jueves, 13 de marzo del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




No, tampoco los físicos entienden la mecánica cuántica

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

“Imagen ilustrativa de la dualidad onda-partícula, en la cual se puede ver cómo un mismo fenómeno puede tener dos percepciones distintas. La dualidad onda-corpúsculo, también llamada dualidad onda-partícula es un fenómeno cuántico, bien comprobado empíricamente, por el cual muchas partículas pueden exhibir comportamientos típicos de ondas en unos experimentos mientras aparecen como partículas compactas y localizadas en otros experimentos. Dado ese comportamiento dual, es típico de los objetos mecano-cúanticos, donde algunas partículas pueden presentar interacciones muy localizadas y como ondas exhiben el fenómeno de la interferencia.”

Funciones de onda del electrón en un átomo de hidrógeno a diferentes niveles de energía. La mecánica cuántica no puede predecir la ubicación exacta de una partícula en el espacio, solo la probabilidad de encontrarla en diferentes lugares. Las áreas más brillantes representan una mayor probabilidad de encontrar el electrón.

“En física, se conoce como longitud de onda la distancia que recorre una perturbación periódica que se propaga por un medio en un ciclo. La longitud de onda, también conocida como periodo espacial es la inversa de la frecuencia multiplicado por la velocidad de propagación de la onda en el medio por el cuál se propaga. La longitud de onda se suele representar con la letra griega λ (lambda).”

Esquema de una función de onda mono-electrónica u orbital en tres dimensiones.

 

 

En la imagen, la conjetura de Birch y Swinnerton Dyer

 

En la imagen la conjetura reseñada más abajo

 

 

“La conjetura de Birch y Swinerton-Dyer es una conjetura matemática, enunciada en 1965 por los matemáticos ingleses Bryan Birch y Peter Swinerton-Dyer.

Es uno de los siete problemas del milenio, cuya solución premia el Instituto Clay de Matemáticas con un millón de dólares.”

“A medida que aumenta el grado del polinomio de Maclaurin, se aproxima a la función. Se ilustran las aproximaciones de Maclaurin a sen(x), centradas en 0, de grados 1, 3, 5, 7, 9, 11 y 13.”

“La gráfica de la función exponencial (en azul), y la suma de los primeros n+1 términos de su serie de Taylor en torno a cero (en rojo).”

“La conjetura relaciona los datos aritméticos asociados a una curva elíptica E sobre un cuerpo numérico K con el comportamiento de la Función L de Hasse-Weil L(Es) de E en s = 1. Concretamente, se conjetura que el rango del grupo abeliano E(Q) de puntos de E es igual al orden del cero de L(Es) en s = 1, y el primer coeficiente distinto de 0 en la expansión de Taylor de L(Es) en s = 1 es dado por un mejor refinamiento de datos aritméticos ligados a E sobre Q. En particular, asegura que si L(E1) = 0, entonces el grupo E(Q) es infinito, y recíprocamente, si L(E1) ≠ 0, entonces E(Q) es finito.”

Una encuesta realizada entre físicos demuestra que la mayoría no comprende que tipo de realidad describen las teorías. Y, desde luego, la mecánica cuántica, con todos sus vericuetos, no es fácil de dominar. Precisamente por eso, los físicos (que no pueden abarcarlo todo), se especializan en cuestiones concretas, tales como la física de partículas y otras.

Dibujo de perspectiva: cómo dibujar mesas con estilos diferentes usando la  perspectiva de tres puntos "La herramienta Regla y las reglas de  perspectiva 9" por ClipStudioOfficial - CLIP STUDIO TIPSAprende cómo hacer una casa de madera | Housfy

 

Perú Fútbol Peruano Bandera Sobre Una Pelota De Fútbol Foto de stock y más  banco de imágenes de Bandera - iStockUn planeta habitable no es solo cálido, y la Tierra es un caso muy raroPersona - EcuRed

 

 

Uno de los mayores misterios de la Ciencia es el hecho de que los objetos macroscópicos (una mesa, una casa, una pelota, un planeta, una persona…) siguen una serie de leyes físicas que, literalmente, no funcionan en el mundo de las partículas subatómicas. En la escala de lo infinitamente pequeño, en efecto, cualquier objeto o ser vivo convencional se compone de un conjunto más o menos numeroso de partículas.

Función de Onda

“El valor de la función de onda tex2html_wrap_inline2828 asociada con una partícula en movimiento esta relacionada con la probabilidad de encontrar a la partícula en el punto (x,y,z) en el instante de tiempo t.”

Y esas partículas, por separado, son capaces de hacer cosas que los conjuntos de partículas, como nosotros, o las mesas y las casas, no pueden. Aparecer y desaparecer a voluntad, estar en varios lugares al mismo tiempo, comunicarse de forma instantánea o, incluso, viajar adelante y atrás en el tiempo, son solo algunas de las extraordinarias propiedades a las que los físicos han tenido que ir acostumbrándose a la hora de lidiar con los constituyentes íntimos de la materia.

Resultado de imagen de Modelo Estándar

Para guiarse en ese mundo extraño, fue necesario crear toda una nueva Física, la Mecánica Cuántica, que describe, o trata de describir, lo que podemos esperar encontrarnos en el extraño reino de los protones, los electrones, los quarks y el resto de las partículas subatómicas que forman parte del Modelo Estandar y que conforman la realidad física que nos rodea.

Del átomo al Higgs XI: El actual modelo estandar a vista de pájaro | Una  vista circular

Ni que decir tiene que para un profano en la materia, la Mecánica Cuántica resulta abstracta y difícil de comprender. Pero una reciente encuesta publicada por la revista New Scientist demuestra que tampoco los físicos se ponen de acuerdo a la hora de definir cuál es exactamente la realidad que la Mecánica Cuántica describe. Y lo que es más, a un buen número de ellos ni siquiera les importa. En otras palabras: en esta cuestión, los propios físicos están igual de perdidos que el resto de los mortales.

En la encuesta participaron 149 físicos. El 39% de ellos mostró su apoyo a la interpretación de Copenhague, que es el retrato “clásico” de la mecánica cuántica, formulado por el físico danés Niels Bohr en 1927. Otro 25%, sin embargo, prefirió otras interpretaciones alternativas y un impresionante 36% declaró no tener preferencia alguna al respecto. Es más, muchos de los encuestados afirmaron no estar seguros de comprender lo que una u otra interpretación significan realmente.

Resultado de imagen de La ecuación de Schrödinger

La autora del artículo de New Scientist, Sophia Chen, sostiene que la interpretación convencional, la que obtuvo un mayor porcentaje en la encuesta, es también la primera (y a menudo la única) que los físicos aprenden, y eso no significa, en absoluto, que sea la más acertada.

Niels Bohr.jpgMax Born.jpg

                            Niels Bohr.                          Max Born

Bundesarchiv Bild183-R57262, Werner Heisenberg.jpg

                Heisenberg
“Con el nombre de interpretación de Copenhague se hace referencia a la interpretación de la mecánica cuántica considerada tradicional u ortodoxa. Fue formulada en 1927 por el físico danés Niels Bohr, con ayuda de Max Born y Werner Heisenberg, entre otros, durante una conferencia realizada en ComoItalia. Se conoce así debido al nombre de la ciudad en la que residía Bohr.”

{\frac  {\partial s_{m}}{\partial t}}+{\frac  {1}{2}}\left\Vert {\vec  \nabla }s_{m}\right\Vert ^{2}+V(x)=\lim _{{m\to \infty }}{\frac  {i\hbar }{2m}}\Delta s_{m}=0

“Y por tanto para partículas macroscópicas, dada la pequeñez de la constante de Planck, los efectos cuánticos resumidos en el segundo miembro se anulan, lo cual explica porqué los efectos cuánticos sólo son apreciables a escalas subatómicas.”

Ruta de 3 días por el LAGO DI COMO con PRESUPUESTO (Italia) - De mayor  quiero ser mochileraLago Como [Italia]: El reposo del guerreroLago de Como - Qué ver en el lago Como y cómo llegar desde MilánLago Como: guía para exprimir tu viaje al norte de ItaliaLago Britches, Italia. | Paisajes, Distrito de los lagos, Lagos

Imágenes del Lago de Como en Italia donde tuvo lugar aquella famosa reunión

 

La interpretación de Copenhague utiliza la ecuación de Scrödinger para predecir los resultados de los experimentos en física cuántica, e incorpora el principio de incertidumbre, según el que no se puede conocer, al mismo tiempo, el momento y la velocidad de una partícula dada. De hecho, para observar una partícula, es necesario bombardearla con otras partículas, lo que cambia bruscamente su trayectoria y afecta a los resultados de la observación.

Los críticos, por su parte, subrayan la inconsistencia de lo que sabemos sobre el mundo cuántico con las leyes de la Naturaleza. Por eso, recurren a otras interpretaciones, como la de los multiversos, formulada por el australiano Howard Wiseman en 2014 y según la cual los fenómenos cuánticos surgen de la interacción de múltiples universos que, sin embargo, están regidos por el mismo conjunto de leyes. “Es muy extraño, lo admito -explica el propio Wiseman a New Scientist- pero un conjunto de universos paralelos que obedecen a las mismas leyes es algo bastante menos extraño que un único Universo con excepciones a sus reglas, como dice la interpretación de Copenhague”.

El 32% de los encuestados afirmó no entender lo suficiente ninguna de las interpretaciones como para hacerse una opinión, mientras que otro 23% aseguró que cualquier interpretación resulta irrelevante. Algunos llegaron a sostener que muchas interpretaciones del mundo cuántico nunca podrán ser verificadas experimentalmente, ya que pertenecen más al terreno de la filosofía que al de la física.

En resumen, concluye el artículo, el gran número de posibles soluciones podría ser un indicativo de que, quizás, ninguna de ellas está en el camino correcto. Llevamos ya un siglo discutiendo sobre el tema y todo apunta a que lo haremos durante por lo menos otro siglo más. Según dijo en su día el propio Niels Bohr, considerado como uno de los padres de la Mecánica Cuántica, “lo que nosotros llamamos realidad está hecha de cosas que no pueden ser consideradas reales. Si la mecánica cuántica no le ha impactado profundamente, es que no la ha entendido todavía”.

Publica: emilio silvera

Cosas de Física en este Universo nuestro

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La CONSTANTE de PLANCK: definición sencilla - ¡¡RESUMEN FÁCIL!!

Hablamos de física, y para animar el ambiente, a continuación os pongo la constante de Planck en sus dos versiones, h y ħ; la igualdad masa-energía de Einstein, la constante gravitacional de Newton, la constante de estructura fina (137) y el radio del electrón.

Si los fotones no tienen masa, ¿dónde almacenan la energía? | Ciencia | EL  PAÍSLey de la gravedad - EcuRedUna enana blanca para estudiar la constante de estructura fina | Ciencia en  sí mismaCiencias Planetarias y Astrobiología : La constante de estructura fina en  nuestro Universo

“El radio clásico del electrón, también conocido como radio de Lorentz o longitud de difusión Thomson, se basa en un modelo relativista clásico del electrón (es decir, no cuántico). Su valor se calcula como:”

{\displaystyle r_{\mathrm {e} }={\frac {1}{4\pi \varepsilon _{0}}}{\frac {e^{2}}{m_{e}c^{2}}}=2.8179402894(58)\times 10^{-15}\mathrm {m} }

donde e y m_e son la carga eléctrica y la masa del electrónc es la velocidad de la luz, y \varepsilon _{0} es la permitividad del vacío o espacio libre

¡Me encantan sus mensajes!

Cuestiones “sencillas” de entender para los iniciados y, a veces, muy complejas para la gente corriente.  Por tal motivo, si escribo sobre estos interesantes temas, mi primera preocupación es la de buscar la sencillez en lo que explico.  No siempre lo consigo.

Los campos magnéticos están presentes por todo el Universo. Hasta un diminuto (no por ello menos importante) electrón crea, con su oscilación, su propio campo magnético, y,  aunque pequeño,  se le supone un tamaño no nulo con un radio ro, llamado el radio clásico del electrón, dado por r0 = e2/(mc2) = 2,82 x 10-13 cm, donde e y m son la carga y la masa, respectivamente del electrón y c es la velocidad de la luz.

Efecto fotoeléctrico - Wikipedia, la enciclopedia libreEl efecto fotoeléctrico – Física cuántica en la red

“El efecto fotoeléctrico consiste en la emisión de electrones por un material al incidir sobre él una radiación electromagnética (luz visible o ultravioleta, en general). A veces se incluyen en el término otros tipos de interacción entre la luz y la materia:”

Es verdaderamente meritorio el enorme avance que en tan poco tiempo ha dado la Humanidad en el campo de la física. En aproximadamente un siglo y medio, se ha pasado de la oscuridad a una claridad, no cegadora aún, pero sí aceptable. Son muchos los secretos de la naturaleza física que han sido desvelados, y el ritmo parece que se mantiene a un muy aceptable (nuevamente).

Leer más

Hechos que nos llevan al el futuro

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Prinicipia-title.pngTrinityCollegeCamGreatCourt.jpg


“Philosophiæ naturalis principia mathematica
 (del latín: Principios matemáticos de la filosofía natural), también conocido simplemente como Principia,1​ es una obra publicada por Isaac Newton el 5 de julio de 1687​ a instancias de su amigo Edmund Halley, donde recoge sus descubrimientos en mecánica y cálculo matemático. Este trabajo marcó un punto de inflexión en la historia de la ciencia y es considerada, por muchos, como la obra científica más importante de la historia.”

Ley de la gravedad - EcuRedTrabajo de ley de la gravitación universal de newton

Para no retrotraernos muy atrás en el tiempo, fijaremos el punto de partida en 1687, fecha en que salió a la luz la Obra de Newton, sus Principias. El tiempo transcurrió hasta 1900, fecha en la que Planck publicó un artículo de ocho páginas con su idea del cuanto que sería la semilla que daría lugar al nacimiento de la mecánica cuántica. En 1905, aquel joven de la Oficina de Patentes de Berna, sorprendió al mundo de la Física con su Teoría de la Relatividad Especial. Se produjeron muchos desarrollos importantes para nuestras imágenes de la Física Fundamental. Uno de los mayores cambios ocurrido en ese período fue la comprensión, básicamente mediante los trabajos de Faraday y Maxwell en el siglo XIX, de que cierta noción de campo físico, que permea en el espacio, debe cohexistir con la previamente aceptada “realidad newtoniana” de las partículas individuales que interaccionan por medio de fuerzas instantáneas.

Conforme a lo que arriba decimos se producen fenómenos y se ponen en marcha mecanismos que hacen posible que, la imagen que vemos, pueda ser posible gracias a la presencia de fuerzas que, aunque no las podamos ver, su presencia se hace patente por los resultados que en su diversidad, son los mecanismos que llevan el ritmo del universo en el que vivimos.

 

Astrofísica y Física: La gravedad como campo

Más tarde, esta noción de “campo” se convirtió también en un ingrediente crucial de la teoría de la Gravedad en un espacio-tiempo curvo a la que llegó Einstein en 1915. Lo que ahora denominamos campos clásicos son el Campo Electromagnético de Maxwell y el Campo Gravitatorio de Einstein.

Leer más

¿Por qué es así nuestro Universo? II

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Stoney recibió el encargo de hacer una exposición científica del tema que él mismo eligiera para el programa de la reunión de Belfast de la Asociación Británica. Pensando en qué tema elegir, se dio cuenta de que existían medidas y patrones e incluso explicaciones diferentes para unidades que median cosas o distancias o algún fenómeno: se preguntaba la manera de cómo definirlos mejor y como interrelacionarlos. Vio una oportunidad para tratar de simplificar esta vasta confusión de patrones humanos de medida de una manera tal que diese más peso a su hipótesis del electrón.

Comienza II

En tal situación, Stoney centró su trabajo en unidades naturales que transcienden los patrones humanos, así que trabajó en la unidad de carga electrónica (según su concepto), inspirado en los trabajos de Faraday como hemos comentado antes. También, como unidades naturales escogió G y c que responde, como se ha explicado, a la gravedad universal y la velocidad de la luz en el vacío.

En su charla de la Reunión de Belfast, Stoney se refirió al electrón como el “electrino” y dio el primer cálculo de su valor esperado. Demostró que el trío mágico de G, c y e podía combinarse de una manera, y sólo de una, de modo que a partir de ellas se creaban una unidad de masa, una unidad de longitud y una unidad de tiempo. Para la velocidad de la luz utilizó un promedio de las medidas existentes, c = 3 × 108 metros por segundo; para la constante de gravitación de Newton utilizó el valor obtenido por John Herschel, G = 6’67259 × 10-11 m3 s-2 Kg-1, y para la unidad de carga del “electrino” utilizó e = 10-20 amperios. Estas fueron las inusuales nuevas unidades que él encontró, en términos de las constantes e, c y G, y en términos de gramo, metros y segundos (omito la numerología).

Leer más

Imaginación sin límite pero… ¿Sabremos comprender?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

cluster-galaxias

A cualquier región del Universo que podamos enfilar nuestros telescopios… Como media, siempre veremos las mismas cosas y se producirán los mismos fenómenos.

Está claro que pensar siquiera en que en nuestro Universo, dependiendo de la región en la que nos encontremos, habrá distintas leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar  y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario,  los científicos suponen con prudencia que, sean cuales fueran las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte del Cosmos por muy remota que se encuentre aquella región; los elementos primordiales que lo formaron fueron siempre los mismos y las fuerzas que intervinieron para formarlo también.

Cuáles son los componentes del Universo? - VIXAgujero negro supermasivo - Wikipedia, la enciclopedia libreAstronomía de Córdoba: Agrupaciones de GalaxiasAgrupación galáctica - Wikipedia, la enciclopedia libreLas fuerzas fundamentales del UniversoUniverso - Wikipedia, la enciclopedia libre

                             La materia y las fuerzas que conforman nuestro Universo

Las fuerzas fundamentales son


Tipo de Fuerza

Alcance en m

Fuerza relativa

Función

Nuclear fuerte

<3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil

< 10-15

1028

Es responsable de la energía radiactiva   producida de manera natural.  Portadoras W y Z
Electromagnetismo

Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación

Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La transporta el gravitón.

Fue Einstein el que anunció lo que se llamó principio de covariancia: que las leyes de la naturaleza deberían expresarse en una forma que pareciera la misma para todos los observadores, independientemente de dónde estuvieran situados y de cómo se estuvieran moviendo. En caso contrario… ¿En qué clase de Universo estaríamos?

Lo cierto es que Einstein fue muy afortunado y pudo lanzar al mundo su teoría de la relatividad especial, gracias a muchos apoyos que encontró en Mach, en Lorentz, en Maxwell… En lo que se refiere a la relatividad general, estuvo dando vueltas y vueltas buscando la manera de expresar las ecuaciones de esa teoría pero, no daba con la manera de expresar sus pensamientos.

Resultado de imagen de geometría de superficies curvas

Sin embargo, fue un hombre con suerte, ya que,  durante la última parte del siglo XIX en Alemania e Italia, matemáticos puros habían estado inmersos en el estudio profundo y detallado de todas las geometrías posibles sobre superficies curvas. Habían desarrollado un lenguaje matemático que automáticamente tenía la propiedad de que toda ecuación poseía una forma que se conservaba cuando las coordenadas que la describían se cambiaban de cualquier manera. Este lenguaje se denominaba cálculo tensorial. Tales cambios de coordenadas equivalen a preguntar qué tipo de ecuación vería alguien que se moviera de una manera diferente.

Einstein se quedó literalmente paralizado al leer la Conferencia de Riemann. Allí, delante de sus propios ojos tenía lo que Riemann denominaba Tensor métricoEinstein se dio cuenta de que era exactamente lo que necesitaba para expresar de manera precisa y exacta sus ideas. Así  llegó a ser  posible la teoría de la relatividad general.

matriz

Gracias al Tensor de Rieman, Einstein pudo formular:  T_{ik} = \frac{c^4}{8\pi G} \left [R_{ik} - \left(\frac{g_{ik} R}{2}\right) + \Lambda g_{ik} \right ]

Recordando aquellos años de búsqueda e incertidumbre, Einstein escribió:

El Artinblog: Albert Einstein, el lado menos conocido

“Los años de búsqueda en la oscuridad de una verdad que uno siente pero no puede expresar el deseo intenso y la alternancia de confianza y desazón hasta que uno encuentra el camino a la claridad y comprensión sólo son familiares a aquél que los ha experimentado. 

Einstein, con esa aparentemente sencilla ecuación que arriba podemos ver, le dijo al mundo mucho más, de lo que él mismo, en un principio pensaba. En ese momento, se podría decir, sin temor a equivocarnos que comenzó la historia de la cosmología moderna. Comprendimos mejor el universo, supimos ver y comprender la implosión de las estrellas obligadas por la gravedad al salir de la secuencia principal, aprecieron los agujeros negros… y, en fin, pudimos acceder a “otro universo”.

Es curioso como la teoría de la relatividad general nos ha llevado a comprender mejor el Universo y, sobre todo, a esa fuerza solitaria, la Gravedad. Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que -como tantas veces hemos comentado aquí-, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas galácticas, estrellas y sistemas planetarios y de objetos que, como los agujeros negros, emiten la fuerza curvando el espacio a su alrededor y distorsionando el tiempo si su densidad llega a ser extrema.

Cuando miramos al cielo nocturno -en la imagen de arriba lo hacemos desde Tenerife-  y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

 Resultado de imagen de La Galaxia Andrómeda se acerca a la Vía Láctea

Para cuando ese suceso pueda llegar aquí, nuestro Sol estará transformándose en una Gigante roja, antes de convertirse en una enana blanca. Así que, los acontecimientos futuros serían dignos de contemplar. Claro que, para entonces…  ¿Quién andará por aquí?

Cuando recordamos que la galaxia Andrómeda se está acercando a la Vía Láctea a unos 300 km/s, y sabiendo lo que ahora sabemos, no podemos dejar de preguntarnos ¿Dónde estará la Humanidad dentro de miles de millones de años? Si tenemos la suerte de haber podido llegar tan lejos -que es dudoso-, seguramente,  nuestra inmensa  imaginación habrá desarrollado conocimientos y tecnologías suficientes para poder escapar de tan dramático suceso. Estaremos tan ricamente instalados en otras galaxias, en otros mundos. De alguna manera… ¿No es el Universo nuestra casa?

emilio silvera