“En 1905, un oscuro empleado de la Oficina de Patentes de Berna publicó cinco artículos científicos que sentaron las bases de la física de nuestro tiempo. Albert Einstein tenía 25 años. A pesar de la importante repercusión de estos estudios, siguió trabajando como examinador de patentes.”
Efecto fotoeléctrico
Fue por esta investigación, publicada en junio de 1905, que Einstein ganó el premio Nobel de Física en 1921 (y no por la teoría de la relatividad).
Este estudio le valió su doctorado en la Universidad de Zúrich, en Suiza.
Varios autores lo consideran como parte del “año milagroso” porque Einstein terminó de escribirlo en abril de 1905 y lo envió a Annalen der Physik en agosto, pero fue publicado en enero de 1906, después de corregir algunos cálculos.
En esta investigación, Einstein desarrolló un método de dos ecuaciones para medir el tamaño y la masa de las moléculas.
Las ecuaciones se valían de datos sobre la viscosidad (resistencia que ofrece un líquido a la acción de fluir) y la difusión de partículas de azúcar en agua, para despejar las dos variables que buscaba: el tamaño de las moléculas y el número que hay de ellas (conocido como el número de Avogadro).
“Su tesis se convertiría en uno de sus trabajos más citados y de mayor utilidad práctica, con aplicaciones en ámbitos tan diversos como la mezcla de cemento, la producción de leche y la fabricación de aerosoles”, señala Isaacson en la biografía del físico.
Movimiento browniano
En 1827 Robert Brown, un botánico escocés, observó en el microscopio que unas partículas de polen llamadas amiloplastos se movían aleatoriamente cuando estaban suspendidas en agua, sin seguir un patrón definido. Pero no supo explicar por qué.
Este misterioso movimiento pasó a ser conocido como “movimiento browniano”.
Albert Einstein, hace un siglo, pensaba que era imposible medir la velocidad elocidad resultado confirma, como es de esperar, predicción teórica de Einstein (realizada en 1907). Raizen y su grupo han logrado demostrar experimentalmente el teorema de equipartición de la energía para partículas en movimiento browniano, uno de los principios fundamentales de la mecánica estadística (el teorema afirma que la velocidad cinética de estas partículas depende sólo de la temperatura y no de su forma, tamaño o masa).
En su investigación, publicada en 1905, Einstein dijo que las partículas suspendidas se movían al ser colisionadas por pequeñas partículas del agua, que a su vez se movían por efecto del calor, un fenómeno de la termodinámica.
Mientras más calor haya, más se mueven las partículas, que no serían otra cosa que átomos y moléculas de agua.
Esta explicación de Einstein sirvió como una prueba de la existencia de los átomos, que en esa época todavía no estaba completamente confirmada.
Electrodinámica de los cuerpos en movimiento o “relatividad especial”
Quizá este artículo, publicado en septiembre de 1905, sea el más famoso de los cinco que escribió en el “año milagroso”.
Einstein contaba que el origen de su trabajo sobre la relatividad especial se remontaba a un problema que él mismo se había planteado a los 16 años: ¿Cómo se vería un rayo de luz si uno viajara al lado de este a su misma velocidad?, cuenta Isaacson en la biografía del físico.
Principio de la relatividad: Las leyes de la electrodinámica y de la óptica serán igualmente válidas para todos los sistemas de referencia en los cuáles se cumplan las leyes de la mecánica (sistemas inerciales, que se mueven con velocidad constante).
La luz se propaga siempre en el espacio vacío con una velocidad definida, independiente del estado de movimiento del cuerpo emisor.
El concepto de “simultaneidad” se vuelve relativo:
Sucesos que ocurren en el mismo lugar pero en diferentes tiempos en un sistema, ocurren en diferentes lugares cuando son observados desde otro sistema que se mueve respecto al primero.
Sucesos que ocurren al mismo tiempo pero en diferentes lugares de un sistema, ocurren en diferentes tiempos cuando son observados desde otro sistema que se mueve respecto al primero.
Sucesos que ocurren en el mismo lugar y al mismo tiempo serán simultáneos para todos los observadores.
El concepto de “sistema de referencia” produce efectos en el espacio y en el tiempo:
Un observador de un sistema encontraría, a partir de sus propias medidas, que los intervalos de longitud de los objetos que se mueven con otro sistema se acortan (contracción de la longitud).
Un observador de un sistema encontraría, a partir de sus propias medidas, que los intervalos de tiempo entre los sucesos que se producen en otro sistema se alargan (dilatación del tiempo).
Estos efectos aparentes no existen para el sistema propio de cada observador y van desapareciendo a medida que la velocidad del movimiento disminuye respecto a la velocidad de la luz.
Los cinco trabajos que Einstein escribió en 1905 y que publicó en la revista Annalen der Physik tratan sobre problemas relacionados con tres grandes ramas de la física de esa época: la mecánica clásica, el electromagnetismo y la termodinámica, dice Dennis Lehmkuhl, editor científico de Einstein Papers Project, del Instituto de Tecnología de California (Caltech), a BBC Mundo.
Equivalencia de la masa y energía
En esta investigación, publicada en noviembre de 1905, Einstein presentó la fórmula E=mc², que es tal vez la ecuación más famosa del mundo, aunque no necesariamente sea la más fácil de entender.
En una carta enviada a Habitch, entre junio y septiembre de 1905, Einstein se refiere a este estudio, aunque reconoce que duda de sus resultados.
“E” es por energía, “m” es por masa y la “c” con un dos simboliza la velocidad de la luz al cuadrado.
“Una consecuencia del estudio de la electrodinámica (relatividad especial) cruzó mi mente. El principio de la relatividad, junto con las ecuaciones de Maxwell, requieren que la masa sea una medida directa de la energía contenida en un cuerpo. La luz transporta masa con ella”, le dice a su amigo.
“La idea es divertida y seductora pero hasta donde sé, Dios podría estar riéndose de todo el asunto y podría muy bien haberme tomado el pelo”, añade.
Sin embargo, Einstein tenía razón. En la fórmula que propuso, “E” es por energía, “m” es por masa y “c”, por la velocidad de la luz (300.000 km/s) al cuadrado.
El aumento de energía causa un aumento directamente proporcional en la masa. En otras palabras, al viajar más rápido y aumentar la energía, la masa crece, y mientras más masa tiene un objeto, más difícil es acelerar, por lo que nada puede alcanzar la velocidad de la luz.
Esta fórmula completó la teoría de la relatividad especial.
“El brote de creatividad de Einstein en 1905 resultó asombroso”, escribe Isaacson.
Cuando Einstein tenía 26 años, calculó exactamente cómo debía cambiar la energía si el principio de la relatividad era correcto, y descubrió la relación E=mc2. Puesto que la velocidad de la luz al cuadrado (c2) es un número astronómicamente grande, una pequeña cantidad de materia puede liberar una enorme cantidad de energía. Dentro de las partículas más pequeñas de materia hay un almacén de energía, más de un millón de veces la energía liberada en una explosión química. La materia, en cierto sentido, puede verse como un depósito casi inagotable de energía; es decir, la materia es en realidad, energía condensada.
Einstein supo ver que las dimensiones más altas tienen un propósito: unificar los principios de la Naturaleza. Al añadir dimensiones más altas podía unir conceptos físicos que, en un mundo tridimensional, no tienen relación, tales como la materia y la energía o el espacio y el tiempo que, gracias a la cuarta dimensión de la relatividad especial, quedaron unificados.
Desde entonces, estos conceptos, los tenemos que clasificar, no por separado, sino siempre juntos como dos aspectos de un mismo ente materia-energía por una parte y espacio-tiempo por la otra. El impacto directo del trabajo de Einstein sobre la cuarta dimensión fue, por supuesto, la bomba de hidrógeno, que se ha mostrado la más poderosa creación de la ciencia del siglo XX. Claro que, en contra del criterio de Einstein que era un pacifista y nunca quiso participar en proyectos de ésta índole.
Einstein completó su teoría de la relatividad con una segunda parte que, en parte, estaba inspirada por lo que se conoce como principio de Mach, la guía que utilizó Einstein para crear esta parte final y completar su teoría de relatividad general.
Einstein enunció que, la presencia de materia-energía determina la curvatura del espacio-tiempo a su alrededor. Esta es la esencia del principio físico que Riemann no logró descubrir: la curvatura del espacio está directamente relacionada con la cantidad de energía y materia contenida en dicho espacio.
¿Qué no será capaz de inventar el hombre para descubrir los misterios de la naturaleza?
Esta fue la semilla que sembró Planck para que creciera el árbol de la mecánica cuántica
Cuando, a finales del siglo XIX, un joven Max Planck expresó ante un profesor de física su deseo de dedicarse a la disciplina, recibió la respuesta de que ya no quedaban grandes cosas por aprender: a lo más a lo que podía aspirar un físico en aquella época era a clarificar algunos detalles menores. Sin embargo, Planck no se dejó amedrentar. Pocos años después, sus investigaciones daban el pistoletazo de salida a la mecánica cuántica y, con ello, contribuyeron a cambiar para siempre la imagen del mundo.
Constante universal, igual a 6.55×10–27 ergios por segundo. El cuanto de acción es la magnitud fundamental, descubierta por Planck (1900), de la mecánica cuántica.
¿Destruyen los agujeros negros la información? ¿Tiene el universo más dimensiones? ¿Cuál es el destino del cosmos? Diez preguntas fundamentales que siguen espoleando la imaginación de los físicos.
Los agujeros negros pueden describirse como pozos oscuros que tragan para siempre todo lo que cae en ellos. Hace tiempo que los astrónomos cuentan con indicios claros de su existencia. Sin embargo, su descripción última en términos físicos sigue siendo todo un misterio.
Sin la gravedad nuestro universo no existiría. Sus efectos resultan obvios: se trata de la fuerza que nos mantiene pegados a la Tierra, la que hace que los planetas giren alrededor del Sol y la que cohesiona las galaxias. Sin embargo, los mecanismos que subyacen a esta interacción fundamental siguen siendo un misterio. No hemos sido capaces de localizar a la partícula mediadora, el Bosón llamado Gravitón (si en realidad existe).
El espacio ordinario tiene tres dimensiones: arriba-abajo, adelante-atrás e izquierda-derecha. Sin embargo, nada impide que tenga más. La teoría de cuerdas, por ejemplo, predice un espacio-tiempo de diez dimensiones: nueve más el tiempo, algo imposible de visualizar pero perfectamente posible desde el punto de vista matemático. De hecho, la idea de que el universo podría tener más dimensiones de las que podemos ver no es nueva, sino que se remonta a los años veinte del siglo pasado.
La Teoría de Kaluza-Klein lo comenzó todo al imaginar la quinta dimensión en una teoría que unía la teoría de Einstein con la de Maxwell. Se ha llegado a la Teoría M que recoge todos las demás, y, para verificarla se necesita la energía de Planck (1019 GeV) que, está fuera del alcance de la Humanidad.
Los cuerpos celestes que nos son familiares no constituyen más que una pequeña fracción de todo lo que existe. Según todas las observaciones y modelos, la radiación y la materia que conocemos (la luz y los átomos que componen los planetas, las estrellas y todo lo demás que podemos ver) apenas darían cuenta del 5 por ciento del contenido energético total del universo. El resto se compone de dos agentes de naturaleza desconocida, conocidos como materia oscura y energía oscura.
(Se debería decir… “El resto parece que se compone de…”
Una teoría unificada
Numerosos físicos, Einstein incluido (se pasó los últimos 30 años de su vida buscándola), han soñado con la posibilidad de formular una teoría a partir de la cual pudieran derivarse todas las leyes de la naturaleza. Y aunque hasta ahora todos los intentos al respecto han sido infructuosos, no pocos investigadores se hallan convencidos de que semejante teoría final debería existir (soñar no cuesta mucho).
Temperatura del Cero absoluto (-273,15 grados centígrados), ni los átomos se moverán, será el fin del Universo.
Aunque la temperatura más alta que puede alcanzar la materia se calcula en casi 1.420 quintillones de grados centígrados —la llamada Temperatura de Planck—, el límite del frío máximo nos queda mucho más próximo: el cero absoluto, cero kelvins en el sistema internacional de unidades, se estima en -273,15 grados.
Ha pasado mucho tiempo desde que Rutherford identificara la primera partícula nuclear (la partícula alfa). El camino ha sido largo y muy duro, con muchos intentos fallidos antes de ir consiguiendo los triunfos (los únicos que suenan), y muchos han sido los nombres que contribuyen para conseguir llegar al conocimiento del átomo y del núcleo actual; los electrones circulando alrededor del núcleo, en sus diferentes niveles, con un núcleo compuesto de protones y neutrones que, a su vez, son constituidos por los quarks allí confinados por los gluones, las partículas mediadoras de la fuerza nuclear fuerte. Pero, ¿qué habrá más allá de los quarks?, ¿las supercuerdas vibrantes? Algún día se sabrá.
Partículas
El universo de las partículas es fascinante. Cuando las partículas primarias chocan con átomos y moléculas en el aire, aplastan sus núcleos y producen toda clase de partículas secundarias. En esta radiación secundaria (aún muy energética) la que detectamos cerca de la Tierra, por los globos enviados a la atmósfera superior, han registrado la radiación primaria.
Ahora todos hablamos del LHC. Sin embargo, la historia de los aceleradores no comenzó con éste moderno y complejo conglomerado de sofisticadas estructuras que hacen posible que visitemos lugares muy lejanos en el corazón de la materia. Tendríamos que recordar al acelerador lineal también llamado LINAC (linear accelerator) es un tipo de acelerador que le proporciona a la partícula subatómica cargada pequeños incrementos de energía cuando pasa a través de una secuencia de campos eléctricos alternos.
Mientras que el generador de Van de Graaff proporciona energía a la partícula en una sola etapa, el acelerador lineal y el ciclotrón proporcionan energía a la partícula en pequeñas cantidades que se van sumando. El acelerador lineal, fue propuesto en 1924 por el físico sueco Gustaf Ising. El ingeniero noruego Rolf Wideröe construyó la primera máquina de esta clase, que aceleraba iones de potasio hasta una energía de 50.000 eV.
La técnica de la interferometría de muy larga base a longitudes de onda milimétricas (mm-VLBI) ha permitido obtener imágenes de los motores centrales de las galaxias activas con una resolución angular de decenas de microsegundos de arco. Para aquellos objetos más cercanos (M87, SgrA) se obtienen resoluciones lineales del orden de las decenas de Radios de Schwarzschild, lo que permite estudiar con detalle único la vecindad de los agujeros negros super-masivos.
Veámos que nos cuenta: “Desde el pasado pero, ¡siempre hacia el futuro!”
Imágenes cedidas por Diamond Light Source
Acelerador de partículas construido en las instalaciones del Diamond Ligth Source en Oxfordshire (Inglaterra). Llamado la Fuente luminosa de diamante, el Diamond synchrotron comenzó a funcionar en enero de 2007. La luz que puede generar este artefacto es 100 mil millones de veces más brillante que un rayo X estándar médico.
Un acelerador de partículas (como todos sabemos) es, a grandes rasgos, una máquina que mediante campos electromagnéticos acelera partículas hasta que alcanzan velocidades inimaginables. Luego, por ejemplo, hacen chocar estas partículas y así se consigue saber de qué está formada la materia en sus partes más diminutas (mucho más diminutas que un átomo). Eso es lo que hace el LHC.
Sin embargo, en el caso de este acelerador, los científicos esperaban usar la luz del Diamond synchrotron para “leer” los textos antiguos que han sufrido el daño significativo. Porque los potentes rayos X permitirán hacerlo sin ni siquiera abrir el libro. El synchrotron emite un rayo X tan poderoso que, al incidir en una voluta, permite producir una imagen de 3-D del texto.
La técnica ya había sido aplicada satisfactoriamente en textos escritos con la tinta de hierro, que los escribanos comenzaron a usar en el siglo XII. Algunas de las tintas hechas con extractos vegetales y sales de hierro utilizadas en el Siglo XII deterioran el tipo de pergamino utilizado, imposibilitando la lectura de documentos valiosos. Simplemente he querido incluir esta introducción para que os hagais una idea de hasta donde puede llegar nuestro ingenio.
(ilustración de un nano robot)
Si hablamos de nuevos inventos en los campos más diversos, nos podríamos sorprender de lo que se ha conseguido en los últimos años que, desde una “mano robótica” capaz de realizar toda clase de movimientos, “El sexto sentido”, una interfaz gestual portable que permite la interacción entre los gestos y los movimientos naturales del cuerpo humano con una computadora, o, un Implantes de retina, que devuelve la visión a pacientes con degeneración macular y ceguera mediante implantes microelectrónicos. Entre los últimos inventos destaca una variedad de plástico hecha con orina de cerdo y lentes de contacto biónicos. Se inventa un proceso capaz de cultivar parte de un corazón humano a partir de células madre, una máquina que puede imprimir una novela completa de 300 páginas en tan solo 3 minutos y por un costo ínfimo, una batería que funciona con cualquier solución azucarada y enzimas de digestión de glucosa capaz de extraer electrones que crean electricidad…
Las nuevas tecnologías y los inventos que se están produciendo en el siglo XXI, harían abrir la boca por el asombro a los filósofos naturalistas del pasado que trataban de profundizar en el conocimiento de la Naturaleza. Ellos fueron los que pusieron las primeras piedras del Edificio que hoy, llamamos Ciencia.
La tecnología moderna literalmente salvó la vida de una mujer de 22 años. Su propio cráneo era tan grueso que causaba deficiencia visual severa y dolores de cabeza. Un implante de plástico impreso en una impresora 3D ayudó a corregir la situación.
Corazones e Hígados artificiales, el guante de braille para ciegos, o, yendo más allá…
Un “Diente telefónico”. Se trata de un minúsculo implante que se coloca en el diente molar y que mediante un complejo sistema de señales y vibraciones permite recibir llamadas telefónicas. Tejido artificial nanotecnológico, Parche hormonal anticonceptivo, o, esa invención que hace posible que con una pequeña gota nos permite descubrir si en una bebida se ha vertido alguna de las llamadas “drogas del depredador” como las GHB o la Ketamina. Estas drogas suelen utilizarse por violadores y secuestradores pues facilitan dicho crimen al desinhibir a la víctima.
El motor eléctrico más pequeño del mundo
El “Motor a nanoescala”, lo suficientemente pequeño como para viajar en la espalda de un virus. Un dispositivo que administra medicamentos a través de ondas sonoras que sustituyen las inyecciones, siendo igual de efectivas. Plástico inteligente capaz de modificar su estructura ante la exposición de determinadas longitudes de onda. Un dispositivo móvil creado por Aqua Sciences que permite beber agua del aire. ¿Os imaginais lo que supondrá eso en la travesía de un desierto? INSCENTINEL inventa un sistema de entrenamiento para que abejas sean capaces de detectar bombas y explosivos.
Las cosas no llegaron por arte de magia… ¡muchas ideas hicieron falta!
Ahora miramos a nuestro alrededor y todo lo que vemos que ocurre nos parece lo normal, que las cosas son así. Sin embargo, habría que pensar -por ejemplo, en el ámbito de la física de partículas- que, el diluvio de estructuras sub-nucleares que desencadenó “el acelerador” de partículas, fue tan sorprende como los objetos celestes que descubrió el telescopio de Galileo. Lo mismo que pasó con la revolución galileana, con la venida de los aceleradores de partículas, la Humanidad adquirió unos conocimientos nuevos e insospechados acerca de cómo era el mundo, la naturaleza de la materia.
No acertó de pleno en su intuición pero, marcó el camino
Que en este caso de los aceleradores se refería al “espacio interior” en lugar de al “espacio exterior” no los hacía menos profundos ni menos importantes. El descubrimiento de los microbios y del universo biológico invisible por Pasteur fue un descubrimiento similar y, ya puestos, haremos notar que pocos se acuerdan ya de Demócrito, aquel filósofo sonriente que, tomó prestado de los antiguos hindúes, la idea del á-tomo, la expresión “más pequeña de la materia” que era “indivisible”.
Ahora sabemos que Demócrito estaba equivocado y que el átomo, sí se puede dividir. Sin embargo, él señaló un camino y, junto a Empédocles, el que hablaba de “elementos” como agua, aire, fuego y tierra, para significar que eran los componentes, en la debida proporción de todo lo que existía…, junto a otros muchos, nos han traído hasta aquí. Así que, los inventos que antes se mencionaban, no han llegado porque sí, ha sido un largo camino, mucha curiosidad y mucho trabajo y, no lo olvidemos: ¡Observar, Imaginar y Experimentar!
Nos dimos cuenta y estaba claro que la búsqueda de la menor de las partículas requería que se expandiese la capacidad del ojo humano: primero lupas, después microscopios y, finalmente… ¡Aceleradores! que, utilizando energías inimaginables ( 14 TeV), nos llevaría hasta las entrañas de la materia que tratamos de conocer.
Todos estos experimentos en los aceleradores han posibilitado muchos de los avances que hoy día conocemos en los distintos campos del saber humano. Generalmente, cuando se habla de aceleradores de partículas, todos piensan en el Bosón de Higgs y cosas por el estilo. Sin embargo, las realidades prácticas de dichos ingenios van mucho más allá.
“La “gran ciencia” (big science) genera tecnología, tecnología punta, genera industria, mucha industria, genera riqueza. Los grandes aceleradores de partículas, como el LHC del CERN, son ejemplos perfectos de ello. La tecnología de aceleradores de partículas ha permitido desarrollar dispositivos de implantación iónica que se utilizan para la fabricación de mejores semiconductores, para la fabricación prótesis de rodilla más duraderas, para la fabricación de neumáticos menos contaminantes, para el desarrollo de nuevas terapias contra el cáncer. Esto último gracias a que lo último de lo último en superimanes superconductores está en los grandes aceleradores. Esta tecnología ha permitido desarrollar y permitirá mejorar los potentes imanes necesarios en el diagnóstico clínico (como en resonancia magnética nuclear) y para terapias contra el cáncer basadas en haces de protones. Nos lo cuenta Elizabeth Clements, en “Particle physics benefits: Adding it up,”
Beneficios de la investigación básica en Física de Partículas: La tecnología desarrollada en los aceleradores de partículas tiene beneficios indirectos para la Medicina, la Informática, la industria o el medio ambiente. Los imanes superconductores que se usan para acelerar las partículas han sido fundamentales para desarrollar técnicas de diagnóstico por imagen como la resonancia magnética. Los detectores usados para identificar las partículas son la base de los PET, la tomografía por emisión de positrones (antipartícula del electrón). Y muchos hospitales utilizan haces de partículas como terapia contra el cáncer.
Describe la propiedad de un núcleo atómico para girar sobre su eje como un trompo, transformándolo en un pequeño imán. Los núcleos atómicos de hidrógeno, … La imagenología es la rama de la medicina que trata del diagnóstico morfológico empleando diferentes modalidades de visualización del cuerpo humano basado en imágenes obtenidas con radiaciones ionizantes u otras fuentes de energía, así como procedimientos diagnósticos y terapéuticos. Los equipos de imagenología requieren instalaciones especiales, como obra civil, instalación eléctrica, jaulas de Faraday, clima controlado, entre otras para llegar en forma rápida y segura a la detección de muchas enfermedades.
Con velocidades 10.000 veces mayor que una conexión típica, “The Grid” podrá enviar un catálogo completo de información desde Gran Bretaña a Japón en menos de 2 segundos. Esta red, creada en el centro de física de partículas CERN, puede proveer el poder necesario para transmitir imágenes holográficas; permitir juegos en línea con cientos de miles de personas, y ofrecer una telefonía de alta definición en video al precio de una llamada local.
Así, la World Wide Web (WWW), el ‘lenguaje’ en el que se basa Internet, fue creado en el CERN para compartir información entre científicos ubicados alrededor del mundo, y las grandes cantidades de datos que se producen motivan el desarrollo de una red de computación global distribuida llamada GRID. Los haces de partículas producidos en aceleradores tipo sincrotrón o las fuentes de espalación de neutrones, instrumentos creados para comprobar la naturaleza de la materia, tienen aplicaciones industriales en la determinación de las propiedades de nuevos materiales, así como para caracterizar estructuras biológicas o nuevos fármacos. Otras aplicaciones de la Física de Partículas son la fabricación de paneles solares, esterilización de recipientes para alimentos o reutilización de residuos nucleares, entre otros muchos campos.
No la vemos, no sabemos de que estará hecha, no emite radiación, tampoco podemos saber de qué partículas está compuesta, y, extrañamente, sí emite Gravedad… ¿Existirá de verdad?
También en el campo de la Astronomía, el LHC, nos puede ayudar a comprender cosas que ignoramos. Nos hemos preguntado sobre la existencia de estrellas de Quarks-Gluones, y, sobre el tema, algo nos ha dicho ya el Acelerador Europeo de Partículas que trata de llegar hasta “la materia oscura” y algunos otros enigmas que nos traen de cabeza.
No es extraño encontrarnos una mañana al echar una mirada a la prensa del día, con noticias como éstas:
Colisión de iones pesados registrada por el experimento ALICE. (Imagen: CERN.)
El acelerador europeo ha obtenido plasma de quarks–gluones, el primer estado de la materia tras el Big Bang.
No todo son bosones de Higgs en las instalaciones del CERN. Aún hay muchas preguntas sobre el universo y sus partículas que se pueden responder a base de colisiones de alta energía. Y en eso, elLHC es el mejor. Un grupo de investigadores del consorcio europeo ha realizado nuevas mediciones de la que creen que es el primer tipo de materia que hubo durante los instantes iniciales del universo. El plasma de quarks–gluones.
Los quarks y los gluones son, respectivamente, los ladrillos y el cemento de la materia ordinaria. Durante los primeros momentos tras el Big Bang, sin embargo, no estaban unidos constituyendo partículas —como protones o neutrones— sino que se movían libremente en estado de plasma. A base de colisionar iones de plomo —que es un átomo muy pesado— a velocidades cercanas a las de la luz, el LHC pudo recrear durante pequeños lapsos de tiempo las que se creen fueron las condiciones de los primeros momentos del universo.
El plasma de quarks–gluones es extremo y efímero. Por eso los investigadores han tenido que analizar los resultados de más de mil millones de colisiones para obtener resultados significativos.
Evento de colisión de 7 TeV visto por el detector LHCb. El experimento del LHCb en el LHC estará bien ubicado para explorar el misterio de la antimateria. Crédito: LHC, CERN. Ya sabéis que, durante muchos años, la ausencia de antimateria en el Universo ha atormentado a los físicos de partículas y a los cosmólogos: mientras que el Big Bang debería haber creado cantidades iguales de materia y antimateria, no observamos ninguna antimateria primordial hoy en día. ¿Dónde ha ido? Los experimentos del LHC tienen el potencial de dar a conocer los procesos naturales que podrían ser la clave para resolver esta paradoja.
Cada vez que la materia es creada a partir de energía pura, se genera la misma cantidad de partículas y antipartículas. Por el contrario, cuando la materia y la antimateria se encuentran, se aniquilan mutuamente y producen luz. La antimateria se produce habitualmente cuando los rayos cósmicos chocan contra la atmósfera de la Tierra, y la aniquilación de materia y antimateria se observa durante los experimentos de física en los aceleradores de partículas.
Equipos de físicos en todo el mundo siguen analizando datos. Aquellas primeras colisiones de protones a la alta energía prevista de 7 Teraelectronvoltios (TeV), una potencia jamás alcanzada en ningún acelerador antes, nos puede traer noticias largamente esperadas y desvelar misterios, contestar a preguntas planteadas y, en definitiva, decirnos cómo es la Naturaleza allí, donde el ojo humano no puede llegar pero, si la inteligencia.
Lo cierto es que, todos tenemos que convenir en el hecho cierto de que, el LHC es el mayor experimento físico de la historia de la Ciencia y que, de seguro, nos dará la oportunidad de comprender muchas cuestiones que antes se nos aparecían oscuras e indistinguibles entre la bruma de esa lejanía infinitesimal de la cuántica. Ahora, tenemos una herramienta capaz de llevarnos hasta aquellos primeros momentos en los que se construyó la historia del universo y, si podemos, de esta manera “estar allí”, veremos, con nuestros propios ojos lo que pasó y por qué pasó de esa manera.
Toda esta larga exposición de temas, de alguna manera conectados, viene al caso para dejar claro que, aquellos detractores del LHC, no llevaban la razón y, sus protestas no tenían un contenido científico. El Acelerador de Partículas que llamamos abreviadamente LHC, nos ha dado y nos seguirá dando, muchos beneficios para toda la Humanidad.
El Helio, que posee dos electrones, no cede uno con tanta facilidad. Sus dos electrones forman un caparazón hermético, por lo cual el átomo es inerte. No obstante, si se despoja al helio de ambos electrones, se convierte en una partícula alfa, es decir, una partícula subatómica portadora de dos unidades de carga positiva.
Hay un tercer elemento, el litio, cuyo átomo tiene tres electrones. Si se despoja de uno o dos, se transforma en ion. Y si pierde los tres, queda reducida a un núcleo desnudo, con una carga positiva de tres unidades.
Las unidades de una carga positiva en el núcleo atómico deben ser numéricamente idéntica a los electrones que contiene como norma, pues el átomo suele ser un cuerpo neutro y esta igualdad de lo positivo con lo negativo, es el equilibrio. Y, de hecho, los números atómicos de sus elementos se basan en sus unidades de carga positiva, no en las de carga negativa, porque resulta fácil hacer variar el número de electrones atómicos dentro de la formación iónica, pero, en cambio, se encuentran grandes dificultades si se desea alterar el número de sus protones.
Átomo de Litio
Apenas esbozado este esquema de la construcción atómica, surgieron nuevos enigmas. El número de unidades con carga positiva en un núcleo no equilibró, en ningún caso, el peso nuclear ni la masa, exceptuando el caso del átomo de hidrógeno. Para citar un ejemplo, se averiguó que el núcleo de helio tenía una carga positiva dos veces mayor que la del núcleo de hidrógeno; pero, como ya se sabía, su masa era cuatro veces mayor que la de este último. Y la situación empeoró progresivamente a medida que se descendía por la tabla de elementos, e incluso cuando se alcanzó el uranio, se encontró un núcleo con una masa igual a 238 protones, pero una carga que equivalía sólo a 92.
¿Cómo era posible que un núcleo que contenía cuatro protones (según se suponía del núcleo de helio) tuviera sólo dos unidades de carga positiva? Según la más simple y primera conjetura emitida, la presencia en el núcleo de partículas cargadas negativamente y con peso despreciable, neutralizaba dos unidades de su carga. Como es natural, se pensó también -en el electrón-. Se podría componer el rompecabezas si se suponía que el núcleo de helio estaba integrado por cuatro protones y dos electrones neutralizadores, lo cual deja libre una carga positiva neta de dos, y así sucesivamente, hasta llegar al uranio, cuyo núcleo tendría, pues, 238 protones y 146 electrones, con 92 unidades libres de carga positiva.
En 1874 estableció la hipótesis según la cual la electricidad era creada por unos corpúsculos elementales que llamó electrones, cuya carga intentó calcular.
George J. Stoney, el físico irlandés y pensador excéntrico y original al que, en realidad, debemos la forma de deducir si otros planetas del sistema solar poseían o no una atmósfera gaseosa, como la Tierra, calculando si su gravedad superficial era suficientemente intensa para mantener esa atmósfera.
Pero su pasión real estaba reservada a su idea más preciada: el “electrón”. Stoney había deducido que debía existir un componente básico de carga eléctrica. Estudiando los experimentos de Michael Faraday sobre electrolisis, Stoney había predicho incluso cuál debía ser su valor, una predicción posteriormente confirmada por J. J. Thomson, descubridor del electrón en Cambridge en 1897, dándole la razón a Stoney que finalmente, a esta unidad básica de la electricidad, le dio el nombre de electrón con el símbolo e en 1891 (antes de su descubrimiento).
Alan Turing George Francis Fitzgerald
Stoney, primo lejano y más viejo del famoso matemático, científico de computación y criptógrafo Alan Turing, también era tío de George Fitzgerald, después famoso por proponer la “contracción Fitzgerald-Lorentz”, un fenómeno que fue entendido finalmente en el contexto de la teoría de la relatividad especial de Einstein.
Stoney, podemos decir con seguridad, fue el primero que señaló el camino para encontrar lo que más tarde conoceríamos como constantes fundamentales, esos parámetros de la física que son invariantes, aunque su entorno se transforme. Ellas, las constantes, continúan inalterables como sucede, por ejemplo, con la velocidad de la luz c, que sea medida en la manera que sea, esté en reposo o esté en movimiento quien la mide o la fuente de donde parte, su velocidad será siempre la misma, 299.792.458 m/s. Algo análogo ocurre con la gravedad, G, que en todas partes mide el mismo parámetro o valor: G = 6’67259 × 10-11 m3 s-2 Kg-1. Es la fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de la masa de los cuerpos y de la distancia entre ellos; la fuerza gravitacional disminuye con el cuadrado de la distancia de acuerdo a la ley de la inversa del cuadrado.
Profesor de filosofía natural (así llamaban antes a la Física) en el Queen’s College Galway en 1860, tras su retiro se trasladó a Hornsey, al norte de Londres, y continuó publicando un flujo de artículos en la revista científica de la Royal Dublín Society, siendo difícil encontrar alguna cuestión sobre la que no haya un artículo firmado por él.