lunes, 25 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Las curiosidades de la Física y los números

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                     Particiones: Hardy y Ramanujan — Cuaderno de Cultura Científica

                                                                       Hardy y Ramanujan

Comentando, sobre Ramanujan y sua cuadernos perdidos, recordé lo que dijo el matemático Richard Askey: “El trabajo de este año, mientras se estaba muriendo, era el equivalente a una vida entera de un matemático muy grande”.

El misterio de Ramanujan persiste un siglo después de la muerte del  matemáticoDisponibles los originales del brillante matemático Ramanujan

Lo que él consiguió era increíble.  Los matemáticos Jonathan Borwien y Meter Borwein, en relación a la dificultad y la ardua tarea de descifrar los cuadernos perdidos, dijeron: “Que nosotros sepamos nunca se ha intentado una redacción matemática de este alcance o dificultad”.

                                                Ramanujan: el hindú al que los números le soplaban sus secretos - El  Mostrador

Por mi parte creo que, Ramanujan, fue un genio matemático muy adelantado a su tiempo y que pasaran algunos años hasta que podamos descifrar al cien por ciento sus trabajos, especialmente, sus funciones modulares que guardan el secreto de la teoría más avanzada de la física moderna,   la única capaz de unir la mecánica quántica y la Gravedad.

Las misteriosas funciones modulares! : Blog de Emilio Silvera V.

                Las misteriosas Funciones Modulares de Ramanujan

La función theta de Ramanujan está definida como:

{\displaystyle f(a,b)=\sum _{n=-\infty }^{\infty }a^{n(n+1)/2}\;b^{n(n-1)/2}}

La siguiente se convierte en la función de Euler, que está estrechamente relacionada con la función eta de Dedekind.

{\displaystyle f(-q,-q^{2})=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{n(3n-1)/2}=(q;q)_{\infty }}

“Ramanujan, trabajando en total aislamiento ( y sin formación, toda su instrucción matemática la consiguió de la lectura de un oscuro y olvidado libro de matemáticas escrito por George Carr), fue capaz de redescubrir por sí mismo lo más valioso de cien años de matemáticas occidentales y de dejarnos una obra, que consta de 4.000 fórmulas en cuatrocientas páginas densamente llenas de teoremas de increíble fuerza pero sin ningún comentario ni demostración. Tenía tal intuición que los teoremas simplemente fluían de su cerebro, sin el menor esfuerzo aparente. Solía decir que las diosas Namakkal le inspiraban la fórmulas en sueños.”

                          

“Los teóricos de cuerdas al intentar manipular los diagramas de lazos KSV ( Kikkawa-Sakita-Virasoro) creados por las cuerdas en interacción encuentran unas extrañas funciones llamadas modulares que aparecen en las ramas más distantes e “inconexas” de las matemáticas((Yutaka Taniyama ( Japón, 1927-1958) observó que cada función modular está relacionada con una curva elíptica. Esto forma la base de la conjetura Taniyama-Shimura que demostró ser una parte importante en la demostración del Último Teorema de Fermat de Andrew Wiles )). Una función que aparece continuamente en la teoría de funciones modulares se denomina función de Ramanujan, en honor al matemático Srinivasa Ramanujan, nacido en 1887 en Erode, India, cerca de Madrás.”

Una serie importante utilizada para obtener dos mil millones de cifras del número Pi (π)

Las matemáticas de Ramanujan son como una sinfonía, la progresión de sus ecuaciones era algo nunca visto, él trabajaba desde otro nivel, los números se combinaban y fluían de su cabeza a velocidad de vértigo y con precisión nunca antes conseguida por nadie.   Tenía tal intuición de las cosas que éstas simplemente fluían de su cerebro.   Quizá no los veía de una manera que sea traducible y el único lenguaje eran los números.

Como saben los físicos, los ” accidentes” no aparecen sin ninguna razón.  Cuando están realizando un cálculo largo y difícil, y entonces resulta de repente que miles de términos indeseados suman milagrosamente cero, los físicos saben que esto no sucede sin una razón más profunda subyacente.  Hoy, los físicos conocen que estos “accidentes” son una indicación de que hay una simetría en juego.  Para las cuerdas, la simetría se denomina simetría conforme, la simetría de estirar y deformar la hoja del Universo de la cuerda.

Ramanujan, el hombre que vio en sueños el número pi | OpenMind

Aquí es precisamente donde entra el trabajo de Ramanujan.  Para proteger la simetría conforme original contra su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto número de identidades matemáticas que, son precisamente las identidades de la función modular de Ramanujan.  ¡Increíble!   Pero, cierto.

En resumen, he dicho que las leyes de la naturaleza se simplifican cuando se expresan en dimensiones más altas.   Sin embargo, a la luz de la teoría cuántica, debemos corregir algo Este sentido básico de mirar la cuestión.   El enunciado correcto sería ahora:   las leyes de la naturaleza se simplifican cuando se expresan  COHERENTEMENTE en dimensiones más altas.  El añadido de la palabra coherente es crucial.   Esta ligadura nos obliga a utilizar las funciones modulares de Ramanujan, que fijan en diez la dimensión del espacio – tiempo.   Esto, a su vez, puede darnos la clave decisiva para explicar el origen del Universo.

                                               web oficial de Valeria Ardante: La visión de Dios de Albert Einstein

Einstein se preguntaba a menudo si Dios tuvo alguna elección al crear el universo.   Según los teóricos de supercuerdas, una vez que exigimos una unificación de la teoría cuántica y la relatividad general, Dios no tenía elección.  La auto consistencia por sí sola, afirman ellos, debe haber obligado a Dios a crear el universo como lo hizo.

Leer más

La Materia en su estado natural que se convierte en Nuevos materiales

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cosmos Universo GIF - Cosmos Universo Espaço - Descubre & Comparte GIFs

En la inmensidad de todo el Universo, las galaxias se reúnen en grandes cúmulos, y, dentro de ellas, las estrellas también los forman y surgen en las distintas regiones para transmutar elementos sencillos en otros más complejos, y, de ellos, surge la materia constituida por átomos hechos de infinitesimales partículas subatómicas que se juntan para formar moléculas y éstas lo hacen para formar cuerpos.

Imágenes tomadas en observatorio Paranal explican cómo se forma el polvo  interestelar | Lifestyle de AméricaEconomía : Artes, Diseño, Estilo,  Motores, Ocio, Placeres, Salud, Viajes, Aire libre | Lifestyle de  AméricaEconomíaPlanetas del Sistema Solar - Astronomía - Definiciones y conceptos

De esa materia se forman mundos en los que están los distintos elementos que se “fabricaron en las estrellas, y, dichos materiales son utilizados de mil maneras distintas.

Lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra. Porque, en última instancia ¿es en verdad inerte la materia? El día que podamos conseguir un conocimiento más profundo de la materia, nos asombraremos de lo que la materia, en realidad, es.

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza.

                     Cienciaes.com: Vida ¿De qué estamos hechos? | Podcasts de CienciaTodo lo que nos rodea es materia

“La materia es todo aquello que tiene masa e inercia y ocupa un lugar en el espacio. Todas las cosas están hechas de materia, las sólidas (como la piedra o el hierro), las líquidas (como el aceite o el mar) y las gaseosas (como el aire que respiramos). Tienen volumen y forma definidos.”

Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Sí, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos, es decir, aquellos artificiales fabricados por la mano del hombre y que tienen números atómicos mayores que el 92.

                    Fusión nuclear: así funciona la tecnología que aspira a resolver nuestras  necesidades energéticasFusión nuclear - Wikipedia, la enciclopedia libre

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.

¡Parece que la materia está viva!

Leer más

Lo que surge de eso que llamamos vacío

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Aunque pequemos de reabundancia, en esta sección vamos a volver a tratar algunas descripciones que ya hemos tocado anteriormente, especialmente cuando hablamos del modelo estándar.

EL MODELO ESTÁNDAR DE LA FÍSICA DE PARTÍCULAS, Ciencias Para Todo con Jaume  Campos - YouTube

Cualquier grupo partículas que anden rondando por ahí presentan una o más de las siguientes interacciones o fuerzas fundamentales entre ellas. Por un lado se tiene la gravitación y el electromagnetismo, muy conocidas en nuestra vida cotidiana. Pero hay otras dos fuerzas, que no son tan familiares, que son de tipo nuclear y se conocen como interacciones fuertes y débiles.

Las 4 fuerzas del universo | Astronomía - Aficionados Amino

La gravitación afecta a todas las partículas, es una interacción universal. Todo cuerpo que tiene masa o energía está sometido a esta fuerza. Aunque es la más débil de las interacciones, como las masas son siempre positivas y su alcance es infinito, su efecto es acumulativo. Por ello, la gravitación es la fuerza más importante en cosmología.

Clase 21-Como es el movimiento de una particula cargada dentro de un campo  magnetico - YouTube

La fuerza electromagnética se manifiesta entre partículas con cargas eléctricas. A diferencia de las demás, puede ser de atracción (entre cargas de signos opuestos) o de repulsión (cargas iguales). Esta fuerza es responsable de la cohesión del átomo y las moléculas. Mantiene los objetos cotidianos como entidades con forma propia. Un vaso, una piedra, un auto, el cuerpo humano. Es mucho más fuerte que la gravitación y aunque es de alcance infinito, las cargas de distinto signo se compensan y sus efectos no operan a grandes distancias. Dependiendo de las circunstancias en que actúen, estas interacciones pueden manifestarse como fuerzas eléctricas o magnéticas solamente, o como una mezcla de ambos tipos.

Leer más

Cuando las palabras no saben explicar conceptos

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Pérdida de información en los agujeros negros

          Observada por primera vez la radiación de Hawking en un análogo óptico de  un agujero negro - La Ciencia de la Mula FrancisEl legado de Hawking : Revista Pesquisa Fapesp

“La radiación de Hawking es una forma de radiación emitida por los agujeros negros y consistente principalmente en la emanación de partículas subatómicas sin masa debido a los efectos cuánticos que se producen en el horizonte de sucesos.”

Se dice que un agujero negro (una masa M concentrada en un volumen menor que el dictado por su radio de Schwarzschild rs = 2GM/c2) absorbe todo lo que cae sobre él. Sin embargo, Beckenstein y Hawking determinaron que el agujero negro posee entropía (proporcional al área del horizonte) y por ello temperatura, y Hawking concluye (1975) que la temperatura le hace radiar como un cuerpo negro; por tanto, eventualmente el agujero se evapora.

Logran probar la principal teoría de Stephen Hawking recreando un agujero  negro en laboratorio | Gacetín Madrid

Aquí viene la paradoja. Si formamos el agujero negro arrojando materia en forma concreta (por ejemplo, un camión), la masa del camión acabaría eventualmente escupida como radiación del cuerpo negro, perdiéndose la preciosa información sobre el camión. Pero se supone que la evolución de “todo” es cuántica, y por ello unitaria. Ahora bien, la evolución unitaria mantiene la información (estados puros van a estados puros, no mezcla…); he ahí la paradoja.

Fue Hawking quien primero presentó la paradoja de “pérdida de información” en contra de otros que, como Gerard’t Hooft y Susskind, quienes mantienen que la información no se puede perder, y que por ello debe haber sutiles correlaciones en la radiación emitida, de las que en principio sería posible extraer la información original sobre que el agujero negro tragó un camión…

Leer más

¿El Modelo Estándar? ¡La perfección imperfecta!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                             

 

 

Demos una vuelta por el Modelo Estándar.

 

Un vistazo rápido al Modelo Estándar de Física de Partículas | Acelerando  la Ciencia

 

Con el título que arriba podemos leer de “La perfección imperfecta”, me quiero referir al Modelo estándar de la física de partículas y de las interacciones fundamentales y, algunos,  han llegado a creer que sólo faltan algunos detalles técnicos y, con ellos, la física teórica está acabada.

 

Física de partículas Modelo estándar de partículas elementales, ciencia.,  texto, simetría, partícula png | PNGWing

 

Tenemos un modelo que engloba todo lo que deseamos saber acerca de nuestro mundo físico. ¿Qué más podemos desear? Los pobres ilusos no caen en la cuenta de que el tal Modelo, al que no podemos negarle su valía como una herramienta muy valiosa para la física, no deja de estar incompleto y, además, ha sido construido con algunos parámetros aleatorios (unos veinte) que no tienen justificación. Uno de ellos era el Bosón de Higgs y, según nos han contado los del LHC, ha sido hallado. Sin embargo, esperamos que nos den muchas explicaciones que no han estado presente en todas las algaradas y fanfarrias que dicho “hallazgo” ha producido, incluidos los premios Principe de Asturias y el Nobel. ¡Veremos en que queda todo esto al final!

 

 

 

 

Bueno, lo que hasta el momento hemos logrado no está mal del todo pero, no llega, ni con mucho, a la perfección que la Naturaleza refleja y que, nosotros perseguimos sin llegar a poder agarrar sus múltiples entrecijos y parámetros que conforman ese todo en el que, sin ninguna clase de excusas, todo debe encajar y, de momento, no es así. Muchos son los flecos sueltos, muchas las incognitas, múltiples los matices que no sabemos perfilar.

Es cierto que, el Modelo estándar, en algunos momento, nos produce y nos da la sensación de que puede ser perfecto. Sin embargo, esa ilusoria perfección, no es permanente y en algunas casos efímera. En primer lugar, podríamos empezar a quejarnos de las casi veinte constantes que no se pueden calcular. Pero si esta fuese la única queja, habría poco que hacer. Desde luego, se han sugerido numerosas ideas para explicar el origen de estos números y se han propuesto varias teorías para “predecir” sus valores. El problema con todas estas teorías es que los argumentos que dan nunca llegan a ser convincentes.

 

 

Preguntas y respuestas sobre la cuarta generación de partículas en el  modelo estándar (SM4) - La Ciencia de la Mula Francis

La cuarta generación de partículas del Modelo Estándar

 

¿Por qué se iba a preocupar la Naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo,  tal como el proncipio de la relatividad,  pero nos resistimos a abandonar todos los demás principios que ya conocemos; ¡esos, después de todo, han sido enormemente útiles en el descubrimiento del Modelo estándar! una herramienta que ha posibilitado a todos los físicos del mundo para poder construir sus trabajos en ese fascinante mundo de la mecánica cuántica, donde partículas infinitesimales interactúan con las fuerzas y podemos ver, como se comporta la materia en determinadas circunstancias. El mejor lugar para buscar nuevos principios es precisamente donde se encuentran los puntos débiles de la presente teoría.

 

 

Con esta imagen nos decían:
“Colisión del Bosón de Higgs desintegrándose en fermiones”. Primeras evidencias de un nuevo modo de desintegración del bosón de Higgs. Las primeras evidencias de la desintegración del recién descubierto bosón de Higgs en dos partículas denominadas tau, pertenecientes a la familia de partículas que compone la materia que vemos en el Universo. Hasta ahora los experimentos del LHC habían detectado la partícula de Higgs mediante su desintegración en otro tipo de partículas denominadas bosones, portadoras de las fuerzas que actúan en la Naturaleza, mientras las evidencias de desintegraciones en fermiones no eran concluyentes. Esta es la primera evidencia clara de este nuevo modo de desintegración del bosón de Higgs.”

Lo que el Gran Colisionador de Hadrones ha aportado a nuestra saludEl experimento en el Gran Colisionador de Hadrones que puede cambiar las  leyes que rigen el Universo - BBC News Mundo

La regla universal en la física de partículas es que cuando las partículas chocan con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez menores, más pequeñas en el espacio y en el tiempo. Supongamos por un momento que tenemos a nuestra disposición un Acelerador de Partículas 10.000 veces más potente que el LHC, donde las partículas pueden adquirir esas tantas veces más energías de las alcanzadas actualmente. Las colisiones que tendrían lugar nos dirían algo acerca de los detalles estructurales de esas partículas que ahora no conocemos, que serían mucho más pequeñas que las que ahora podemos contemplar. En este punto se me ocurre la pregunta: ¿Seguiría siendo correcto el Modelo estándar? 0, por el contrario, a medida que nos alejemos en las profundidades de lo muy pequeño, también sus normas podrían variar al mismo tiempo que varían las dimensiones de los productos hallados. Recordad que, el mundo no funciona de la misma manera en nuestro ámbirto macroscópico  que ante ese otro “universo” cuántico de lo infinitesimal.

 

¿Podéis imaginar conseguir colisiones a 70.000 TeV? ¿Qué podríamos ver? Y, entonces, seguramente, podríamos oír en los medios la algarada de las protestas de algunos grupos:  “Ese monstruo creado por el hombre puede abrir en el espacio tiempo agujeros de gusano que se tragará el mundo y nos llevará hacia otros universos” Comentarios así estarían a la orden del día. Los hay que siempre están dispuestos a protestar por todo y, desde luego, no siempre llevan razón, toda vez que, la mayoría de las veces, ignoran de qué están hablando y juzgan si el conocimiento de causa necesario para ello. De todas las maneras, sí que debemos tener sumo cuidado con el manejo de fuerzas que… ¡no siempre entendemos! Cuando el LHC se vuelva a poner en marcha, se utilizarán energías que llegan hasta los 14 TeV, y, esas son palabras mayores.

La Física De Partículas, La Materia Oscura, La Cosmología imagen png -  imagen transparente descarga gratuita

¿Justifica el querer detectar las partículas que conforman la “materia oscura”, o, verificar si al menos, podemos vislumbrar la sombra de las “cuerdas” vibrantes de esa Teoría del Todo, el que se gasten ingentes cantidades de dinero en esos artilugios descomunales? Bueno, a pesar de todos los pesares, la respuesta es que SÍ, el rendimiento y el beneficio que hemos podido recibir de los aceleradores de partículas, justifica de manera amplia todo el esfuerzo realizado, toda vez que, no solo nos ha llevado a conocer muchos secretos que la Naturaleza celosamente guardaba, sino que, de sus actividades hemos tenido beneficios muy directos en ámbitos como la medicina, las comunicaciones y otros que la gente corriente desconocen.

                               

Hoy, el Modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero tenemos algunas razones para sospechar que tales predicciones resultan estar muy alejadas de la realidad, o, incluso, ser completamente falsas. Cuando tenemos la posibilidad de llegar más lejos, con sorpresa podemos descubrir que aquello en lo que habíamos creído durante años, era totalmente diferente. El “mundo” cambia a medida que nos alejamos más y más de lo grande y nos sumergimos en ese otro “mundo” de lo muy pequeño, allí donde habitan los minúsculos objetos que conforman la materia desde los cimientos mismos de la creación.

Encendamos nuestro super-microscopio imaginario y enfoquémoslo directamente en el centro de un protón o de cualquier otra partícula. Veremos hordas de partículas fundamentales desnudas pululando. Vistas a través del super-microscopio, el modelo estándar que contiene veinte constantes naturales, describen las fuerzas que rigen la forma en que se mueven. Sin embargo, ahora esas fuerzas no sólo son bastante fuertes sino que también se cancelan entre ellas de una forma muy especial; están ajustadas para conspirar de tal manera que las partículas se comportan como partículas ordinarias cuando se vuelven a colocar el microscopio en la escala de ampliación ordinaria. Si en nuestras ecuaciones matemáticas cualquiera de estas constantes fueran reemplazadas por un número ligeramente diferente, la mayoría de las partículas obtendrían inmediatamente masas comparables a las gigantescas energías que son relevantes en el dominio de las muy altas energías. El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural.

                       

¿Implica el ajuste fino un diseño con propósito? ¿Hay tantos parámetros que deben tener un ajuste fino y el grado de ajuste fino es tan alto, que no parece posible ninguna otra conclusión?

Antes decía: “El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural”.  Es lo que se llama el “problema del ajuste fino”. Vistas a través del microscopio, las constantes de la Naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático, no hay nada que objetar, pero la credibilidad del Modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas o, lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas.

¿Y por qué debería ser el modelo válido hasta ahí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables, ellas podrían modificar completamente el mundo que Gulliver planeaba visitar. Si deseamos evitar la necesidad de un delicado ajuste fino de las constantes de la Naturaleza, creamos un nuevo problema:

Las mejores imágenes del espacio captadas en 2020 - BBC News MundoLas 10 estrellas más extrañas del UniversoLas estrellas de neutrones y quarks explicadas para todos los públicos: así  se forman dos de los objetos más asombrosos del universo

           Es cierto que nuestra imaginación es grande pero… No pocas veces ¡la realidad la supera!

No siempre tuvimos el conocimiento necesario para imaginar esa realidad de ahí fuera

Dioses de la Realidad: Ajuste Fino del UniversoAjuste fino do universo (parte 1 de 8): Leis da física - A religião do Islã

 Pero ¿en qué consiste el ajuste fino del universo?. El Principio Antrópico del que hablamos alguna vez

Cómo podemos modificar el modelo estándar de tal manera que el ajuste-fino no sea necesario? Está claro que las modificaciones son necesarias , lo que implica que muy probablemente hay un límite más allá del cual el modelo deja de ser válido. El Modelo estándar no será más que una aproximación matemática que hemos sido capaces de crear, tal que todos los fenómenos observados hasta el presente están de acuerdo con él, pero cada vez que ponemos en marcha un aparato más poderoso, debemos esperar que sean necesarias nuevas modificaciones para ir ajustando el modelo, a la realidad que descubrimos.

Imagen de miniatura de un resultado de Lens

A la derecha el Fotón, Z y W± y el Gluón quedan representados el electromagnetismo y las fuerzas nucleares fuerte y débil pero… ¿Dónde queda la Gravedad. Cuando se trata de juntar con las otras fuerzas, por muy racionalmente que se haga… ¡Aquello explota! No se soportan la Cuántica con la Relatividad.

Al margen aparen (en la imagen de arriba) las partículas de la familia de los Bosones intermediarias de las fuerzas. Sin embargo, el Gravitón no aparece, la Gravedad se resiste a juntarse con las otras fuerzas en el Modelo. así que algo falla.

Gravedad cuántica, pesando lo muy pequeño (Tercera parte) - NaukasLa gravedad cuántica estaría escondida en los agujeros negros • Tendencias21

Se necesita una Teoría de la Gravedad Cuántica. Algunos dicen que se esconde en los agujeros negros, y, otros, postulan que subyace en la Teoría de Cuerdas, de donde (sin que nadie las llame) surgen las ecuaciones de campo de Einstein de la Relatividad General.

¿Cómo hemos podido pensar de otra manera? ¿Cómo hemos tenido la “arrogancia” de pensar que podemos tener la teoría “definitiva”? Mirando las cosas de esta manera, nuestro problema ahora puede muy bien ser el opuesto al que plantea la pregunta de dónde acaba el modelo estándar: ¿Cómo puede ser que el modelo estándar funcione tan extraordinariamente bien? y ¿por qué aún no hemos sido capaces de percibir nada parecido a otra generación de partículas y fuerzas que no encajen en el modelo estándar? La respuesta puede estar en el hecho cierto de que no disponemos de la energía necesaria para poder llegar más lejos de lo que hasta el momento hemos podido viajar con ayuda de los aceleradores de partículas.

                                 Aparece en el CERN una extraña partícula nunca vista hasta ahora

                                         Encuentran nueva partícula en el CERN

Los asistentes escuchan la presentación de los resultados del experimento ATLAS, durante el seminario del Centro Europeo de Física de Partículas (CERN) para presentar los resultados de los dos experimentos paralelos que buscan la prueba de la existencia de la “partícula de Higgs,  base del modelo estándar de física.

                              Un poco más allá del modelo estándar — Cuaderno de Cultura Científica

                           Nos preguntamos que habrá más allá del Modelo Estándar

La pregunta “¿Qué hay más allá del Modelo estándar”? ha estado fascinando a los físicos durante años. Y, desde luego, todos sueñan con llegar a saber, qué es lo que realmente es lo que conforma el “mundo” de la materia, qué partículas, cuerdas o briznas vibrantes. En realidad, lo cierto es que, la Física que conocemos no tiene que ser, necesariamente, la verdadera física que conforma el mundo y, sí, la física que conforma “nuestro mundo”, es decir, el mundo al que hemos podido tener acceso hasta el momento y que no necesariamente tiene que coincidir con el mundo real que no hemos podido alcanzar.

O, como decía aquél: ¡Que mundo más hermoso, parece de verdad!

Lo que seguramente no sabías sobre cómo ven tus ojos | OpenMind

                                       Siempre hay más de lo que el ojo ve

No todo lo que vemos es, necesariamente, un reflejo de la realidad de la Naturaleza que puede tener escondidos más allá de nuestras percepciones, otros escenarios y otros objetos, a los que, por ahora,  no hemos podido acceder, toda vez que, físicamente tenemos carencias, intelectualmente también, y, nuestros conocimientos avanzar despacio para conseguir, nuevas máquinas y tecnologías nuevas que nos posibiliten “ver” lo que ahora nos está “prohibido” y, para ello, como ocurre siempre, necesitamos energías de las que no disponemos.

Historia de la física de partículas

Hay dos direcciones a lo largo de las cuales se podría extender el Modelo estándar, tal lo conocemos actualmente, que básicamente se caracterizan así:

– Nuevas partículas raras y nuevas fuerzas extremadamente débiles, y

– nuevas partículas pesadas y nuevas estructuras a muy altas energías.

Podrían existir partículas muy difíciles de producir y de detectar y que, por esa razón, hayan pasado desaparecidas hasta. La primera partícula adicional en la que podríamos  pensar es un neutrino rotando a derecha. Recordaremos que si se toma el eje de rotación paralelo a la dirección del movimiento los neutrinos sólo rotan a izquierdas, pero… ¡esa sería otra historia!

                                     Imagen de miniatura de un resultado de Lens

Los neutrinos siempre me han fascinado. Siempre se han manifestado como si tuvieran masa estrictamente nula. Parece como si se movieran exactamente con la velocidad de la luz. Pero hay un límite para la precisión de nuestras medidas. Si los neutrinos fueran muy ligeros, por ejemplo, una cienmillonésima de la masa del electrón, seríamos incapaces de detectar en el laboratorio la diferencia éstos y los neutrinos de masa estrictamente nula. Pero, para ello, el neutrino tendría que tener una componente de derechas.

En este punto, los astrónomos se unen a la discusión. No es la primera vez, ni será la última, que la astronomía nos proporciona información esencial en relación a las partículas elementales. Por ejemplo, debido a las interacciones de corriente neutra (las interacciones débiles originadas por un intercambio Zº), los neutrinos son un facto crucial en la explosión  supernova de una estrella. sabemos que debido a las interacciones por corriente neutra, pueden colisionar con las capas exteriores de la estrella y volarlas con una fuerza tremenda.

Qué son los Neutrinos? | Katarsis DeliriumLo que ya sabemos de los neutrinos y lo que aún queda por descubrir

En realidad, los neutrinos nos tienen mucho que decir, todavía y, no lo sabemos todo acerca de ellos, sino que, al contrario, son muchos los y fenómenos que están y subyacen en ellos de los que no tenemos ni la menor idea que existan o se puedan producir. Nuestra ignorancia es grande, y, sin embargo, no nos arredra hablar y hablar de cuestiones que, la mayoría de las veces…ni comprendemos.

Aquí lo dejar´ñe por hoy, el tema es largo y de una fascinación que te puede llevar a lugares en los que no habías pensado al comenzar a escribir, lugares maravillosos donde reinan objetos exóticos y de fascinante porte que, por su pequeñez, pueden vivir en “mundos” muy diferentes al nuestro en los que, ocurren cosas que, nos llevan el asombro y también, a ese mundo mágico de lo fascinante y maravilloso.

 

Parece que el Modelo estándar no admite la cuarta fuerza y tendremos que buscar más profundamente, en otras teorías que nos hablen y describan además de las partículas conocidas de otras nuevas que están por nacer y que no excluya la Gravedad. Ese es el Modelo que necesitamos para conocer mejor la Naturaleza.

emilio silvera