Mar
24
¡Litio! La energía del futuro
por Emilio Silvera ~
Clasificado en Física ~
Comments (1)
Hay noticias que te alegra el Alma, y, cuando un Pais pobre, encuentra en las entrañas de su territorio, una riqueza que podría solucionar muchas necesidades, en verdad, es para alegrarse.
“Bolivia tiene la mayor reserva de litio de laTierra
Así es, Bolivia, el pequeño país sudamericano, tiene la mayor reserva delitio de la tierra, fuente de energía que será crucial dentro de unos años.
Pero para que esta gran fuente de energía pueda ser adquirida por los demás países y empresas del mundo, primero se deberá negociar con el Presidente Evo Morales (Hoy fuera de juego), un paso que no será del todo sencillo, ya que de ante mano, el mismo no tiene unas buenas relaciones con Estados Unidos(país con más necesidad de esta energía).
Mar
22
¿Vacío? Un poco de Historia
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)
Habiendo llegado un mensaje a esta pagina de los alumnos de 2º de Física de una Universidad Española, nos piden que hagamos un comentario que verse sobre el “Vació” y hagamos un poco de historia. Como el principal motivo de esta pagina es el de divulgar la Física y la Astronomía, no tenemos inconveniente alguno en prestar dicha colaboración y, para ello, nos hemos documentado y hacemos este primer comentario (muy breve) y otro posterior de mas amplitud que, esperamos les pueda ser de utilidad a dichos alumnos.
El “vacío” comienza con un concepto filosófico en la Antigua Grecia. La primera noticia corresponde a Demócrito de Abdera (460-400 a. de C.), quien razonando sobre la naturaleza de la materia concluye que esta formada por átomos y vacío, pensamiento que permanece hasta Aristóteles (384 a 322 a. de C.)que, con su concepto de la extensión del cuerpo físico, niega la existencia del vació. El Renacimiento científico con Baliani, Bert y Torricelli, pero en controversia con Galileo, demuestra la existencia del vació como espacio exento de aire. Pascal define el concepto de presión.
Otto von Guericke inventa la bomba de “aire” (bomba de vacío) y es perfeccionada por Boyle y Huygens. Se despierta el interés por la descarga eléctrica y se entra en el siglo XIX con la utilización del mercurio como fluido de bombeo y la invención del manómetro de compresión de McLeod, descubrimiento de los rayos catódicos, los rayos X y el electrón. Queda abierto el camino para el gran desarrollo durante el siglo XX y el advenimiento del ultra alto vació.
Hacer un recorrido serio por la historia del vacío, desde Grecia hasta finales del siglo XIX, nos obligaría a recorrer un largo camino hasta llegar al Renacimiento Científico del s. XVI y XVII y detallar todos y cada uno de los descubrimientos que se pudieron hacer a lo largo de ese tramo de la Historia.
Mar
20
Las curiosidades de la Física y los números
por Emilio Silvera ~
Clasificado en Física ~
Comments (2)
Hardy y Ramanujan
Comentando, sobre Ramanujan y sua cuadernos perdidos, recordé lo que dijo el matemático Richard Askey: “El trabajo de este año, mientras se estaba muriendo, era el equivalente a una vida entera de un matemático muy grande”.
Lo que él consiguió era increíble. Los matemáticos Jonathan Borwien y Meter Borwein, en relación a la dificultad y la ardua tarea de descifrar los cuadernos perdidos, dijeron: “Que nosotros sepamos nunca se ha intentado una redacción matemática de este alcance o dificultad”.
Por mi parte creo que, Ramanujan, fue un genio matemático muy adelantado a su tiempo y que pasaran algunos años hasta que podamos descifrar al cien por ciento sus trabajos, especialmente, sus funciones modulares que guardan el secreto de la teoría más avanzada de la física moderna, la única capaz de unir la mecánica quántica y la Gravedad.
Las misteriosas Funciones Modulares de Ramanujan
La función theta de Ramanujan está definida como:
La siguiente se convierte en la función de Euler, que está estrechamente relacionada con la función eta de Dedekind.
“Ramanujan, trabajando en total aislamiento ( y sin formación, toda su instrucción matemática la consiguió de la lectura de un oscuro y olvidado libro de matemáticas escrito por George Carr), fue capaz de redescubrir por sí mismo lo más valioso de cien años de matemáticas occidentales y de dejarnos una obra, que consta de 4.000 fórmulas en cuatrocientas páginas densamente llenas de teoremas de increíble fuerza pero sin ningún comentario ni demostración. Tenía tal intuición que los teoremas simplemente fluían de su cerebro, sin el menor esfuerzo aparente. Solía decir que las diosas Namakkal le inspiraban la fórmulas en sueños.”
“Los teóricos de cuerdas al intentar manipular los diagramas de lazos KSV ( Kikkawa-Sakita-Virasoro) creados por las cuerdas en interacción encuentran unas extrañas funciones llamadas modulares que aparecen en las ramas más distantes e “inconexas” de las matemáticas((Yutaka Taniyama ( Japón, 1927-1958) observó que cada función modular está relacionada con una curva elíptica. Esto forma la base de la conjetura Taniyama-Shimura que demostró ser una parte importante en la demostración del Último Teorema de Fermat de Andrew Wiles )). Una función que aparece continuamente en la teoría de funciones modulares se denomina función de Ramanujan, en honor al matemático Srinivasa Ramanujan, nacido en 1887 en Erode, India, cerca de Madrás.”
Una serie importante utilizada para obtener dos mil millones de cifras del número Pi (π)
Las matemáticas de Ramanujan son como una sinfonía, la progresión de sus ecuaciones era algo nunca visto, él trabajaba desde otro nivel, los números se combinaban y fluían de su cabeza a velocidad de vértigo y con precisión nunca antes conseguida por nadie. Tenía tal intuición de las cosas que éstas simplemente fluían de su cerebro. Quizá no los veía de una manera que sea traducible y el único lenguaje eran los números.
Como saben los físicos, los ” accidentes” no aparecen sin ninguna razón. Cuando están realizando un cálculo largo y difícil, y entonces resulta de repente que miles de términos indeseados suman milagrosamente cero, los físicos saben que esto no sucede sin una razón más profunda subyacente. Hoy, los físicos conocen que estos “accidentes” son una indicación de que hay una simetría en juego. Para las cuerdas, la simetría se denomina simetría conforme, la simetría de estirar y deformar la hoja del Universo de la cuerda.
Aquí es precisamente donde entra el trabajo de Ramanujan. Para proteger la simetría conforme original contra su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto número de identidades matemáticas que, son precisamente las identidades de la función modular de Ramanujan. ¡Increíble! Pero, cierto.
En resumen, he dicho que las leyes de la naturaleza se simplifican cuando se expresan en dimensiones más altas. Sin embargo, a la luz de la teoría cuántica, debemos corregir algo Este sentido básico de mirar la cuestión. El enunciado correcto sería ahora: las leyes de la naturaleza se simplifican cuando se expresan COHERENTEMENTE en dimensiones más altas. El añadido de la palabra coherente es crucial. Esta ligadura nos obliga a utilizar las funciones modulares de Ramanujan, que fijan en diez la dimensión del espacio – tiempo. Esto, a su vez, puede darnos la clave decisiva para explicar el origen del Universo.
Einstein se preguntaba a menudo si Dios tuvo alguna elección al crear el universo. Según los teóricos de supercuerdas, una vez que exigimos una unificación de la teoría cuántica y la relatividad general, Dios no tenía elección. La auto consistencia por sí sola, afirman ellos, debe haber obligado a Dios a crear el universo como lo hizo.
Mar
18
La Materia en su estado natural que se convierte en Nuevos materiales
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)
En la inmensidad de todo el Universo, las galaxias se reúnen en grandes cúmulos, y, dentro de ellas, las estrellas también los forman y surgen en las distintas regiones para transmutar elementos sencillos en otros más complejos, y, de ellos, surge la materia constituida por átomos hechos de infinitesimales partículas subatómicas que se juntan para formar moléculas y éstas lo hacen para formar cuerpos.
De esa materia se forman mundos en los que están los distintos elementos que se “fabricaron en las estrellas, y, dichos materiales son utilizados de mil maneras distintas.
Lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra. Porque, en última instancia ¿es en verdad inerte la materia? El día que podamos conseguir un conocimiento más profundo de la materia, nos asombraremos de lo que la materia, en realidad, es.
Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza.
“La materia es todo aquello que tiene masa e inercia y ocupa un lugar en el espacio. Todas las cosas están hechas de materia, las sólidas (como la piedra o el hierro), las líquidas (como el aceite o el mar) y las gaseosas (como el aire que respiramos). Tienen volumen y forma definidos.”
Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos. Sí, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos, es decir, aquellos artificiales fabricados por la mano del hombre y que tienen números atómicos mayores que el 92.
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.
¡Parece que la materia está viva!
Mar
16
Lo que surge de eso que llamamos vacío
por Emilio Silvera ~
Clasificado en Física ~
Comments (1)
Aunque pequemos de reabundancia, en esta sección vamos a volver a tratar algunas descripciones que ya hemos tocado anteriormente, especialmente cuando hablamos del modelo estándar.
Cualquier grupo partículas que anden rondando por ahí presentan una o más de las siguientes interacciones o fuerzas fundamentales entre ellas. Por un lado se tiene la gravitación y el electromagnetismo, muy conocidas en nuestra vida cotidiana. Pero hay otras dos fuerzas, que no son tan familiares, que son de tipo nuclear y se conocen como interacciones fuertes y débiles.
La gravitación afecta a todas las partículas, es una interacción universal. Todo cuerpo que tiene masa o energía está sometido a esta fuerza. Aunque es la más débil de las interacciones, como las masas son siempre positivas y su alcance es infinito, su efecto es acumulativo. Por ello, la gravitación es la fuerza más importante en cosmología.
La fuerza electromagnética se manifiesta entre partículas con cargas eléctricas. A diferencia de las demás, puede ser de atracción (entre cargas de signos opuestos) o de repulsión (cargas iguales). Esta fuerza es responsable de la cohesión del átomo y las moléculas. Mantiene los objetos cotidianos como entidades con forma propia. Un vaso, una piedra, un auto, el cuerpo humano. Es mucho más fuerte que la gravitación y aunque es de alcance infinito, las cargas de distinto signo se compensan y sus efectos no operan a grandes distancias. Dependiendo de las circunstancias en que actúen, estas interacciones pueden manifestarse como fuerzas eléctricas o magnéticas solamente, o como una mezcla de ambos tipos.