lunes, 25 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡El Universo! Esa Historia Interminable

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                 Algunas escenas de 2001 Una Odisea del Espacio, son inolvidables

 

2001: una odisea en el espacio', 20 minutos de obra maestra y 2 ...Qué grande es el cine - 2001, una odisea en el espacio - RTVE.es

Quizás lo más recordado de esta película sea su banda sonora, donde aparece esa magnífica composición titulada Así habló Zaratustra de Richard Strauss. Los acordes rotundos se van escuchando mientras un supuesto precursor del homo sapiens aprende a manejar un hueso, golpeándolo violentamente contra otros huesos esparcidos por el suelo. Entre tanto, la escena está siendo contemplada por un misterioso monolito que ha venido de no se sabe dónde y que se convierte después en el núcleo de la película.

 

                    ARCHIVO FUNDACIÓN AGR: “2001, una odisea del espacio”: 50 años de ...

 

El monolito negro y enigmático aparece en ese momento en que comienza el despertar de la raza humana. Resulta ser una especie de guía, un instructor, un objeto cuya presencia es el punto de partida del desarrollo del hombre. No se sabe quién lo colocó allí, pero evidentemente se trata de una inteligencia superior que quiere que el ser humano evolucione, y que en esas épocas de fragilidad para la especie humana viene a ayudar en el desarrollo de destrezas inteligentes que permitirán a los homínidos tomar ventaja frente al ecosistema y las demás especies competidoras.

 

 

Desde entonces, desde que esta posible escena fue el presente de la Tierra, los movimientos de los cuerpos celestes se han registrado, anotado y comentados en una variedad infinita de maneras, pero la serie continua de observaciones astronómicas ha sido consecuente a través de las distintas culturas que, siempre buscaban el por qué de las cosas y, debido a ello, un día se preguntaron quiénes eran y qué hacían aquí.

Pero, por su curiosidad, volvamos al monolito que aquellos monos miraban asombrados sin llegar a comprender su significado:

 

                                             Del hombre al Niño de las Estrellas: 2001 Una Odisea del Espacio

     

                         Del hombre al Niño de las Estrellas
                             Del Monolito al Monolito Modular | Solucionex

Una curiosa, y quizás poco importante, característica del bloque, había provocado discusiones interminables. El monolito tenía 11 pies de alto, y 1¼ por 5 pies en su sección transversal. Cuando sus dimensiones se midieron con gran cuidado, se descubrió que estaban en la proporción exacta 1 – 4 – 9, los cuadrados de los tres primeros números enteros. Nadie podía sugerir ninguna explicación convincente para esto, pero difícilmente podía ser una coincidencia, porque las proporciones se mantenían hasta los límites de la precisión de las medidas. Era humillante pensar que toda la tecnología terrestre no era capaz de dar forma a un bloque, aunque fuera inerte, de ningún material, con tan fantástico grado de precisión. A su forma, esta pasiva pero casi arrogante muestra de perfección geométrica era tan impresionante como cualquiera de los demás atributos del monolito.

 

2001 odisea en el espacio

 

Así, pues, cada uno de los bloques es un ortoedro perfecto con unas dimensiones exactas. Si consideramos el ancho como 1 unidad, el largo serían 4 unidades y el alto 9 unidades, es decir, sus dimensiones son proporcionales a los números 1, 4 y 9.

Leer más

Las simetrías biológicas del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Teoría de la supersimetría Vector de stock por ©edesignua 38480127

En cualquier sitio que miremos nos dirán que la supersimetría en la física de partículas es: Una simetría hipotética propuesta que relacionaría las propiedades de los Bosones y los Fermiones. Aunque todavía no se ha verificado experimentalmente que la supersimetría sea una simetría de la naturaleza, es parte fundamental de muchos modelos teóricos, incluyendo la teoría de supercuerdas. La super-simetría La también es conocida por el acrónimo inglés SUSY.

La Supersimetría tiene unas matemáticas muy bellas y por esa razón los artículos sobre el tema están llenos de ellas. Como ha sucedido antes, por ejemplo, cuando se propuso la teoría de Yang – Mills, tenemos un esquema matemático brillante que aún no sabemos como encajar en el conjunto de las leyes naturales. No tiene ningún sentido, todavía, pero esperamos que lo tenga en un tiempo futuro.

 

                                     

 

Hay otro escenario mucho más atractivo para nuestra imaginación. Hemos podido ver que los átomos están formados  por pequeños constituyentes, los fotones, neutrones y electrones. Luego descubrimos que esos constituyentes, a su vez, tienen una subestructura: están formados de quarks y gluones. ¿Por qué, como probablemente hayas  pensado tú antes, el proceso no continúa así? Quizñá esos Quarks y Gluones, e igualmente los electrones y todas las demás partículas aún llamadas “elementales” en el Modelo Estándar, estén también construidas de unos granos de materia aún menores y, finalmente, toda esa materia, si seguimos profundizando, nos daría la sorpresa de que toda ella es pura luz, es decir, la esencia de la materia.

Yo he tenido esa idea muy frecuentemente, nadie me quita de la cabeza que la materia, en lo más profundo de su “ser”, es la luz congelada en trozos de materia que, cuando llegan los sucesos, las transiciones de fase, se deja ver y sale a la “luz” del mundo para que la podamos contemplar.

 

                        http://www.palimpalem.com/8/CENTROSANERGIAALICANTE/userfiles/CARACOLA-VITAL-HUMANA.jpg

 

Simetría es nuestra presencia aquí como observadores, la concha de un caracol, una galaxia, una flor y también las estrellas y los mundos, todo forma un conjunto armónico que hace ese todo en el que nosotros, inmersos en tanta grandeza, no acabamos de asimilar lo mucho que la Naturaleza nos quiere transmitir y, al formar parte de ella, nos cuesta más mirarla desde “fuera” para entenderla, sin ser conscientes que, en realidad, la debemos mirar desde dentro, ahí es donde estamos. ¡Dentro de ella! Siempre hay algo más allá:

 

                                               Resultado de imagen de The Scale of the Universe 2 - HTwins.net

                                                 The Scale of the Universe 2 – HTwins.net

¿Quieres darte una vueltecita por el universo, en un tiempo razonable y entre las escalas de lo más inimaginablemente grande y lo infinitesimalmente pequeño? Prueba The Scale of the Universe 2, segunda parte de un interactivo similar que hace tiempo estuvo circulando por la Red, y a disfrutar. Basta mover la barra de desplazamiento o usar la rueda del ratón, y también se puede hacer clic sobre los objetos para aprender algo sobre ellos.

 

                   las galaxias más extrañas del universo - YouTube

 

Todas ellas, sin excepción, están formadas por las mismas cosas, los mismos elementos, las mismas fuerzas y las mismas constantes dinámicas que actúan según unos patrones encaminados a cambiarlo todo para que todo sea renovado.

                               Pulga Rascando GIF - Pulga Rascando Pulga rascando - Discover & Share GIFs

                                                                                    Lo invadieron las pulgas

 Todos sabemos de las grandes estructuras (inertes o vivas) que, en su inmensidad, transportan dentro de ellas o en la misma superficie, otras estructuras más pequeñas que, no por ello, dejan de ser también complejas. Grandes pulgas transportan pequeñas pulgas en su piel y, al igual que nosotros, llevan en ellas mismas a otros animáculos más pequeños, o, infinitesimales que, también, como nosotros, animales más grandes, tienen una misión encomendada sin la cual, seguramente nosotros, ni podríamos ser. Así que, tenemos que prestar mucha atención a lo que creemos “ínfimo” y que, en la mayoría de las veces, resulta ser más importante de lo que podemos llegar a imaginar.

 

                                         

 

Si miramos a los Quarks de un protón, por ejemplo, la mecánica cuántica (esa teoría maravillosa que controla todo el micromundo con increíble precisión), exige que el producto de la masa por la velocidad, el llamado “momento”, debe ser inversamente proporcional al tamaño de la “caja” en la cual ponemos nuestro sistema. El protón puede ser considerado como una de tales cajas y es tan pequeño que los quarks en su interior tendrían que moverse con una velocidad cercana a la de la luz. Debido a esto, la masa efectiva de los quarks más pequeños, u y d, es aproximadamente de 300 MeV, que es mucho mayor que el valor que vemos en las Tablas de Partículas; eso también explica porque la masa del Protón es de 900 MeV, mucho mayor que la suma de las masas en reposo de los quarks /y Gluones).

 

                                       

 

 Sí, dentro de los protones y neutrones, seguramente pueda haber mucho más de lo que ahora podemos vislumbrar. Nuestros aceleradores de partículas han podido llegar hasta ciertos límites que nos hablan de Quarks y ahora se buscan partículas supersimétricas o bosones traficantes de masa (como diría Ton Wood), y, nosotros, no sabemos si esos objetos existen o si podremos llegar a encontrarlos pero, por intentarlo… No dudamos en gastar ingentes cantidades y en utilizar cuantos recursos humanos sean precisos. El conocimiento de la Naturaleza es esencial para que, el futuro de la Física, sea la salvación de la Humanidad o, en su caso, de la raza que vendrá detrás de nosotros.

 

http://starviewer.files.wordpress.com/2010/03/cuerdastheory.jpg

 

Algunas Teorías, como todos conocemos, han intentado unificar teorías de color con las de supersimetría. Quizá los nuevos Aceleradores de  Hadrones  (LHC) y otros similares que estarán acabamos poco después de estas primeras décadas del siglo XXI, nos puedan dar alguna pista y desvelar algunos de los nuevos fenómenos asociados a los nuevos esquemas que se dibujan en las nuevas teorías.

 

                     

 

El fotón es la partícula más veloz del Universo, es también la transmisora de la fuerza electromagnética entre partículas cargadas como los electrones. Los fotones no tienen masa, marcan el límite de la velocidad en nuestro Universo y están presentes en todos los tipos de radiación que se producen.

 

                                        Espectro electromagnético - Wikipedia, la enciclopedia libre

Los astrofísicos están muy interesados en estas ideas que predicen una gran cantidad de nuevas partículas superpesadas y, también varios tipos de partículas  que interaccionan ultra-débilmente. Estas podrían ser las “famosas” WIMPs que pueblan los huecos entre galaxias para cumplir los sueños de los que, al no saber explicar algunas cuestiones, acudieron a la “materia oscura” que, como sabeis, les proporcionó el marco perfecto para ocultar su inmensa ignorancia. “¡La masa perdida!” ¿Qué masa es esa? Y, sin embargo, los Astrofísicos, incansables, se aferran a ella y la siguen buscando…¡Ilusos!

 

                         

                                                                   ¡El Universo! ¡Son tantas cosas!

 

 

 

Acerca de la Radiación | Novusmed

Desde nosotros los observadores, hasta la más ínfima partícula de materia

Yo, en mi inmensa ignorancia,  no puedo explicar lo que ahí pueda existir. Sin embargo, sospecho que, deberíamos ahondar algo más en esa fuerza que llamamos Gravedad y que, me da la sensación de que nos esconde secretos que aún no hemos sabido desvelar. Y, por otra parte, tengo la sospecha de que la Luz, es más de lo que podemos suponer.

 

Gases De Efecto Invernadero, Vector Ilustración del Vector - Ilustración de vector, gases: 17217940biomoleculas - Buscar con Google | Ramas de la quimica, Neurotransmisores, Seres vivosPPT - BIOMOLECULAS PowerPoint Presentation, free download - ID:2155131

 

Todo lo que nos rodea es materia, incluso lo que no vemos está formado por gases que también son materia y que forman parte de nuestra atmósfera. La materia está constituida por átomos y moléculas que determinan el tipo de compuesto que forman, así pueden formar parte de materia orgánica o inorgánica, o pueden ser parte de materia viva o inerte. La materia existe organizada en una gran diversidad de formas y a diferentes niveles,  la materia y la energía son dos cosas diferentes pero se encuentran unidas, la una no puede existir sin la otra.
La danza de las Diosas: 2012Real Circulo de Labradores | 17 de enero, conferencia 'La Tierra primitiva y el origen de la vida'
En un largo proceso y de abajo arriba, la vida se abrió paso y evolucionó a partir de un ambiente caliente y sulfuroso (seguramente en los océanos), para conquistar después  la Tierra firma y crear los distintas hábitats biológicos y ecosistemas que hoy conocemos.
La vida, al igual que otros acontecimientos que ocurren en el universo, posee una historia, es un producto de la evolución de la Tierra en su conjunto, la vida es el resultado de una serie de procesos, a través de dichos procesos la materia se fue organizando de acuerdo con las posibilidades que las condiciones ambientales y las características que los propios materiales participantes brindaban; así se originaron estructuras cada vez más complejas, como resultado de esta evolución gradual debieron aparecer las primeras células, presentándose de esta forma nuevas posibilidades de desarrollo en el  mundo biológico.
                                   
Sí, no sólo el Mundo, nuestro mundo. También el Universo entero es Biológico y en el, rigen esas fuerzas y constantes que conocemos y que no hemos llegado a comprender en todo su esplendor. Pero, conocemos lo suficiente para saber que, “no sabemos” pero que “debemos saber”.
Claro que, lo que nos dicen algunas teorías y que aún, no hemos sido capaces de descubrir, no quiere decir que esas teorías anden por el mal camino, hay que perseverar y llegar hasta el final para estar seguros de que, lo que auguran es cierto o, por elcontrario, debemos desecharlo y tomar otros caminos.
La ecuación más bonita. – Vasos Comunicantes
Ella dijo: “Dime algo bonito”, y él le dijo: “(∂ + m) ψ = 0”.

 

“Ésa es la ecuación de Dirac. Gracias a esto, se describe el fenómeno de entrelazamiento cuántico, que en la práctica dice que: ‘Si dos sistemas interactúan uno con el otro durante un cierto período de tiempo y luego se separan, lo podemos describir como dos sistemas separados, pero de alguna manera sutil están convertidos en un solo sistema. Uno de ellos sigue influyendo en el otro, a pesar de kilómetros de distancia o años luz’. Esto es el entrelazamiento cuántico o conexión cuántica. Dos partículas que, en algún momento estuvieron unidas, siguen estando de algún modo relacionadas. No importa la distancia entre ambas, aunque se hallen en extremos opuestos del universo. La conexión entre ellas es instantánea.”

 

                                   Pin de Diego Bogado en Física | Mecanica cuantica, Ecuación de dirac, Ecuacion de schrodinger
Paul Dirac (¿Recordais?), se sintió muy incómodo cuando en 1931, a partir de su magistral ecuación para el electrón, vaticinó que debería existir una partícula contraria, es decir, una antipartícula del electrón que tendría carga eléctrica opuesta. Aquella partícula no había sido descubierta y no quería perturbar a la comunidad científica con una proposición tan revolucionaria. “Quizá esta partícula cargada positivamente, tan extraña, sea simplemente el protón”, sugirió. Cuando poco después se identificó la auténtica antipartícula del electrón (el positrón) se sorprendió tanto que exclamó: “¡mi ecuación es más inteligente que su inventor!”.
¡Quién sabe lo que estará por descubrir!

emilio silvera

El saber, un viaje interminable

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Interacciones fundamentales | Universo y F&iacu...

Del artículo Electrón, Protón, Origen Descubierto de nuestro amigo JOSÉ GERMÁN VIDAL PALENCIA. Se trata de un compendio bien hecho que nos habla e muchas cuestiones que nosotros, siempre quisimos saber. Se remonta a los comienzos del Tiempo y están presentes la Materia simple y compleja, las partículas creadoras de todas las cosas que vemos a nuestro alrededor y, también nos habla de las energías y fuerzas que hacen de nuestro Universo el que nosotros conocemos, haciendo posible que nosotros estemos aquí para contarlo. Según nos dice José Gemán… entre otras muchas cosas…

 

 

                         
                                                                La estrella masiva Betelgeuse

“La masa con la que nace una estrella determina su historia y, sobre todo, la duración de su vida. Llamamos estrellas masivas a todas aquellas estrellas aisladas que explotan como supernovas al final de su existencia debido al colapso gravitatorio. Para que exploten como supernovas deben tener un mínimo de alrededor de ocho masas solares. Estrellas con menos masa pueden explotar, pero no por sí mismas (deben darse otras condiciones). Y hay parámetros secundarios que pueden introducir cambios, pero la masa es determinante.”

“En cuanto al máximo, el límite está en lo que la naturaleza sea capaz de producir. Hasta hace poco se creía que este límite estaba en torno a monstruos de 150 masas solares, aunque recientes trabajos lo elevan hasta 300. No obstante, no es un dato seguro ya que, cuanto más masiva es una estrella, menos vive, con lo cual estrellas más grandes serían difíciles de observar.”

                         La estrella más grande nunca vista | Ciencia

Una supergigante

Una supernova

Nucleosíntesis estelar

Una estrella de neutrones

Un púlsar

La radiación de los púlsares

    Nova, Supernova, Hypernova, Kilonova – What's The Difference? | IFLScience

                     Nova, Supernova, Hiper-nova

Verdaderamente si pudiéramos contemplar de cerca, el comportamiento de una estrella cuando llega el final de su vida, veríamos como es, especialmente intrigante las transiciones de fase de una estrella en implosión observada desde un sistema de referencia externo estático, es decir, vista por observadores exteriores a la estrella que permanecen siempre en la misma circunferencia fija en lugar de moverse hacia adentro con la materia de la estrella en implosión. La estrella, vista desde un sistema externo estático, empieza su implosión en la forma en que uno esperaría. Al igual que una pesada piedra arrojada desde las alturas, la superficie de la estrella cae hacia abajo (se contrae hacia adentro), lentamente al principio y luego cada vez más rápidamente. Si las leyes de gravedad de Newton hubieran sido correctas, esta aceleración de la implosión continuaría inexorablemente hasta que la estrella, libre de cualquier presión interna, fuera aplastada en un punto de alta velocidad. Pero no era así según las fórmulas relativistas que aplicaron Oppenheimer y Snyder. En lugar de ello, a medida que la estrella se acerca a su circunferencia crítica su contracción se frena hasta hacerse a paso lento. Cuanto más pequeña se hace la estrella, más lentamente implosiona, hasta que se congela exactamente en la circunferencia crítica y, dependiendo de su masa, explosiona como supernova para formar una inmensa nebulosa o, se transforma en nebulosa planetaria, más pequeña.

 

                                 

 

Ahí podemos observar a una estrella muy joven, de dos o tres millones de años que, en un futuro lejano será una gran Supernova. Los procesos que podríamos observar al final de la vida de una estrella gigante… ¡Son fascinantes!

 

 

En la escena que antes explicábamos, por mucho tiempo que nos quedemos esperando y contemplando el suceso, si uno está en reposo fuera de la estrella (es decir, en reposo en el sistema de referencia externo estático), uno nunca podrá ver que la estrella implosiona a través de la circunferencia crítica. Ese fue el mensaje inequívoco que Oppenheimer y Snyder nos enviaron. Para poder ver eso, habría que estar dentro de la estrella, instalado en la materia que está sufriendo la contracción y, no sabemos porque eso es así.

 

                       

¿Se debe esta congelación de la implosión a alguna fuerza inesperada de la relatividad general en el interior de la estrella? No, en absoluto, advirtieron Oppenheimer y Snyder. Más bien se debe a la dilatación gravitatoria del tiempo (el frenado del flujo del tiempo) cerca de la circunferencia crítica. Tal como lo ven los observadores estáticos, el tiempo en la superficie de la estrella en implosión debe fluir cada vez más lentamente cuando la estrella se aproxima a la circunferencia crítica; y, consiguientemente, cualquier cosa que ocurre sobre o en el interior de la estrella, incluyendo su implosión, debe aparecer como si el movimiento se frenara poco a poco hasta congelarse.

Por extraño que esto pueda parecer, aún había otra predicción más extrañas de las fórmulas de Oppenheimer y Snyder: si bien es cierto que vista por observadores externos estáticos la implosión se congela en la circunferencia crítica, no se congela en absoluto vista por los observadores que se mueven hacia adentro con la superficie de la estrella. Si la estrella tiene una masa de algunas masas solares y empieza con un tamaño aproximado al del Sol, entonces vista desde su propia superficie implosiona hacia la circunferencia crítica en aproximadamente una hora, y luego sigue implosionando más allá de la criticalidad hacia circunferencias más pequeñas.

 

Flujo de tiempo. ¿Continuo o alterable? - Fisicotrónica

 

Allá por el año 1939, cuando Oppenheimer y Snyder descubrieron estas cosas, los físicos ya se habían acostumbrados al hecho de que el tiempo es relativo; el flujo del tiempo es diferente medido en diferentes sistemas de referencia que se mueven de diferentes formas a través del Universo. Claro que, nunca antes había encontrado nadie una diferencia tan extrema entre sistemas de referencia. Que la implosión se congele para siempre medida en el sistema externo estático, pero continúe avanzando rápidamente superando al punto de congelación medida en el sistema desde la superficie de la estrella era extraordinariamente difícil de comprender. Nadie que estudiara las matemáticas de Oppenheimer y Snyder se sentía cómodo con semejante distorsión extrema del tiempo. Pero ahí estaba, en sus fórmulas. Algunos podían agitar sus brazos con explicaciones heurísticas, pero ninguna explicación parecía muy satisfactoria. No sería completamente entendido hasta finales de los cincuenta.

 

Qué es la implosión? - Quora

 

Fue Wheeler el que discrepó del trabajo de Oppenheimer y Snyder, alegando, con toda la razón que, cuando ellos habían realizado su trabajo, habría sido imposible calcular los detalles de la implosión con una presión realista (presión térmica, presión de degeneración y presión producida por la fuerza nuclear), y con reacciones nucleares, ondas de choque, calor, radiación y expulsión de masa. Sin embargo, los trabajos desde las armas nucleares de los veinte años posteriores proporcionaron justamente las herramientas necesarias.

 

                                     

 

Presión, reacciones nucleares, ondas de choque, calor radiación y expulsión de masa eran todas ellas características fundamentales de una bomba de hidrógeno; sin ellas, una bomba no explosionaría. A finales de los años cincuenta, Stirling Colgate quedó fascinado por el problema de la implosión estelar. Con el apoyo de Edward Teller, y en colaboración con Richard White y posteriormente Michael May, Colgate se propuso simular semejante implosión en un ordenador. Sin embargo, cometieron un error, mantuvieron algunas de las simplificaciones de Oppenheimer al insistir desde el principio en que la estrella fuera esférica y sin rotación, y, aunque tuvieron en cuenta todos los argumentos que preocupaban a Wheeler, aquello no quedó perfeccionado hasta después de varios años de esfuerzo y, a comienzo de los años sesenta ya estaban funcionando correctamente.

Un día a principio de los años sesenta, John Wheeler entró corriendo en la clase de relatividad de la Universidad de Princeton. Llegaba un poco tarde, pero sonreía con placer. Acababa de regresar de una visita a Livermore donde había visto los resultados de las simulaciones recientes de Colgate y su equipo. Con excitación en su voz dibujó en la pizarra un diagrama tras otro explicando lo que sus amigos de Livermore habían aprendido.

 

                                   Resultado de imagen de Estrella en Implosión

 

Cuando la estrella en implosión tenía una masa pequeña, desencadenaba una implosión de supernova y formaba una estrella de neutrones precisamente en la forma que Fritz Wicky había especulado treinta años antes. Sin embargo, si la estrella original era más masiva lo que allí se producía (aparte de la explosión supernova) era un agujero negro notablemente similar al altamente simplificado  modelo que veinticinco años  calcularon Oppenheimer y Snyder. Vista desde fuera, la implosión se frenaba y se quedaba congelada en la circunferencia crítica, pero vista por alguien en la superficie de la estrella, la implosión no se congelaba en absoluto. La superficie de la estrella se contraía a través de la circunferencia crítica y seguía hacia adentro sin vacilación.

 

Histórica explosión estelar impacta a los astrónomos | Gemini Observatory

 

Lo cierto fue que allí, por primera vez, se consiguió simular por ordenador la implosión que debía producir agujeros negros. Está claro que la historia de todo esto es mucho más larga y contiene muchos más detalles que me he saltado para no hacer largo el trabajo que, en realidad, sólo persigue explicar a ustedes de la manera más simple posible, el trabajo que cuesta obtener los conocimientos que no llegan (casi nunca) a través de ideas luminosas, sino que, son el resultado del trabajo de muchos.

Hoy, sabemos mucho más de cómo finaliza sus días una estrella y, dependiendo de su masa, podemos decir de manera precisa que clase de Nebulosa formará, que clase de explosión (si la hay) se producirá, y, finalmente, si el resultado de todo ello será una estrella enana blanca que encuentra su estabilidad final por medio del Principio de exclusión de Pauli (en mecánica cuántica)que se aplica a los fermiones pero no a los Bosones (son fermiones los quarkselectronesprotones y neutrones), en virtud del cual dos partículas idénticas en un sistema, como los electrones en un átomo o quarks en un hadrón(protón o neutrón, por ejemplo), no pueden poseer un conjunto idéntico de números cuánticos.

 

 

El Instituto de Astrofísica de Andalucía analiza datos de Chandra de la NASA sobre la estrella Zeta Ophiuchi – Madrid Deep Space Communications Complex

Zeta Ophiuchi es una estrella con un pasado complicado, ya que probablemente fue expulsada de su lugar de nacimiento por una poderosa explosión estelar. Un nuevo análisis del Observatorio de rayos X Chandra de la NASA ha proporcionado información sobre la historia de esta estrella fugitiva.

 

La estrella azul cerca del centro de esta imagen es Zeta Ophiuchi. Cuando se ve en luz visible aparece como una estrella roja relativamente débil rodeada de otras estrellas tenues y sin polvo. Sin embargo, en esta imagen infrarroja tomada con campo amplio por el Explorador Infrared Survey de la NASA, o WISE, un punto de vista completamente diferente emerge. Zeta Ophiuchi es en realidad una muy masiva y caliente estrella azul, brillante que traza su camino a través de una gran nube de polvo y gas interestelar.

 

 

Una estrella masiva alejándose de su antiguo compañero se manifiesta haciendo un imponente surco a través de polvo espacial, como si se tratase de la proa de un barco. La estrella, llamada Zeta Ophiuchi, es enorme, con una masa de cerca de 20 veces la de nuestro Sol. En esta imagen, en los que se ha traducido la luz infrarroja a colores visibles que vemos con nuestros ojos, la estrella aparece como el punto azul en el interior del arco de choque. Zeta Ophiuchi orbitó una vez alrededor de una estrella aún más grande. Pero cuando la estrella explotó en una supernova, Zeta Ophiuchi se disparó como una bala. Viaja a la friolera velocidad de 24 kilómetros por segundo arrastrando con ella un conglomerado de polvo que distorsiona la región por la que pasa.

Mientras la estrella se mueve través del espacio, sus poderosos vientos empujan el gas y el polvo a lo largo de su camino en lo que se llama un arco de choque. El material en el arco de choque está tan comprimido que brilla con luz infrarroja que  WISE puede captar. El efecto es similar a lo que ocurre cuando un barco cobra velocidad a través del agua, impulsando una ola delante de él.  Esta onda de choque queda completamente oculta a la luz visible. Las imágenes infrarrojas como esta son importantes para arrojar nueva luz sobre lo que ocurre en situaciones similares.

 

Testigos de cómo una estrella colapsa | RTVE.es

 

Pero, siguiendo con el tema de las implosiones de las estrellas, ¿Dónde está la razón por la que la materia no se colapsa, totalmente, sobre sí misma? El mismo principio que impide que las estrellas de neutrones y las estrellas enanas blancas implosionen totalmente y que, llegado un momento, en las primeras se degeneran los neutrones y en las segundas los electrones, y, de esa manera, se frena la compresión que producía la gravedad y quedan estabilizadas gracias a un principio natural que hace que la materia normal sea en su mayor parte espacio vacío también permite la existencia de los seres vivos. El nombre técnico es: El Principio de Exclusión de Pauli y dice que dos fermiones (un tipo de partículas fundamentales) idénticos y con la misma orientación no pueden ocupar simultáneamente el mismo lugar en el espacio. Por el contrario, los bosones (otro tipo de partículas, el fotón, por ejemplo) no se comportan así, tal y como se ha demostrado recientemente por medio de la creación en el laboratorio de los condensados de Bose-Einstein.

¿Cuál es la diferencia?

 

 

Los bosones son sociables; les gusta estar juntos. Como regla general, cualquier átomo con un número par de electrones más protones más neutrones es un bosón. Así, por ejemplo, los átomos del sodio ordinario son bosones, y pueden unirse para formar condensados Bose-Einstein.

 

     Resultado de imagen de Los Fermiones no se juntan

                                                               Los bosones son sociables; los fermiones son antisociales.

 

Los fermiones, por otro lado, son antisociales. No pueden juntarse en el mismo estado cuántico (por el Principio de Exclusión de Pauli de la mecánica cuántica). Cualquier átomo con un número impar de electrones más protones más neutrones, como el potasio-40, es un fermión.

Pero, estábamos diciendo: “…no pueden poseer un conjunto idéntico de números cuánticos.” A partir de ese principio, sabemos que, cuando una estrella como nuestro Sol deja de fusionar Hidrógeno en Helio que hace que la estrella deje de expandirse y quede a merced de la Gravedad, ésta implosionará bajo el peso de su propia masa, es decir, se contraerá sobre sí misma por la fuerza gravitatoria pero, llegará un momento en el cual, los electrones, debido a ese principio de exclusión de Pauli que les impide estar juntos, se degeneran y se moverán de manera aleatoria con velocidades relativista hasta el punto de ser capaces de frenar la fuerza provocada por la gravedad, y, de esa manera, quedará estabilizada finalmente una estrella enana blanca.

 

           

 

Si hablamos de una estrella supermasiva, su produce la implosión arrojando las capas externas al espacio interestelar mientras que el grueso de la estrella se comprime más y más sin que nada la pueda frenar, aquí no sirve el Principio de exclusión de Pauli para los fermiones y, es tal la fuerza gravitatoria que se desencadena como consecuencia de que la estrella supergigante no puede seguir fusionando y queda a merce4d de una sola fuerza: La Gravedad, que ésta, la comprime hasta lo inimaginable para convertir toda aquella ingente masa en una singularidad, es decir, un punto de densidad y energía “infinitas” que ni la luz puede escapar de allí, y, el tiempo se ralentiza y el espacio se curva a su alrededor.

 

CESAR La vida de la estrellas

 

Si la estrella original es más masiva, la degeneración de los electrones no será suficiente para frenar la fuerza gravitatoria y, los electrones se fusionaran con los protones para convertirse en neutrones que, bajo el mismo principio de exclusión sufrirán la degeneración que frenará la fuerza de gravedad quedando entonces una estrella de neutrones. Por último, si la estrella es, aún más masiva, ni la degeneración de los neutrones será suficiente para frenar la inmensa fuerza gravitatoria generada por la masa de la estrella que, continuará la implosión contrayéndose cada vez más hasta desaparecer de nuestra vista convertida en un agujero negro.

¿Qué forma adoptará, qué transición de fase se produce en la materia dentro de una Singularidad?

¡Resulta todo tan complejo!

emilio silvera

La Imaginación: ¡Mucho más rápida que la Luz!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                         La NASA vuelve a decepcionar tras 50 años de espera - Naukas

                                                                               Satélite Gravity Probe B.

Dedicado a medir la curvatura del campo gravitatorio terrestre debido a la teoría de la relatividad de Einstein. La gravedad ha sido medida y comprobada de muchas maneras pero… ¡Gravedad cuántica! ¿qué es eso? La imaginación anda más rápida que los conocimientos. Sin embargo, así hemos ido avanzando en el transcurrir del Tiempo.

 

 

La llamada gravedad cuántica trata de fundir en una sola las dos teorías físicas más soberbias con las que contamos, la relatividad general y la mecánica cuántica, que en el estado actual de nuestro conocimiento parecen incompatibles. Su estudio, ahora mismo, es en algunos aspectos análogo a la física de hace cien años, cuando se creía en los átomos, pero se ignaraban los detalles de su estructura.

Desde aquel día en que Kaluza, le escribió a Einstein una carta con su teoría de las cinco dimensiones, en la que unía la Gravedad con el Electromagnetismo, la puerta de las dimensiones más altas quedó abierta y a los teóricos se les regaló una herramienta maravillosa: el hiperespacio; todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí sí es posible encontrar esa soñada teoría de la gravedad cuántica.

Así que las teorías se han embarcado a la búsqueda de un objeto audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos; una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.

 

59 - Curso de Relatividad General [Ecuaciones de Campo & Constante  Cosmológica] - YouTube

                                                      Hay que reconocer que nos dice mucho

Claro que saber, lo que el universo es, leyendo una ecuación, por muy ingeniosa que ésta sea y por mucho que la misma pueda abarcar… Parece poco probable. ¿Dónde radica el problema? El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC, la máquina más potente del mundo hasta el momento.

La verdad es que la teoría que ahora tenemos, el modelo estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. ¡Necesitamos algo más avanzado!

 

             

 

A pesar de su grandeza, se queda corto para que nos pueda decir, lo que necesitamos saber: Si nos habla del Bosón de Higgs, ya estará bien

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las partículas que carecen de ella, disfrazando así la verdadera simetría del mundo. Cuando su autor lanzó la idea a la comunidad científica, resultó además de nueva, muy extraña. El secreto de todo radica en conseguir la simplicidad: el átomo resultó ser complejo, lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones. Resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún; los quarks que estaban instalados en nubes de otras partículas llamadas gluones, y ahora queremos continuar profundizando, sospechando que después de los quarks puede haber algo más.

 

El bosón de Higgs. | Blog de Jose Antonio Martin

                             Ahí las partículas toman su masa por el efecto frenado

Nos dicen que existen lugares que llaman los Océanos de Higgs, y, por ellos, circula libremente el dichoso Bosón que, también según nos dicen, proporciona la masa al resto de las partículas. Todo el Universo está permeado por esa especie de sustancia -como el viejo éter- que los griegos llamaban Ilem cósmico y que, a medida que el tiempo avanza, le vamos cambiando el nombre. Pues bien, ahí, en ese “océano” dicen que está el Bosón dador de masas.

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes, es decir, que si miramos a las estrellas en una noche clara, estamos mirando el campo de Higgs. Las partículas influidas por este campo toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado otras veces, tales como: del campo gravitatorio o del electromagnético.

 

                                             

 

Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquirirá energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra. Como E = mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein: la masa, m, tiene en realidad dos partes; una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) en los aceleradores, o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

 

 

Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas. Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

 

 

Hasta ahora no tenemos ni idea de qué reglas controlan los incrementos de masa generados por Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC), pero el problema es irritante: ¿por qué sólo esas masas ­­- las masas de los W+, W, Z0, y el up, down, encanto, extraño, top y bottom, así como los leptones – que no forman ningún patrón obvio?

 

Partículas Elementales - Portafolio Física Moderna

 

Las masas van desde la del electrón (0’0005 GeV) a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-Salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnética y débil. En la unidad hay cuatro partículas mensajeras sin masa – los W+, W, Z0 y el fotón – que llevan la fuerza electrodébil. Además está el campo de Higgs, y rápidamente, los W y Z absorben la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos), y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen las teorías. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

“¿Qué hace que el bosón de Higgs sea una partícula especial? No, no es que un editor le pusiera un título llamativo a la biografía del premio Nobel Leon Lederman. Tampoco lo es que encontrar esta partícula nos permita entender la condensación del campo de Higgs que llevó a que las partículas ganaran masa. Incluso en las teorías sin Higgs o con un Higgs compuesto, la condensación del campo de Higgs y el proceso de ruptura espontánea de la simetría se da igualmente y de forma muy similar (pues hay muchas pruebas indirectas de este fenómeno).

Tampoco el Higgs es una partícula especial porque sea una excitación del del campo de Higgs que nos permita explorar sus propiedades, porque en las teorías sin Higgs o con Higgs compuesto también hay excitaciones del vacío que nos permiten explorar el campo.” Eso nos dicen en el magnifico Blog de Francis (th)E mule Science’s News.

Partícula Símbolo Masa (en GeV/c2) Carga eléctrica Espín Interacción
Fotón \ \gamma 0 0 1 electromagnética
Bosón W W± 80,4 ± 1 1 débil
Bosón Z Z0 91,187 0 1 débil
Gluón g 0 0 1 fuerte

 

Las masas de los W y Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil, y las relajadas sonrisas de los físicos teóricos nos recuerdan que Hooft y Veltman dejaron sentado que la teoría entera está libre de infinitos.

Todos los intentos y los esfuerzos por hallar una pista de cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿por qué pesa el muón?”. Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa. Una voz potente y segura nos dice “¡Higgs!”. Durante más de sesenta años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo de Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente, y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen en entredicho que el concepto de masa sea un atributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.

 

                                 

                                            ¿Sabremos alguna vez cómo adquieren masa las partículas?

 

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en la que los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

 

                                         

 

Una cosa más; hemos hablado de los bosones gauge y de su espín de una unidad. Hemos comentado también las partículas fermiónicas de la materia (espín de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espín cero. El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos donde quiera que estén y sin direccionalidad. Al Higgs se le llama a veces “bosón escalar” (sin dirección) por esa razón.

La interacción débil, recordaréis, fue inventada por E. Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV. Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón de Higgs origen de la masa… y algunas cosas más.

 

                                   

Hay que responder montones de preguntas: ¿cuáles son las propiedades de las partículas de Higgs? y, lo que es más importante, ¿cuál es su masa? (Bueno, parece que, en el último experimento apareció se localizó un bosón con ~125 GeV que, según parece, podría ser el esquivo Hihhs)¿Cómo reconoceremos una si nos la encontramos en una colisión del LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas o sólo las hace incrementarse? ¿Cómo podemos saber más al respecto? Cómo es su partícula, nos cabe esperar que la veremos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.

También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del universo, añadiendo pues, un peso más a la carga que ha de soportar el Higgs.

El campo de Higgs, tal como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Éstas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuado que las partículas y la cosmología pintan juntas de un universo primitivo puro y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10-5 grados Kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas. Así, por ejemplo, antes del Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

 

               

                           No, esto no es el Higgs, es, simplemente, una burbuja multicolor

El universo se expande y se enfría, y entonces viene el Higgs (que “engorda” los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que les hiciera parecer que tienen mucha masa.  Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

De todas formas, es tanta la ignorancia que tenemos sobre el origen de la masa que nos agarramos como a un clavo ardiendo, en este caso, a la partícula de Higgs, que algunos han llegado a llamar “la partícula divina”. Lo mismo nos pasa con la dichosa “materia oscura” para ocultar lo que no sabemos sobre la expansión del Universo.

¡Ya veremos en qué termina todo esto!

John Mather Biography Webb Telescope/NASACarlo Rubbia awarded China's highest scientific prize | CERN

Martinus J. G. Veltman Bio, Early Life, Career, Net Worth and SalaryGerardus t' Hooft – SM@50: The Standard Model At 50 Years

 

Arriba tenemos nada más y nada menos que: a John Mather, Carlo Rubbia, Martinus Veltman, Gerardus ‘t Hooft at the Lindau Nobel Meetings 2010. Si científicos  como ellos no vienen a nuestro rescate, y nos sacan del atolladero en el que estamos inmerso y hasta el cuelo de ignorancia…¡Mal irán las cosas!

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas. La utilizaron los teóricos Steven Weinberg y Abdus Salam, que trabajaban por separado, para comprender cómo se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W y Z0 de masa grande. Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glashow, quien, tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martinus Veltman y Gerard’t Hooft. También hay otros a los que habría que mencionar, pero lo que siempre pasa, quedan en el olvido de manera injusta. Además, ¿cuántos teóricos hacen falta para encender una bombilla? La verdad es que, casi siempre, han hecho falta muchos. Recordemos el largo recorrido de los múltiples detalles sueltos y físicos que prepararon el terreno para que llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.

 

                                                                                                       

 

Lo cierto es que (al menos de momento), la materia y energía oscura, las supercuerdas, y el bosón de Higss, sí son la alfonbra que decía Veltman, aquel físico serio y Premio Nobel que, no confesaba con ciertas ruedas de molino. Él, quería hablar de cosas tamgibles y, tampoco le gustaban las partículas virtuales.

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia. Glashow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales. La objeción principal: que no tenemos la menor prueba experimental. Ahora, por fin, la tendremos con el LHC. El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menor de 1 TeV, ¿por qué?; si tiene más de 1 TeV el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Después de todo esto, llego a la conclusión de que el campo de Higgs, el modelo estándar y nuestra idea de surgió el universo dependen de que se encuentre el bosón de Higgs. Y ahora, por fin, tenemos un acelerador con la energía necesaria para que nos la muestre, y que con su potencia pueda crear para nosotros una partícula que pese nada menos que 1 TeV.

emilio silvera

¿Cuál es el Camino? No hay ningún camino.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Camino lo tenemos que hacer nosotros al andar. Lo mismo que se forma la vereda en la Montaña cuando los seres vivos pasan por el mismo sitio una y otra vez, dando lugar a que se forme una vereda por aquel lugar que los viandantes han creído el más idóneo para transitar hacia algún otro sitio. Lo tuvieron que elegir de manera racional al ser el más indicado y, por ese “camino” se creó el sendero por el que caminar. Antes allí, no había camino.

 

Infografías Científicas

El viaje de Colón

 

Vasco da Gama y su peligroso viaje hacia la India por el sur de África

Vasco da Gama y su peligroso viaje hacia la India por el sur de África.

 

James Cook rediscovered: the story of us | The AustralianJames Cook, el conquistador de las antípodas

James Cook, el conquistador de las antípodas

 

Was Ibn Battuta the greatest explorer of all time?

Ibn Battuta, el mayor viajero musulmán de todos los tiempos.

Ibn Battuta – The most famous explorer in the Muslim World.

Todos los tenemos en la Mente:

  • Cristóbal Colón (1451-1506) …
  • Vasco da Gama (1460-1524) …
  • James Cook (1728-1779) …
  • Charles Robert Darwin (1809-1882) …
  • Ibn Battuta (1304-1368/69) …
  • Sir Richard Francis Burton (1821 – 1890) …
  • Ryszard Kapuscinski (1932-2007) …
  • Jeanne Baret (1740-1807)

 

El Camino de Santiago Solo | Cómo Encontrarse a uno Mismo | PilgrimEl fin del mundo más bonito de la Tierra

Mirar hacia el Horizonte y dar el primer paso, sin saber hasta donde nos llevará

No pocas veces, el camino se crea a partir de una idea, una intuición, una ganas de saber lo que hay más allá de nuestros dominios, de explorar lo desconocido, de comprobar si la fascinación que presentimos por lo que pensamos que “allí” pueda existir, se debe a una certera intuición, o, por el contrario, es sólo un espejismo. No siempre el explorador encontró aquella civilización perdida que gritaba insistente en su mente llamándolo sin cesar, ni el científico encuentra la anhelada explicación a un secreto de la Naturaleza que, tan claramente  veía en sus sueños.

Está claro que el mismo acto de la exploración, modifica la perspectiva del explorador; Ni Ulises, Marco Polo o Colón podían ser los mismos cuando, después de sus respectivas aventuras regresaron a sus hogares. Lo mismo ha sucedido con la investigación científica en los extremos de las escalas, desde la grandiosa extensión del esapcio cosmológico… 

 

… hasta el mundo minúsculo y enloquecido de las partículas subatómicas
Estos viajes nos cambiaron y cambiaron muchos de los conceptos ancestrales que, en nuestras mentes,  estaban apaciblemente aposentados y, desafiaron muchas de las concepciones científicas y también filosóficas que más valorábamos. Algunas, ante aquella realidad nueva, tuvieron que ser desechadas, como el bagaje que se deja atrás en una larga y pesada travesía un desierto. Otras tuvieron que ser modificadas y reconstituidas hasta quedar casi irreconocibles.
                                http://maniaticos.files.wordpress.com/2009/11/cumulo_galaxias.jpg
La exploración en el ámbito de las galaxias y cúmulos de galaxias extendió el alcance de la visión humana en un factor de 1026 veces mayor que la propia escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era un provincianismo dentro de un universo más vasto donde el espacio es curvo y el tiempo se hace flexible.
https://youtu.be/0IuIcWK7eEE
https://youtu.be/HiXUSyhpjuk
https://youtu.be/-2_usIkkl7E
https://youtu.be/WnWJ7I3KrIQ
La exploración en el dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a unos 10-15 de la escala humana, y también significó una revolución. Esta fue la física cuántica que transformó todo lo que abordó a partir de su nacimiento en 1900, cuando Max Planck, escribió aquel artículo de ocho páginas que fueron las semillas de las que más tarde, germinaron “las flores” de la M.C.. Planck, comprendió que sólo podía explicar lo que se llamaba la Curva del Cuerpo Negro -el espectro de energía que genera un objeto de radiación perfecta- si abandonaba el supuesto clásico de que la emisión de enetgía es continua, y lo reemplazó por la hipótesis sin precedentes de que la energía se emite en unidades discretas. Planck llamó cuantos a estas unidades y quedaron simbolizadas por la letra h.
{\displaystyle E=hf\,}
Dado que la frecuencia , la longitud de onda , y la velocidad de la luz  cumplen ��=� se puede expresar como:
{\displaystyle E={\frac {hc}{\lambda }}\,}
Constante universal, igual a 6.55×1027 ergios por segundo. El cuanto de acción es la magnitud fundamental, descubierta por Planck (1900), de la mecánica cuántica. Constituye un límite especial entre los micro y los macro-fenómenos.
Plan no era ningún revolucionario -a la edad de 42 años era un viejo, juzgado por los patrones de las ciencias matemáticas y, además, un pilar de la elevada cultura germana del siglo XIX-, pero se percató fácilmente de que el principio cuántico echaría abajo buena parte de la física clásica a la que había dedicado buena parte de su vida y de su carrera.
“Cuanto mayores sean sus dificultades -escribió-… tanto más importante será finalmente para la ampliación y profundización del conocimiento de la Física.” Aquellas palabras fueron proféticas: cambiando y desarrollándose constantemente, modificando su coloración de manera tan impredecible como una reflexión en una  burbuja de jabón, la física cuántica pronto se expandió prácticamente a todo el ámbito de la física, y el cuanto de acción de Planck, h, llegó a ser considerado una constante de la naturaleza tan fundamental como la velocidad de la luz, c, de Einstein.
http://www.mpe.mpg.de/410729/orbits3d_small_gif.gif
En una batalla entre los principios estrellas de la historia cuántica, sólo puede haber un ganador. O no puede? . En el invierno de 1926-1927, Werner Heisenberg el brillante joven alemán estaba trabajando como jefe asistente de Niels Bohr , alojado en un desván en la parte superior del instituto del gran danés de Copenhague. Después de un día de trabajo, Bohr se acercaba al encuentro con Heisenberg para hablar de física cuántica. A menudo se sentaban hasta altas horas de la noche, en un intenso debate sobre el significado de la teoría cuántica revolucionaria, entonces en su infancia.
https://youtu.be/Sj3LK5XZ3Lo
Construye tu propia cámara de niebla en la cocina de tu casa
Los físicos de partículas suelen encontrarse en sus vidas profesionales con el inconveniente de que aquello con lo que trabajan es tan sumamente pequeño que se vuelve indetectable tanto para el ojo humano como para los más avanzados sistemas de microscopía. Es cierto que en la actualidad se pueden conseguir imágenes en las que se distinguen átomos individuales cuando estos son lo suficientemente grandes, pero de ahí a poder visualizar un sólo protón, o un aún más pequeño electrón, hay un escalón insalvable para la técnica actual.
Cómo se explica que en las cámaras de niebla de un detector de partículas aparezcan claramente las trayectorias de las partículas, pudiendo saberse entonces su posición y velocidad? ¿No es un claro
Un rompecabezas que se ponderó eran los rastros de las gotitas que dejan los electrones al pasar a través de las cámara de niebla un aparato utilizado para rastrear los movimientos de partículas cargadas. Cuando Heisenberg trató de calcular estas aparentemente precisas trayectorias usando las ecuaciones de la mecánica cuántica,  no lo consiguió.
Una noche de mediados de febrero, Bohr había dejado la ciudad en un viaje de esquí, y Heisenberg se había deslizado a tomar un poco de aire de la noche en las amplias avenidas de Fælled Parque, detrás del instituto. Mientras caminaba, se le ocurrió. El rastro de los electrones no era preciso en lo absoluto: si uno lo mira de cerca, consiste en una serie de puntos difusos. Eso reveló algo fundamental sobre la teoría cuántica. De vuelta en su ático, Heisenberg escribió con entusiasmo su idea en una carta a su colega el físico Wolfgang Pauli. Lo esencial de esto apareció en un documento unas pocas semanas más tarde: “Mientras más precisa la posición es determinada, menor precisión, en el momento se conoce en este instante, y viceversa.”
Así el notorio principio de incertidumbre de Heisenberg había nacido. Una declaración de la incognoscibilidad fundamental del mundo cuántico, que se ha mantenido firme durante la mayor parte del siglo. Pero ¿por cuánto tiempo? Corren rumores de que un segundo principio cuántico – el entrelazamiento- puede sonar el tañido de muerte para la incertidumbre.
Sólo podemos obtener respuestas parciales, cuya naturaleza está determinada en cierta medida por las cuestiones que optamos por indagar. Cuando Heisenberg calculó la cantidad mínima ineludible de incertidumbre que limita nuestra comprensión de los sucesos de pequeña escala, halló que está definida que nada menos que por h, el cuanto de acción de Planck.
La indeterminación cuántica no depende del aparato experimental que podamos emplear para la investigación del mundo subatómico. Se trata, en la medida de nuestro conocimiento, de una limitación absoluta, que los más destacados sabios de una civilización extraterrestre avanzada compartirían con los más humildes físicos de la Tierra. En la física atómica clásica se suponía que se podía, en principio, medir las situaciones y trayectorias precisas de miles de millones de partículas -digamos, protones- y a partir de los datos resultantes hacer predicciones exactas de donde estarían los protones en determinado tiempo futuro.
Heisenberg demostró que tal supuesto era falso, que nunca podremos saberlo todo sobre la conducta de siquiera una sóla partícula, mucho menos de una gran cantidad de ellas, y, por lo tanto, nunca podremos hacer predicciones sobre el futuro que sean completamente exactas en todos los detalles. Esto marcó un cambio fundamental en la visión del mundo de la física. Revelaba que no sólo la materia y la energía sino también el conocimiento están cuantizados.
Índice de contenidos general - PDF Free Download
     Super-retículo curvo y micro-ejes curvos

El principio de incertidumbre es aplicado a modelos del espacio 3D ordinario, donde el espacio tiempo es continuo. En los sistema cuantizados con retículos diminutos que conforman a los superejes, la información de las partículas pasa de un retículo a otro o a una zona cuántica distinta del mismo retículo. Dado que en el modelo de los eventos, los objetos no pertenecen a los eventos, simplemente evolucionan generando más información de nuevos eventos, la incertidumbre asociada a estos puede estar relacionada con radio del bucle de los retículos diminutos, y para el traslado de la información de un retículo a otro debe existir un nivel incertidumbre en cuanto a cual retículo pertenece el evento durante la transferencia de dicha información, o ¿a qué conjunto de valores cuánticos del mismo pertenece?

 

https://www.dailymotion.com/video/x397na1

 

La mecánica cuántica (el salto cuántico del electrón) nos desvelará el secreto de cómo el electrón puede, al recibir un fotón, desaparecer del nivel nuclear que ocupa para de manera instantánea, y sin necesidad de recorrer la distancia que los separa, aparecer como por arte de magia en un nivel superior. Copiaremos el salto cuántico para viajar. Nos introduciremos en un cabina, marcaremos las coordenadas, pulsaremos un botón y desapareceremos en Madrid y de manera instantánea, apareceremos de la nada en otra cabina igual situada en Nueva York a 6.000 Km de distancia.

 

 

 

¿Quién sabe lo que podemos extraer del salto cuántico? El efecto túnel nos podría dar la fórmula para viajar a lugares lejanos. Creo que todos nuestros sueños se podrían realizar si, en el momento adecuado, observando la Naturaleza, sabemos elegirt el camino que tenemos que andar para llegar a ese destino soñado,,  imaginado.

 

 

Nuestras Mentes buscarán las formas de solucionar todos esos problemas complejos que ahora inquietan a la Humanidad.

 

La Física cuántica nos obliga a tomarnos en serio lo que antes eran puramente consideraciones filosóficas: que no vemos las cosas en sí mismas, sino sólo aspectos de las cosas. Lo que vemos en la trayectoria de un electrón en la cámara de niebla no es un electrón, y lo que vemos en el cielo no son estrellas, como una grabación de la voz de Pavoroti no es Pavoroti. Al revelar que el observador desempeña un papel en la observación, la física cuántica hizo por la física lo que Darwin ha hecho por las ciencias de la vida: Echó abajo las paredes, reunificando la Mente con el Universo más vasto.

emilio silvera