sábado, 01 de febrero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los pensamientos… Que nunca dejarán de asombrarnos

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

         Ludwig Boltzmann será el protagonista de hoy

Hay ecuaciones que son aparentemente insignificantes por su reducido número de exponentes que, sin embargo, ¡dicen tántas cosas…! En la mente de todos están las sencillas ecuaciones de Einstein y de Planck sobre la energía-masa y la radiación de cuerpo negro. Esa es la belleza de la que hablan los físicos cuando se refieren a “ecuaciones bellas”.

                       Maxwell

Las ecuaciones de Maxwell…,  “y se hizo la luz”

La identidad de Euler: Algunos dijeron de su ecuación: “la expresión matemática más profunda jamás escrita”, “misteriosa y sublime”, “llena de belleza cósmica”, “una explosión cerebral”.

Newton y su segunda ley que, aunque no funcione cuando nos acercamos a velocidades relativistas, rompió la marcha hacia la Gravedad.

Pitágoras y “su” teorema, también debe estar presente como lo está su teorema en las construcciones de todo el mundo y… mucho más.

Schrödinger y su función de onda que tampoco se queda atrás (aunque como la ecuación de Newton, si hablamos de velocidades relativistas…)

E=MC²
“Es la ecuación más famosa del mundo desde que apareció en la portada de la revista Times de 1946. En ella aparece un retrato de Albert Einstein, un hongo atómico y E=MC², estableciendo una relación entre la fórmula del físico alemán y el desarrollo de la bomba que destruyó Hiroshima.”

Bueno, E = mc2, nos lleva a profundidades de la materia antes jamás vistas y nos permite sacar conclusiones como que, en un  gramo de materia está encerrada toda la energía consumida por la Humanidad durante un minuto. ¡Masa y Energía son la misma cosa!

Einstein, con esa ecuación de arriba de la relatividad general, vino a cambiar el mundo y, a partir de entonces, nació la verdadera cosmología. ¡Nos habla de tAntas cosas!

¿Qué decir de la maravillosa fórmula de la entropía de Boltzman?

S = k log W

 

Historia y biografía de Ludwig Boltzmann

 

 

 

Creo que hoy, hablaremos de ella. Boltzman con su trabajo e ingenio,  le dio a la Humanidad la herramienta para que pudiera seguir avanzando en el difícil laberinto de la Cienca, es,  sin duda, uno de los físicos más ilustres del siglo XIX.

El trabajo científico desarrollado por Boltzmann en su época crítica de transición que puso el colofón a la física “clásica” –cuya culminación podríamos situar en Maxwell– y antecedió (en pocos años) a la “nueva” física, que podemos decir que comenzó con Max Planck y Einstein. Aunque ciertamente no de la importancia de los dos últimos, la labor científica de Boltzmann tiene una gran relevancia, tanto por sus aportaciones directas (creador junto con “su amigo” Maxwell y Gibbs de la mecánica estadística, aunque sea el formulismo de éste último el que finalmente haya prevalecido; esclarecedor del significado de la entropía, etc.) como por la considerable influencia que tuvo en ilustres físicos posteriores a los que sus trabajos dieron la inspiración, como es el caso de los dos mencionados, Planck y Einstein.

                                              Las contribuciones menos conocidas de Einstein - ppt descargar

Boltzmann fue un defensor a ultranza del atomismo, polemizando sobre todo con Mach y Ostwald, antiatomistas partidarios de la energética y claros exponentes de la corriente idealista de la física alemana. Tuvo que abandonar su ambiciosa idea de explicar exactamente la irreversibilidad en términos estrictamente mecánicos; pero esta “derrota”, no ocultaré que dolorosa desde el punto de vista personal, le fue finalmente muy productiva, pues de alguna manera fue lo que le llevó al concepto probabilista de la entropía. Estas primeras ideas de Boltzmann fueron reivindicadas y extendidas, en el contexto de la teoría de los sistemas dinámicos inestables, sobre todo por la escuela de Prigogine, a partir de la década de 1970.

                                                              Frases de Ludwig Boltzmann (21 citas) | Frases de famosos

                                                                            El joven Boltzmann

La personalidad de Boltzmann   era bastante compleja. Su estado de ánimo podía pasar de un desbordante optimismo al más negro pesimismo en cuestión de unas pocas horas. Era muy inquieto; él decía – medio en serio, medio en broma – que eso se debía a haber nacido en las bulliciosas horas finales de los alegres bailes del Martes de Carnaval, previas a los “duelos y quebrantos” (entonces) del Miércoles de Ceniza.

Su lamentable final, su suicidio en Duino (Trieste) el 5 de septiembre de 1906, muy probablemente no fue ajeno a esa retorcida personalidad, aunque su precaria salud física fue seguramente determinante a la hora de dar el trágico paso hacia el lado oscuro.

                                                      II LEY DE LA TERMODINAMICA

Uno de los problemas conceptuales más importantes de la física es cómo hacer compatible la evolución irreversible de los sistemas macroscópicos (el segundo principio de la termodinámica) con la mecánica reversible (las ecuaciones de Hamilton o la ecuación de Schrödinger) de las partículas (átomos o moléculas) que las constituyen. Desde que Boltzmann dedujo su ecuación en 1872, este problema ha dado lugar a muy amplios debates, y el origen de la irreversibilidad es, aún hoy en día, controvertido.

En una de sus primeras publicaciones, Boltzmann obtuvo en 1866 una expresión de la entropía, que había sido definida un año antes por Clausius, basado en conceptos mecánicos. Las limitaciones de este trabajo eran que su aplicación se restringía al estudio de los gases y que el sistema era periódico en el tiempo. Además, Boltzmann no pudo deducir de su definición de entropía la irreversibilidad del segundo principio de la termodinámica de Clausius. En 1868, basándose en las ideas probabilísticas de Maxwell, obtuvo la distribución de equilibrio de un gas de partículas puntuales bajo la acción de una fuerza que deriva de un potencial (distribución de Maxwell-Boltzmann).

                                      

                                  En el Universo, considerado como sistema cerrado, la entropía crece y…

En 1.872 publicó la denominada ecuación de Boltzmann para cuya deducción se basó, aparentemente, en ideas mecánicas. Esta ecuación contiene, sin embargo, una hipótesis no mecánica (estadística) o hipótesis del caos molecular, que Boltzmann no apreció como tal, y cuya mayor consecuencia es que, cualquiera que sea la distribución inicial de velocidad de un gas homogéneo diluido fuera del equilibrio, ésta evoluciona irreversiblemente hacia la distribución de velocidad de Maxwell. A raíz de las críticas de Loschmidt (paradoja de la reversibilidad) y Zermelo (paradoja de la recurrencia), Boltzmann acabó reconociendo el carácter estadístico de su hipótesis, y en 1877 propuso una relación entre la entropía S de un sistema de energía constante y el número de estados dinámicos W accesibles al sistema en su espacio de fases; esto es, la conocida ecuación S = kB ln W, donde kB es la constante de Boltzmann. En esta nota, se hace una breve descripción de la ecuación de Boltzmann y de la hipótesis del caos molecular.

TOMi.digital - Gases parte 1Teoría Cinética De Los Gases Fotos e Imágenes de stock - Alamy

                            El comportamiento de los gases siempre dio a los físicos en qué pensar

La ecuación de Boltzmann describe la evolución temporal de un gas diluido de N partículas puntuales de masa m contenidas en un volumen V que interaccionan a través de un potencial de par central repulsivo V(r) de corto alcance a. Como simplificación adicional, considérese que sobre las partículas no actúan campos externos. Si f1(r,v,t) indica la densidad de partículas que en el tiempo t tienen un vector de posición r y velocidad v, que está normalizada en forma:

∫dr ∫dvƒ1(r,v,t) = N

Su evolución temporal es la suma de dos contribuciones. En ausencia de interacción, las partículas que en el tiempo t tienen vector de posición r y velocidad v se encuentran, después de un intervalo de tiempo Δt, en r + v Δt y tiene la misma velocidad. Como

f1(r + vΔt,v,t + Δt) = f1(r,v,t)

en el límite Δt → 0 (2) se escribe:

1 f1(r,v,t) = – v∂r f1(r,v,t)

Que es una ecuación invariante bajo el cambio t → – t y v → – v. La evolución es, por tanto, mecánica.

Qué es la constante de BOLTZMANN - RESUMEN fácil y COMPLETO

Se cumplieron más de cien años desde la muerte de Boltzmann y su trabajo sigue siendo recordado. No pienso que Boltzmann creyera en la existencia real de los átomos, pero sí en su utilidad e incluso en su necesidad para comprender las leyes macroscópicas y la evolución irreversible de los fenómenos macroscópicos desde una base más fundamental que el nivel fenomenológico. Pero había quien (con autoridad) no creía ni en la existencia ni en su utilidad. Este debate no era ajeno a las tendencias ideológicas, religiosas y usos sociales de aquella época porque, en general, la ciencia es parte de la cultura y depende del momento histórico que viven los científicos, al fin y al cabo, seres humanos como los demás, influenciables por su entorno en una gran medida.

Modelos atómicosTeoría atómica de Dalton

Por el siglo XIX, e incluso antes, ya se hablaba de “átomos”* y una rudimentaria teoría cinética de los gases gozaba de aceptación y utilidad científica (recordemos los trabajos de Benoulli, Dalton, Laplace, Poisson, Cauchy, Clausius, Krönig… y Maxwell). Pero fue Boltzmann quien definitivamente profundizó en la cuestión, para el estudio del equilibrio y, sobre todo, intentando explicar mecánicamente (mecano-estadísticamente) la evolución termodinámica irreversible y la descripción de los procesos de transporte ligados a ella. Y, nuevamente (por su enorme importancia) no podemos dejar de mencionar la muy singular labor que hicieron Gibbs, Einstein, Planck, Fermi y otros. Sin la motivación ideológica de Boltzmann, Gibbs elaboró una bellísima, útil y hoy dominante formulación (cuerpo de doctrina) de la termodinámica y física estadística.

                     Lorentz

Fue Lorentz quien primero utilizó la ecuación de Boltzmann y lo hizo para describir la corriente eléctrica en sólidos dando un paso significativo por encima del pionero Drude. Lorentz introdujo un modelo opuesto al browniano donde partículas ligeras como viento (electrones) se mueven chocando entre sí y con árboles gordos (tales como iones en una red cristalina); un modelo del que se han hecho estudios de interés tanto físico como matemático. Enskog (inspirándose en Hilbert) y Chapman (inspirándose en Maxwell) enseñaron cómo integrar la ecuación de Boltzmann, abriendo vías a otras diversas aplicaciones (hidrodinámica, propagación del sonido, difusión másica, calor, fricción viscosa, termoelectricidad, etc.). Recordemos que Boltzmann encontró como solución de equilibrio de su ecuación una distribución de velocidades antes descubierta por Maxwell (hoy, como reseñé anteriormente, de Maxwell-Boltzmann), por lo que concluyó que así daba base microscópica mecánica (teorema H mecano-estadístico) al segundo principio de la termodinámica (estrictamente, evolución de un sistema aislado hacia su “desorden” máximo)*.

Está claro que ningún físico que se precie de serlo puede visitar Viena sin visitar el parque Zentralfriedhof para ver la tumba de Boltzmann. Yo sí me pasé por allí. Me senté junto a la tumba; el lugar estaba desierto, y cerrando los ojos traté de conectar con la conciencia del genio. La sensación, extraña y agradable, seguramente fue creada por mi imaginación, pero creo que charlé con él en el interior de mi mente – la fuerza más potente del universo– y aquellos sentimientos, aquel momento, compensaron el esfuerzo del viaje.

En la tumba, sobre una gran lápida de mármol de color blanco con los nombres Ludwig Boltzmann y de los familiares enterrados con él, sobre el busto de Boltzmann, se puede leer la inscripción, a modo de epitafio:

Esta sencilla ecuación es la mayor aportación de Boltzmann y una de las ecuaciones más importantes de la física. El significado de las tres letras que aparecen (aparte la notación del logaritmo) es el siguiente:

  • S es la entropía de un sistema.
  • W es el número de microestados posibles de sus partículas elementales.
  • k es una constante de proporcionalidad que hoy recibe el nombre de Constante de Boltzmann, de valor 1’3805 × 10-23 J/K (si el logaritmo se toma en la base natural)

 

S = k log W

 

¿Qué secretos se encierran aquí? ¿Cómo nos lleva a estos pensamientos?

En esta breve ecuación se encierra la conexión entre el micro-mundo y el macro-mundo, y por ella se reconoce a Boltzmann como el padre de la rama de la física conocida como mecánica estadística.

Como todas las ecuaciones sencilla de gran trascendencia en la física (como la famosa E = mc2), hay un antes y un después de su formulación: sus consecuencias son de un calado tan profundo que cambiaron la forma de entender el mundo, y en particular, de hacer física a partir de ellas. De hecho, la sutileza de la ecuación es tal que hoy, cien años después de la muerte de su creador, se siguen investigando sus nada triviales consecuencias. Creo que lo mismo ocurrirá con α = 2πe2/ħc que, en tan reducido espacio y con tan pocos símbolos, encierra los misterios del electromagnetismo (el electrón), de la constante de Planck (la mecánica cuántica), y de la luz (la relatividad de Einstein), todo ello enterrado profundamente en las entrañas de un número: 137.

Bueno, a pesar de todo lo anterior, Schrödinger nos decía:

“La actitud científica ha de ser reconstruida, la ciencia ha de rehacerse de nuevo”

 

 

¡Lo grande y lo pequeño! ¡Son tantos los secretos de la Naturaleza!

 

Siempre hemos tenido consciencia de que en física, había que buscar nuevos paradigmas, nuevos caminos que nos llevaran más lejos. Es bien conocida la anécdota de que a finales del siglo XIX un destacado físico de la época William Thomson (1824-1907) conocido como Lord Kelvin, se atrevió a decir que solo dos pequeñas “nubecillas” arrojaban sombras sobre el majestuoso panorama de conocimiento que había construido la física clásica desde Galileo y Newton hasta ese momento: el resultado del experimento de Michelson-Morley, el cual había fallado en detectar la existencia del supuesto éter luminífero; y la radiación del cuerpo negro, i.e la incapacidad de la teoría electromagnética clásica de predecir la distribución de la energía radiante emitida a diferentes frecuencias emitidas por un radiador idealizado llamado cuerpo negro. Lo que Lord Kelvin no puedo predecir es que al tratar de disipar esas dos “nubecillas”, la física se vería irremediablemente arrastrada a una nueva física: la física moderna fundada sobre dos revoluciones en ciernes: la revolución relativista y la revolución cuántica con dos  científicos como protagonistas: Planck y Albert Einstein. Sin embargo, ha pasado un siglo y seguimos con esas dos únicas guías para continuar el camino y, resultan insuficientes para llegar a la meta que… ¡Está tan lejos!

emilio silvera

¡Litio! La energía del futuro

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hay noticias que te alegra el Alma, y, cuando un Pais pobre, encuentra en las entrañas de su territorio, una riqueza que podría solucionar muchas necesidades, en verdad, es para alegrarse.

“Bolivia tiene la mayor reserva de litio de laTierra

 

 

Así es, Bolivia, el pequeño país sudamericano, tiene la mayor reserva delitio de la tierra, fuente de energía que será crucial dentro de unos años.

Morales

Pero para que esta gran fuente de energía pueda ser adquirida por los demás países y empresas del mundo, primero se deberá negociar con el Presidente Evo Morales (Hoy fuera de juego), un paso que no será del todo sencillo, ya que de ante mano, el mismo no tiene unas buenas relaciones con Estados Unidos(país con más necesidad de esta energía).

Leer más

¿Vacío? Un poco de Historia

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Habiendo llegado un mensaje a esta pagina de los alumnos de 2º de Física de una Universidad Española, nos piden que hagamos un  comentario que verse sobre el “Vació” y hagamos un poco de historia. Como el principal motivo de esta pagina es el de divulgar la Física y la Astronomía, no tenemos inconveniente alguno en prestar dicha colaboración y, para ello, nos hemos documentado y hacemos este primer comentario (muy breve) y otro posterior de mas amplitud que, esperamos les pueda ser de utilidad a dichos alumnos.

                                                                       Demócrito de Abdera

El “vacío” comienza con un concepto filosófico en la Antigua Grecia. La primera noticia corresponde a Demócrito de Abdera (460-400 a. de C.), quien razonando sobre la naturaleza de la materia concluye que esta formada por átomos y vacío, pensamiento que permanece hasta Aristóteles (384 a 322 a. de C.)que, con su concepto de la extensión del cuerpo físico, niega la existencia del vació. El Renacimiento científico con Baliani, Bert y Torricelli, pero en controversia con Galileo, demuestra la existencia del vació como espacio exento de aire. Pascal define el concepto de presión.

                  Bomba de aire o bomba de vacíoBomba de aire o bomba de vacío

Otto von Guericke inventa la bomba de “aire” (bomba de vacío) y es perfeccionada por Boyle y Huygens. Se despierta el interés por la descarga eléctrica y se entra en el siglo XIX con la utilización del mercurio como fluido de bombeo y la invención del manómetro de compresión de McLeod, descubrimiento de los rayos catódicos, los rayos X y el electrón. Queda abierto el camino para el gran desarrollo durante el siglo XX y el advenimiento del ultra alto vació.

Hacer un recorrido serio por la historia del vacío, desde Grecia hasta finales del siglo XIX, nos obligaría a recorrer un largo camino hasta llegar al Renacimiento Científico  del s. XVI y XVII y detallar todos y cada uno de los descubrimientos que se pudieron hacer a lo largo de ese tramo de la Historia.

Leer más

Las curiosidades de la Física y los números

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                     Particiones: Hardy y Ramanujan — Cuaderno de Cultura Científica

                                                                       Hardy y Ramanujan

Comentando, sobre Ramanujan y sua cuadernos perdidos, recordé lo que dijo el matemático Richard Askey: “El trabajo de este año, mientras se estaba muriendo, era el equivalente a una vida entera de un matemático muy grande”.

El misterio de Ramanujan persiste un siglo después de la muerte del  matemáticoDisponibles los originales del brillante matemático Ramanujan

Lo que él consiguió era increíble.  Los matemáticos Jonathan Borwien y Meter Borwein, en relación a la dificultad y la ardua tarea de descifrar los cuadernos perdidos, dijeron: “Que nosotros sepamos nunca se ha intentado una redacción matemática de este alcance o dificultad”.

                                                Ramanujan: el hindú al que los números le soplaban sus secretos - El  Mostrador

Por mi parte creo que, Ramanujan, fue un genio matemático muy adelantado a su tiempo y que pasaran algunos años hasta que podamos descifrar al cien por ciento sus trabajos, especialmente, sus funciones modulares que guardan el secreto de la teoría más avanzada de la física moderna,   la única capaz de unir la mecánica quántica y la Gravedad.

Las misteriosas funciones modulares! : Blog de Emilio Silvera V.

                Las misteriosas Funciones Modulares de Ramanujan

La función theta de Ramanujan está definida como:

{\displaystyle f(a,b)=\sum _{n=-\infty }^{\infty }a^{n(n+1)/2}\;b^{n(n-1)/2}}

La siguiente se convierte en la función de Euler, que está estrechamente relacionada con la función eta de Dedekind.

{\displaystyle f(-q,-q^{2})=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{n(3n-1)/2}=(q;q)_{\infty }}

“Ramanujan, trabajando en total aislamiento ( y sin formación, toda su instrucción matemática la consiguió de la lectura de un oscuro y olvidado libro de matemáticas escrito por George Carr), fue capaz de redescubrir por sí mismo lo más valioso de cien años de matemáticas occidentales y de dejarnos una obra, que consta de 4.000 fórmulas en cuatrocientas páginas densamente llenas de teoremas de increíble fuerza pero sin ningún comentario ni demostración. Tenía tal intuición que los teoremas simplemente fluían de su cerebro, sin el menor esfuerzo aparente. Solía decir que las diosas Namakkal le inspiraban la fórmulas en sueños.”

                          

“Los teóricos de cuerdas al intentar manipular los diagramas de lazos KSV ( Kikkawa-Sakita-Virasoro) creados por las cuerdas en interacción encuentran unas extrañas funciones llamadas modulares que aparecen en las ramas más distantes e “inconexas” de las matemáticas((Yutaka Taniyama ( Japón, 1927-1958) observó que cada función modular está relacionada con una curva elíptica. Esto forma la base de la conjetura Taniyama-Shimura que demostró ser una parte importante en la demostración del Último Teorema de Fermat de Andrew Wiles )). Una función que aparece continuamente en la teoría de funciones modulares se denomina función de Ramanujan, en honor al matemático Srinivasa Ramanujan, nacido en 1887 en Erode, India, cerca de Madrás.”

Una serie importante utilizada para obtener dos mil millones de cifras del número Pi (π)

Las matemáticas de Ramanujan son como una sinfonía, la progresión de sus ecuaciones era algo nunca visto, él trabajaba desde otro nivel, los números se combinaban y fluían de su cabeza a velocidad de vértigo y con precisión nunca antes conseguida por nadie.   Tenía tal intuición de las cosas que éstas simplemente fluían de su cerebro.   Quizá no los veía de una manera que sea traducible y el único lenguaje eran los números.

Como saben los físicos, los ” accidentes” no aparecen sin ninguna razón.  Cuando están realizando un cálculo largo y difícil, y entonces resulta de repente que miles de términos indeseados suman milagrosamente cero, los físicos saben que esto no sucede sin una razón más profunda subyacente.  Hoy, los físicos conocen que estos “accidentes” son una indicación de que hay una simetría en juego.  Para las cuerdas, la simetría se denomina simetría conforme, la simetría de estirar y deformar la hoja del Universo de la cuerda.

Ramanujan, el hombre que vio en sueños el número pi | OpenMind

Aquí es precisamente donde entra el trabajo de Ramanujan.  Para proteger la simetría conforme original contra su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto número de identidades matemáticas que, son precisamente las identidades de la función modular de Ramanujan.  ¡Increíble!   Pero, cierto.

En resumen, he dicho que las leyes de la naturaleza se simplifican cuando se expresan en dimensiones más altas.   Sin embargo, a la luz de la teoría cuántica, debemos corregir algo Este sentido básico de mirar la cuestión.   El enunciado correcto sería ahora:   las leyes de la naturaleza se simplifican cuando se expresan  COHERENTEMENTE en dimensiones más altas.  El añadido de la palabra coherente es crucial.   Esta ligadura nos obliga a utilizar las funciones modulares de Ramanujan, que fijan en diez la dimensión del espacio – tiempo.   Esto, a su vez, puede darnos la clave decisiva para explicar el origen del Universo.

                                               web oficial de Valeria Ardante: La visión de Dios de Albert Einstein

Einstein se preguntaba a menudo si Dios tuvo alguna elección al crear el universo.   Según los teóricos de supercuerdas, una vez que exigimos una unificación de la teoría cuántica y la relatividad general, Dios no tenía elección.  La auto consistencia por sí sola, afirman ellos, debe haber obligado a Dios a crear el universo como lo hizo.

Leer más

La Materia en su estado natural que se convierte en Nuevos materiales

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cosmos Universo GIF - Cosmos Universo Espaço - Descubre & Comparte GIFs

En la inmensidad de todo el Universo, las galaxias se reúnen en grandes cúmulos, y, dentro de ellas, las estrellas también los forman y surgen en las distintas regiones para transmutar elementos sencillos en otros más complejos, y, de ellos, surge la materia constituida por átomos hechos de infinitesimales partículas subatómicas que se juntan para formar moléculas y éstas lo hacen para formar cuerpos.

Imágenes tomadas en observatorio Paranal explican cómo se forma el polvo  interestelar | Lifestyle de AméricaEconomía : Artes, Diseño, Estilo,  Motores, Ocio, Placeres, Salud, Viajes, Aire libre | Lifestyle de  AméricaEconomíaPlanetas del Sistema Solar - Astronomía - Definiciones y conceptos

De esa materia se forman mundos en los que están los distintos elementos que se “fabricaron en las estrellas, y, dichos materiales son utilizados de mil maneras distintas.

Lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra. Porque, en última instancia ¿es en verdad inerte la materia? El día que podamos conseguir un conocimiento más profundo de la materia, nos asombraremos de lo que la materia, en realidad, es.

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza.

                     Cienciaes.com: Vida ¿De qué estamos hechos? | Podcasts de CienciaTodo lo que nos rodea es materia

“La materia es todo aquello que tiene masa e inercia y ocupa un lugar en el espacio. Todas las cosas están hechas de materia, las sólidas (como la piedra o el hierro), las líquidas (como el aceite o el mar) y las gaseosas (como el aire que respiramos). Tienen volumen y forma definidos.”

Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Sí, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos, es decir, aquellos artificiales fabricados por la mano del hombre y que tienen números atómicos mayores que el 92.

                    Fusión nuclear: así funciona la tecnología que aspira a resolver nuestras  necesidades energéticasFusión nuclear - Wikipedia, la enciclopedia libre

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.

¡Parece que la materia está viva!

Leer más