceso de ruptura espontánea de la simetría se da igualmente y de forma muy similar (pues hay muchas pruebas indirectas de este fenómeno).

Tampoco el Higgs es una partícula especial porque sea una excitación del del campo de Higgs que nos permita explorar sus propiedades, porque en las teorías sin Higgs o con Higgs compuesto también hay excitaciones del vacío que nos permiten explorar el campo.”

Eso nos dicen en el magnifico Blog de Francis (th)E mule Science’s News.

Partícula Símbolo Masa (en GeV/c2) Carga eléctrica Espín Interacción
Fotón \ \gamma 0 0 1 electromagnética
Bosón W W± 80,4 ± 1 1 débil
Bosón Z Z0 91,187 0 1 débil
Gluón g 0 0 1 fuerte

Las masas de los W y Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil, y las relajadas sonrisas de los físicos teóricos nos recuerdan que Hooft y Veltman dejaron sentado que la teoría entera está libre de infinitos.

Todos los intentos y los esfuerzos por hallar una pista de cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿por qué pesa el muón?”. Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa. Una voz potente y segura nos dice “¡Higgs!”. Durante más de sesenta años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo de Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

Es cierto que la masa aumenta con la velocidad

 

 

2. Equivalencia masa-energía

 

 La famosa ecuación E = mc2 que, en resumidas cuentas, refleja que la energía contenida en un objeto equivale a su masa, multiplicada por la velocidad de la luz al cuadrado. Como la velocidad de la luz es una cifra inmensa (ronda los 300.000 km/s) esta ecuación sugiere que hasta los objetos más pequeños encierran en su interior cantidades enormes de energía.

Pero también comenté que, originalmente, Einstein había escrito la ecuación «al revés», colocando la masa en función de la energía:

 

“Este matiz es importante porque demuestra que Einstein no intentaba reflejar la enorme cantidad de energía que hay contenida en un sistema que tiene una masa concreta, sino señalar que la masa de un objeto (o su inercia) es una manifestación directa de la cantidad de energía que lo compone, que es el concepto que conviene tener presente durante la entrada de hoy.

 

 

“En esta ecuación, el término pc representa el momento del objeto (o, lo que es lo mismo, el producto de su masa por la velocidad a la que se desplaza), multiplicado por la velocidad de la luz. De hecho, la versión de esta ecuación que todos conocemos (E = mc2) representa la energía que posee un objeto cuando está quieto (cuando v = 0 y, por tanto, pc = 0, así que E = mc+ 0).”

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente, y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen en entredicho que el concepto de masa sea un atributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que empleam cuando no saben hacerlo bien.

                                  ¿Sabremos alguna vez cómo adquieren masa las partículas?

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en la que los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

Una cosa más; hemos hablado de los bosones gauge y de su espín de una unidad. Hemos comentado también las partículas fermiónicas de la materia (espín de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espín cero. El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos donde quiera que estén y sin direccionalidad. Al Higgs se le llama a veces “bosón escalar” (sin dirección) por esa razón.

Fuerza Nuclear Débil | •Ciencia• AminoFuerzas fundamentales de la Naturaleza: Fuerza Nuclear Débil

La interacción débil, recordaréis, fue inventada por E. Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV. Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón de Higgs origen de la masa… y algunas cosas más.

Hay que responder montones de preguntas: ¿cuáles son las propiedades de las partículas de Higgs? y, lo que es más importante, ¿cuál es su masa? (Bueno, parece que, en el último experimento apareció se localizó un bosón con ~125 GeV que, según parece, podría ser el esquivo Hihhs)¿Cómo reconoceremos una si nos la encontramos en una colisión del LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas o sólo las hace incrementarse? ¿Cómo podemos saber más al respecto? Cómo es su partícula, nos cabe esperar que la veremos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.

Sobre la noticia que afirma que no hay materia oscura en el ...Descubren la 'partícula de Dios' que explica cómo se forma la ...

El Higgs, como la “materia oscura” es una idea que libera a los cosmólogos al camuflar su ignorancia

También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del universo, añadiendo pues, un peso más a la carga que ha de soportar el Higgs.

El campo de Higgs, tal como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Éstas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuado que las partículas y la cosmología pintan juntas de un universo primitivo puro y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10-5 grados Kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas. Así, por ejemplo, antes del Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

                           No, esto no es el Higgs, es, simplemente, una burbuja multicolor

El universo se expande y se enfría, y entonces viene el Higgs (que “engorda” los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que les hiciera parecer que tienen mucha masa.  Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

La partícula divina - Leon Lederman y Dick Teresi2014 noviembre 21 : Blog de Emilio Silvera V.

Algunos dicen que las partículas se ven frenadas en el campo de Higgs y toman sus masas  al rosar con esa sustancia cósmico que forma el océano de Higgs. Por imaginación que no quede.

De todas formas, es tanta la ignorancia que tenemos sobre el origen de la masa que nos agarramos como a un clavo ardiendo, en este caso, a la partícula de Higgs, que algunos han llegado a llamar “la partícula divina”. Lo mismo nos pasa con la dichosa “materia oscura” para ocultar lo que no sabemos sobre la expansión del Universo.

Ya veremos en que queda todo esto

Arriba tenemos nada más y nada menos que: a John Mather, Carlo Rubbia, Martinus Veltman, Gerardus ‘t Hooft at the Lindau Nobel Meetings 2010. Si científicos  como ellos no vienen a nuestro rescate, y nos sacan del atolladero en el que estamos inmerso y hasta el cuelo de ignorancia…¡Mal hirán las cosas!

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas. La utilizaron los teóricos Steven Weinberg y Abdus Salam, que trabajaban por separado, para comprender cómo se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W y Z0 de masa grande. Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glashow, quien, tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martinus Veltman y Gerard’t Hooft. También hay otros a los que habría que mencionar, pero lo que siempre pasa, quedan en el olvido de manera injusta. Además, ¿cuántos teóricos hacen falta para encender una bombilla? La verdad es que, casi siempre, han hecho falta muchos. Recordemos el largo recorrido de los múltiples detalles sueltos y físicos que prepararon el terreno para que llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.

Lo cierto es que (al menos de momento), la materia y energía oscura, las supercuerdas, y el bosón de Higss, sí son la alfonbra que decía Veltman, aquel físico serío y Premio Nobel que, no confesaba con ciertas ruedas de molino. Él, quería hablar de cosas tamgibles y, tampoco le gustaban las partículas virtuales. (Claro que ya nos han dicho que el Bosón de Higgs ha sido encontrado y, hasta le han dado un Nobel al suceso pero…).

Simetría CP y otros aspectos de la Física : Blog de Emilio Silvera V.El miedo se nutre de la ignorancia - La Mente es Maravillosa

                    Desde siempre, el miedo se ha nutrido de la ignorancia a lo que no conocemos

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia. Glashow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales. La objeción principal: que no tenemos la menor prueba experimental. Ahora, por fin, la tendremos con el LHC. El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menor de 1 TeV, ¿por qué?; si tiene más de 1 TeV el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Después de todo esto, llego a la conclusión de que el campo de Higgs, el modelo estándar y nuestra idea de como surgió el Universo no dependen de creamos haber encontrado el bosón de Higgs.  Ahora, por fin, tenemos un acelerador con la energía necesaria para que nos pueda responder muchas preguntas planteadas que no tenían contestación, y que con su potencia pueda desvelar para nosotros cosas nuevas que intuimos que están ahí. Sin embargo, se necesitarán muchas más energías  que 14 TrV.

emilio silvera