viernes, 27 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El “universo” de las Partículas II

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El movimiento rotacional puro se da cuando cada partícula del cuerpo se mueve en un círculo alrededor de una sola línea. Esta línea se llama eje de rotación. En consecuencia, los radios vectores desde el eje a todas las partículas experimentan el mismo desplazamiento angular al mismo tiempo.

Estamos hablando de las partículas y no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas. Éstas, al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1.943 y 1.944 respectivamente, por sus trabajos sobre dicho fenómeno.

 

Resultado de imagen de Magnetismo de los electrones

 

Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-Dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.

 

 

Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.

 

Imagen relacionada

 

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dad. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.

 

Descubriendo los secretos de los bosones: ¿qué son realmente y cómo  interactúan con el universo?MOMENTO ANGULAR INTRÍNSECO (SPIN CLÁSICO) | FÍSICA UNIVERSITARIA | MR  PLANCK - YouTube

 

Los bosones tienen un momento angular nh/2π, donde n es 0 o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre antisimétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.

 

Espacio en dos dimensiones | PPTEspacio en dos dimensiones | PPT

 

El espacio euclidiano bidimensional o simplemente espacio bidimensional (también conocido como espacio 2D o plano euclidiano) es un entorno geométrico en el que se requieren dos valores (llamados parámetros) para determinar la posición de un elemento (es decir, punto) en el plano.

En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aniones; para aniones idénticos, la función de ondas no es simétrica (un cambio de fase de +1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

 

Resultado de imagen de El principio de exclusión de Pauli

Este principio es el que permite que existan estrellas enanas blancas y de neutrones

Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos dorman una única entidad (un super-átomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.

 

La rotación de las partículas y otros temas de física : Blog de Emilio  Silvera V.Práctica de simulación de magnetismo

 

Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo forma  un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.

 

El momento magnético del neutrón

En unidades SI, el momento magnético del neutrón es aproximadamente −9.6623640 × 10−27 J/T

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en  definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).

Sea como fuere, la rotación del neutrón nos da la respuesta a esas preguntas:

 

Sabes lo que es la antimateria? Es un tipo de materia formada por  partículas distintas a las que posee un átomo, como los protones, neutrones  y electrones. En este caso, las partículasPartículas, antipartículas, fuerzas… : Blog de Emilio Silvera V.

Partículas, antipartículas, fuerzas… :

Blog de Emilio Silvera V.

¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.

Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma forma que las partículas corrientes forman la materia ordinaria.

 

Resultado de imagen de La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965

 

La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un anti-deuterón. Desde entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros anti-núcleos más complicados aún si se abordara el problema con más interés.

Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.

No parece que dichas observaciones fuesen un éxito. ¿Es posible que el universo esté formado casi enteramente por materia, con muy poca o ninguna antimateria? Y si es así, ¿por qué? Dado que la materia y la antimateria son equivalente en todos los aspectos, excepto en su oposición electromagnética, cualquier fuerza que crease una originaría la otra, y el universo debería estar compuesto de iguales cantidades de la una y de la otra.

 

Acelerador AGS (Alternating Gradient Synchrotron) del Laboratorio Nacional de Brookhaven.

Proyecto Brookhaven: Buscando la antimateria

El descubrimiento de la antimateria más pesada podría revelar misterios de  la materia oscuraEl experimento ALPHA del CERN observa el color de la antimateria por  primera vez | CPAN - Centro Nacional de Física de Partículas,  Astropartículas y Nuclear

                   Aquí detectaron lograron encontrar la anti-materia por primera vez 

Este es el dilema. La teoría nos dice que debería haber allí antimateria, pero las observaciones lo niegan, no lo respaldan. ¿Es la observación la que falla? ¿Y qué ocurre con los núcleos de las galaxias activas, e incluso más aún, con los quásares? ¿Deberían ser estos fenómenos energéticos el resultado de una aniquilación materia-antimateria? ¡No creo! Ni siquiera ese aniquilamiento parece ser suficiente, y los astrónomos prefieren aceptar la noción de colapso gravitatorio y fenómenos de agujeros negros, como el único mecanismo conocido para producir la energía requerida.

 

CERN: así es por dentro la única fábrica de antimateria del planeta Tierra

Así es por dentro la única fábrica de antimateria del mundo, donde los científicos crean la sustancia más explosiva del universo para entender por qué existimos.

 

Ilustración colisionador de hadrones

 

Con esto de la antimateria me ocurre igual que con el hecho, algunas veces planteado, de la composición de la materia en lugares lejanos del universo. “Ha caído una nave extraterrestre y nuestros científicos han comprobado que está hecha de un material desconocido, casi indestructible”. Este comentario se ha podido oír en alguna película de ciencia ficción. Podría ser verdad (un material desconocido), sin embargo, no porque la nave esté construida por una materia distinta, sino porque la aleación es distinta y más avanzada a partir de los materiales conocidos del universo. En cualquier parte del universo, por muy lejana que pueda estar, rigen los mismos principios y las mismas fuerzas: la materia y la energía son las mismas en cualquier parte. Lo único que puede diferir es la forma en que se utilice, el tratamiento que se le pueda dar, y sobre todo, el poseer el conocimiento y la tecnología necesarios para poder obtener el máximo resultado de las propiedades que dicha materia encierra, porque, en última instancia, ¿es en verdad inerte la materia?

 

Resultado de imagen de Resultado de imagen de La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965 Tod

 

“Ha sido en uno de ellos, en un experimento que se desarrolla desde hace veinte años en el Centro Europeo de Física de Partículas (CERN), que los investigadores han conseguido un logro que puede ayudar a desentrañar el misterio. Por primera vez en la historia, se ha conseguido observar el espectro de luz de la antimateria, en concreto, del anti-hidrógeno.

No se trata de un descubrimiento sencillo. El hidrógeno, al contar con un solo protón y un único electrón, es el átomo del Universo que mejor se conoce y el más abundante, pero a su opuesto, el anti-hidrógeno, se le entiende de manera muy limitada y producirlo en condiciones de laboratorio es extremadamente difícil.”

        Todo lo que podemos ver en el Universo, sin excepción, está hecho de materia mientras que no se demuestre lo contrario. Dicen que si pudiéramos ver una galaxia de antimateria, nos parecería igual a las otras de materia.

Tiene y encierra tantos misterios la materia que estamos aún a años luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos, pero que tampoco sabemos, en realidad, a qué son debidas. Sí, sabemos ponerles etiquetas como la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio, y con mayor frecuencia, en los elementos que conocemos como trans-uránidos. (Más allá del Uranio).

Resultado de imagen de Transuránidos

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de su ruptura, sobrepasando a la emisión de partículas alfa. ¡Parece que la materia está viva! Son muchas las cosas que desconocemos, y nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o el antineutrón), y por lo tanto, han sido denominados leptones (de la voz griega leptos, que dignifica “delgado”).

Aunque el electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1.940), el problema de su estructura, si la hay, aún no está resuelto. Conocemos su masa y su carga negativa que responden a 9’1093897 (54) × 10-31 Kg la primera, y 1’60217733 (49) × 10-19 culombios la segunda, y también su radio clásico r0 igual a e2/(mc2) = 2’82 × 10-13 cm. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve una carga eléctrica, sea la que fuese (sabemos cómo actúa y cómo medir sus propiedades, pero aún no sabemos qué es), que tenga asociada un mínimo de masa.

Lo cierto es que el electrón es una maravilla en sí mismo. El universo no sería como lo conocemos si el electrón fuese distinto a como es; bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

 

Imagen relacionada

                                        Muchos granos de arena conforman una inmensa playa

¡No por pequeño se es insignificante!

 

Resultado de imagen de Todo lo grande está hecho de cosas pequeñas

Claro que, no debemos olvidarnos de que, ¡Todo lo grande está hecho de cosas pequeñas! Una inmensa galaxia se conforma de un conjunto inmenso de átomos …

En realidad, existen partículas que no tiene asociada ninguna masa en absoluto, es decir, ninguna masa en reposo. Por ejemplo, las ondas de luz y otras formas de radiación electromagnética se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones*). Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda, se denomina fotón, de la palabra griega que significa “luz”.

El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma de que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este término se reserva para la familia formada por el electrón, el muón y la partícula tau, con sus correspondiente neutrinos: υe, υμ y υτ.

 

Imagen relacionada

 

Existen razones teóricas para suponer que cuando  las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitaciones. Esas ondas pueden, así mismo, poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La forma gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón, y por tanto, ha de ser inimaginablemente difícil de detectar.

 

Resultado de imagen de Detectando gravitones

   No será fácil detectar gravitones

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm de longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas) desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegase a captar la cien-billonésima parte de un centímetro. Las débiles ondas de los gravitones, que proceden del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitacionales. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaron el hallazgo de Weber.

 

Resultado de imagen de Gravitón

     Dibujo 20150310 de  stuart marongwe  – mathematical model nexus gravitón

En cualquier caso, no creo que a estas alturas alguien pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria. La masa del gravitón es 0, su carga es 0, y su espín es 2. Como el fotón, no tiene antipartícula; ellos mismos hacen las dos versiones.

Solo de una cosa estoy seguro: Conocemos muy poco del Universo, nuestra ignorancia es…. ¡Infinita!

Emilio Silvera V.

Nuestro universo es dinámico, todo cambia, nada permanece

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La escalera cósmica, ¿qué es y para qué sirve? - Gaceta UNAM
https://youtu.be/9rtBnx1SvTE
Cuando se produjo el Big Bang, de manera inmediata, aquella fluctuación del vacío explosiva, hizo que el espacio Tiempo se expandiera con una rapidez inusitada y todo, sin excepción, corría llevado en esa “nave super-lumínica” que llamamos espacio-tiempo. Siendo así (que lo es), cuando se formaron los primeros núcleos de los átomos y los electrones corrieron a orbitarlos y formarlos, cuando se juntaron para formar moléculas y estas, a su vez, se juntaron para formar materia, es lógico pensar que esa materia corriera junto al Espacio en expansión, y, sin embargo, las galaxias se formarón, ¿por qué? ¿Cómo fue posible?
 Entradas anteriores: En realidad, las Galaxias no debenrían exitir

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.

El concepto de “Campo” está muy ligado a los experimentos de Faraday. Históricamente fue introducido para explicar la acción a distancia de las fuerzas magnéticas, eléctricas y, más tarde de gravedad. Con el tiempo y los nuevos conocimientos,  su significado se ha extendido substancialmente, para describir variaciones de temperatura, tensiones mecánicas en un cuerpo, propagación de ondas…, y otros fenómenos a los que le son de aplicación el concepto de “campo”.

 

 

Condensado de Bose-Einstein - Wikipedia, la enciclopedia libre

En física, condensado de Bose-Einstein es el estado de la materia que se da en ciertos materiales a temperaturas cercanas a 0 K (cero absoluto). ​ La propiedad que lo caracteriza es que una cantidad macroscópica de las partículas del material pasan al nivel de mínima energía, denominado estado fundamental

Resultado de imagen de Efecto TúnelBohr - Salto cuántico on Make a GIF

Efecto Túnel y Salto Cuántico

El efecto túnel explica que se den en el espacio reacciones químicas que no se producen en condiciones normale.Un fotón energético que viaja a la velocidad de la luz, choca con un electrón orbital de un átomo. El electrón absorbe la energía del fotón y, de inmediato, desaparece del lugar que ocupaba en el átomo y, de manera simultánea, sin saber por donde ha cogido y sin recorrer el camino que le separa, aparece en otro orbital diferente. Ese es, un ejemplo del efecto túnel.

  

 

 

Esquema de una estrella tipo Sol

 

Hoy en día, disponemos de dos herramientas muy potentes para el estudio del interior solar: Los neutrinos solares y la helio-sismología. Bethe y Chitchfield (1938) propusieron un ciclo de reacciones de fusión nuclear para explicar la generación de energía en el caso de estrellas de masa pequeña como el Sol. El balance final de dicho ciclo de reacciones, Ciclo p-p, es:

4p → He4 + 2e+ +2ѵe +energía.

¿Cómo podemos estar seguros de que este es, efectivamente, el mecanismo dominante de generación de energía que utilizan algunas estrellas y, en particular el Sol? Sorprendentemente, la respuesta es que podemos “observar” el interior del Sol mediante detectores situados en el interior de la Tierra.

Por muy bien formulada que estén planteadas, cuando los físicos han tratado de juntar la Relatividad de Einstein con la cuántica de Planck, aquello “explota”, surge un galimatías sin sentido lleno de infinitos que no pueden ser re-normalizados. De momento, los físicos persiguen esa teoría cuántica de la Gravedad pero, al menos de momento, no lo han conseguido. Una curiosidad es que, dentro de las cuerdas, subyace esa teoría.

                                                       Laboratorio estelar, la cuna de los mundos.

me sumerjo en los misterios y maravillas que encierra el universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, y, esa presencia invisible que permea todo el espacio y que se ha dado en denominar océano y campos de Higgs, allí donde reside esa clase de energía exótica, ese “éter” que, en definitiva hace que el Universo funcione tal como lo podemos ver. Existen muchos parámetros del Cosmos que aún no podemos comprender y de los que sólo podemos presentir, es como si pudiéramos ver la sombra de algo que no sabemos lo que es.

Todo el Universo conocido nos ofrece una ingente cantidad de objetos que se nos presentan en formas de estrellas y planetas, extensas nebulosas formadas por explosiones de supernovas y que dan lugar al nacimiento de nuevas estrellas, un sin fin de galaxias de múltiples formas y colores, extraños cuerpos que giran a velocidades inusitadas y que alumbran el espacio como si de un faro cósmico se tratara, y, objetos de enormes masas y densidades “infinitas” que no dejan escapar ni la luz que es atrapada por la fuerza de gravedad que generan.

 

Una galaxia espiral con estrellas y una espiral azul brillante - SeaArt AI

  Ya nos gustaría saber qué es todo lo que observamos en nuestro Universo

Sin embargo, todo eso, está formado por minúsculos e infinitesimales objetos que llamamos quarks y leptones, partículas elementales que se unen para formar toda esa materia que podemos ver y que llamamos Bariónica pudiendo ser detectada porque emite radiación. Al contrario ocurre con esa otra supuesta materia que llamamos oscura y que, al parecer, impregna todo el universo conocido, pero ni emite radiación ni sabemos a ciencia cierta de qué podrá estar formada, y, al mismo tiempo, existe una especie de energía presente también en todas partes de la que tampoco podemos explicar mucho.

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetro. En los sólidos y líquidos ordinarios los átomos están muy juntos. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

Isaac Asimov en uno de sus libros nos explicó que,  los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3. Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

 

 

Ese puntito blanco del centro de la Nebulosa planetaria, es mucho más denso que el osmio, es una enana blanca, y, sin embargo, no es lo más denso que en el Universo podemos encontrar. Cualquier estrella de neutrones es mucho más densa y, no hablemos de los agujeros negros, de su singularidad.

los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

 

Núcleo atómico - Wikipedia, la enciclopedia libre

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos al desnud0, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original. De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos  obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

 

Foto:

 

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero los núcleos atómicos se mueven de un lado a otro sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

Núcleo atómico y modos de decaimientoÁtomo (Qué es, Partes, Estructura, Características e Historia) -  Enciclopedia Significados

 

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho que todos los protones tienen carga eléctrica positiva y se repelen, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en adecuadas pueden estar juntos y empaquetados un número enorme de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

Estas estrellas se forman las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera tan increíble que se degeneran (como consecuencia de que son fermiones y están afectados por el principio de exclusión de Pauli) y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

Resultado de imagen de El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los MuchachosEl Gran Telescopio Canarias descubre el mayor cúmulo de galaxias del  universo primitivo

 

El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (La Palma), ha obtenido imágenes de una profundidad “sin precedentes” de una estrella de neutrones del magnetar, de las que se conocen pocos ejemplares. Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad!

 

 

Imagen captada por el telescopio Hubble de la galaxia NGC 3393. El núcleo de la galaxia, donde se encuentra la pareja de agujeros negros se ver encuadrado (NASA). Está claro que lo que se dice ver a los agujeros negros… Nadie los ha podido ver y, sólo hemos podido captar su presencia por los fenómenos que a su alrededor ocurren en la emisión inusual de radiación y el comportamiento de la materia circundante.

Poemos decir que objetos tan fascinantes éstos (estrellas enanas blancas, de neutrones y agujeros negros), son los que nos muestran estados de la materia más densos que hemos podido llegar a conocer y que se forjan en la propia Naturaleza mediante transiciones de fase que se producen mediante los mecanismos de las fuerzas que todo lo rigen. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿ cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envie luz y calor que la haga posible tal como la conocemos. Cuando agote su combustible nuclear de fusión, su vida se apagará y se convertirá en gigante roja primero y enana blanca después.

 

Científicos rusos y de la NASA registran alta radiación solar, ¿va a  explotar el Sol? | CC News

 

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: segundo tienen que fusionarse 4.654.600.000 toneladas de hidrógeno en 4.650.000 toneladas de helio  (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de energía que incide sobre la Tierra basta mantener toda la vida en nuestro planeta).

 

 

Los rayos del Sol que envían al planeta Tierra su luz y su calor para hacer posible la vida en un planeta maravilloso que es el habitats de millones de especies, unas más inteligentes que otras en relación al roll que, a cada una, le tocó desempañar en el escenario de este gran teatro que llamaos mundo.

Nadie diría que con consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

Para completar diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.

 

                     Este podría ser nuestro Sol en el pasado sólo era una protoestrella que se estaba formando

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654 mil toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha radiando hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más. Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

Por otra , el Sol no continuará radiando exactamente al mismo ritmo que . El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo. Cuando el Sol se convierta en gigante roja… Nosotros tendremos que haber podido buscar la manera de salir de la Tierra unicarnos en otros mundos, dado que, dicha fase del Sol, no permitirá la vida en nuestro planeta.

 

  Los planetas interiores serán engullidos por nuestro Sol y, la Tierra, quedará calcinada, sus océanos se evaporarán y toda la vida, desaparecerá.

Las estrellas, todo en nuestro universo, tienen un principio y un final. La que en la imagen de arriba podemos contemplar, ha llegado al final de su ciclo, y, agotado su combustible nuclear, quedará a merced de la fuerza de la Gravedad que la convertirá en un objeto distinto del que fue durante su larga vida. Dependiendo de su masa,  las estrellas se convierten en enanas blancas -el caso del Sol-, estrella de neutrones o Agujeros negros.

 

 

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a , estos dos bultos – de los cuales uno mira la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra. Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

 

 

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, periodos de rotación iguales, mucho menor.

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara el planeta Tierra.

Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.

 

 

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercano al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? Continuemos pues aprendiendo cosas nuevas.

 

La Entropía. – CosmoCentrismos (Informa)

Entropía del Universo

Abuelo con hijo y nieto Siéntese en el banco. | Foto Premium

Entropía de los seres humanos: Padre con su hijo y su nieto

 

En alguna ocasión dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo ser convertida en trabajo cuando    dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformidad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.

 

El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).

 

 

Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua realizar un trabajo porque crea energía . El agua sobre una superficie horizontal no puede realizar , aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.

Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún , por muy alta que sea aquella.

 

La Entropía. – CosmoCentrismos (Informa)

Nada es eterno, todo tiene un principio y un final. En los sistemas cerrados, la energía se va perdiendo con el transcurso del Tiempo. 

En realidad, la Entropía no debe resultarnos tan extraña como esa imagen de arriba, la Entropía está presente en nuestras vidas cotidianas y por todo el Universo, es algo que nació con el Tiempo al que acompaña y, cuando éste transcurre, aquella deja sentir sus efectos. Nos dice que nada es Eterno, que lo que nace muere, que todo cambia.

El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión. El Tiempo, podríamos decir que es el portador de una compañera que, como él mismo, es inexorable. La entropía lo cambia todo y, en un Sistema cerrado (pongamos el Universo), la entropía siempre crece mientras que la energía es vez menor. Todo se deteriora con el paso del tiempo.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters.

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters. De la misma manera, en el Universo, se producen transiciones de fase que desembocan en el deterioro de los objetos que lo pueblan. Nunca será lo mismo una estrella de 1ª generación que una de 3ª y, el material del que están compuestas las últimas serán más complejos y cada vez, tendrán menor posibilidad de convertirse en Nebulosas que sean capaces de crear nuevas estrellas.

Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.

 

      Considerado Sistema Cerrado, la Entropía no deja de aumentar en nuestro Universo a medida que el Tiempo transcurre

Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo. El estudio del flujo de energía puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y recibió el de “termodinámica”, que en griego significa “movimiento de calor”.

Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. regla es tan fundamental que se la denomina “primer principio de la termodinámica”. Sin embargo, cuando la entropía ataca, la energía quedar congelada e inservisble. La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no básica, y que denomina “segundo principio de la termodinámica.”

Según segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más , ni pueden producirse cambios.

¿Está degradándose el universo?

 

 

Bueno, todos sabemos que el Universo evoluciona y, como todo, con el paso del tiempo cambia. Lo que hoy es, mañana no será. Existe una pequeña ecuación:   S = k log W que, aunque pequeña y sencilla, es la mayor aportaciópn de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación el logaritmo es el siguiente: S es la entropía de un Sistema; W el de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión del micromundo y el macromundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física comocida como Mecánica Estadistica.

Pero esa, es otra historia.

Emilio Silvera V.

El enigma del Neutrón

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Decaimiento β de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón a la vez que emite un electrón-) y un antineutrino electrónico.

La desintegración Beta del neutrón está mediada por un Bosón W,que transforma uno de sus quarks, y se desintegra en el par electrón-antineutrino. Ahora leamos el reportaje de la Revista “Investigación y Ciencia”, referido a la física de partículas y a unas mediciones efectuadas que no son coincidentes.

“Dos técnicas de precisión arrojan valores distintos para el tiempo que tardan los neutrones en desintegrarse. ¿Se trata de un error experimental, o hay un misterio más profundo?

 

BILL MAYER

En síntesis

 

Neutrones Libres, ¿pueden “vivir” eternamente? | CIEN

Neutrones Libres, ¿pueden “vivir” eternamente?

Los neutrones pueden “permanecer” indefinidamente de manera estable en los núcleos pertenecientes a ciertos isótopos, con mayor probabilidad en aquellos de número atómico menor al del hierro (Z=26), aunque también pueden permanecer establemente en núcleos más pesados.

Sin embargo, cuando los neutrones son liberados a consecuencia ya sea de una reacción de fusión (como aquellas ocurridas en el sol, por ejemplo: H + H à He + n) o una de fisión en la Tierra, o de su separación desde un núcleo inducida por un muon (originado en un rayo cósmico golpeando la atmósfera), pueden suceder varias situaciones con él: i) una es que sea capturado por el núcleo de un isótopo y pase a formar parte del núcleo de otro isótopo estable del mismo elemento o compuesto químico (agua liviana a agua pesada, H20 a D20). ii) Otra es que la fisión libere neutrones, en cuyo caso puede repetirse cualquiera de las reacciones i), ii). Y la última iv) es que al menos un neutrón liberado no sea “capturado” en ninguno de los procesos descritos, de modo que pase a ser un “neutrón libre”.

 

Neutrón libre - Wikipedia, la enciclopedia libre

 

Un neutrón libre es un neutrón que existe fuera de un núcleo atómico. Mientras que los neutrones pueden ser estables cuando están unidos dentro de los núcleos, los neutrones libres son inestables y se desintegran con una vida media de 886 segundos, unos quince minutos.

Los neutrones libres no son estables: pasados unos 15 minutos, un neutrón se desintegra en un protón, un electrón y un antineutrino. Conocer con exactitud su vida media es clave para abordar varias cuestiones en física y cosmología.

Existen dos métodos para determinar con precisión la vida media de esta partícula. El primero cuenta los neutrones que quedan en un recipiente después de cierto tiempo; el segundo cuenta los protones generados en su desintegración.

Hace años que una y otra técnica arrojan valores considerablemente dispares. Se cree que la discrepancia obedece a errores sistemáticos en alguno de los experimentos; sin embargo, hasta ahora nadie ha logrado dar con ellos.

Así hemos podido desvelar el secreto de que como se dice antes y se ve en la imagen, el neutrón al desintegrarse sigue este camino:

 

{\displaystyle {\mbox{n}}\rightarrow {\mbox{p}}^{+}+{\mbox{e}}^{-}+{\bar {\nu }}_{\mbox{e}}}

14 6C → 14 7N + e

 

Este proceso ocurre espontáneamente en neutrones libres, en el transcurso de 885.7(8) s de vida media.

Neutrón-Estructura de Quarks.png

Un neutrón está formado por dos quarks dowm (abajo) y un quark up (arriba), tiene una vida media de 14,761 minutos, es una partícula de la familia de los hadrones en su vertiente bariónica, interacción: con la Gravedad, la nuclear débil y la nuclear fuerte, su símbolo es n, su antipartícula es el antineutrón, la teorizó Rutherford y la descubrió James Chadwick, su masa es de  1,674 927 29(28)×10−27 K., la carga eléctrica es cero, espín ½. Se conoce cuando forma parte del átomo por nucleón.

 

Por suerte para la vida en la Tierra, la mayor parte de la materia no es radiactiva. Aunque no solemos darle demasiada importancia, este hecho no deja de resultar sorprendente, ya que el neutrón (uno de los constituyentes, junto con el protón, de los núcleos atómicos) es propenso a desintegrarse. En el interior de un núcleo típico el neutrón puede vivir durante largo tiempo, pero, aislado, se desintegra en otras partículas en unos 15 minutos. Decimos «unos 15 minutos» para ocultar nuestra ignorancia al respecto, ya que, hasta ahora, no hemos sido capaces de medir con exactitud la vida media de esta partícula.

 

Nuevas medidas de la vida media del neutrón y de la carga débil del protón  - La Ciencia de la Mula Francis

Estructura de cuarks de un neutrón. Fuera del núcleo atómico, los neutrones son inestables, teniendo una vida media de 14.7 minutos (879,4 ± 0,6 s);​ cada neutrón libre se descompone en un electrón, un antineutrino electrónico y un protón. Su masa es muy similar a la del protón, aunque ligeramente mayor.

Resolver este «rompecabezas de la vida media del neutrón» no solo supone una cuestión de orgullo para nuestro gremio, el de los físicos experimentales, sino que resulta también vital para comprender mejor las leyes físicas. La desintegración del neutrón constituye uno de los procesos más sencillos en los que interviene la interacción débil, una de las cuatro fuerzas fundamentales de la naturaleza. Para entenderla por completo, hemos de saber cuánto tarda un neutrón aislado en desintegrarse. Por otro lado, la vida media del neutrón condicionó cómo se formaron los elementos químicos más ligeros después de la gran explosión que dio origen a nuestro universo. A los cosmólogos les gustaría poder calcular las abundancias esperadas de los distintos elementos y contrastarlas con los datos obtenidos por los astrofísicos. Un acuerdo apuntalaría nuestras teorías cosmológicas, mientras que una discrepancia indicaría la existencia de fenómenos físicos aún por descubrir. Pero, para poder llevar a cabo dicha comparación, hemos de conocer con exactitud cuánto vive un neutrón antes de desintegrarse.

Dibujo20130128 neutron lifetime through time from year 1960 until 2010

Hace más de diez años, dos grupos experimentales, uno en Francia y otro en EE.UU., intentaron medir con precisión la vida media del neutrón. Uno de nosotros (Geltenbort) pertenecía al primer equipo, mientras que el otro (Greene) trabajaba en el segundo. Con sorpresa y cierta inquietud, comprobamos que nuestros resultados diferían de manera considerable. Algunos teóricos sugirieron que la discrepancia podría deberse a fenómenos físicos exóticos, como que parte de los neutrones se hubiesen desintegrado en partículas nunca antes observadas. Nosotros, sin embargo, achacamos la diferencia a una razón mucho más mundana: uno de los grupos —o ambos— tenía que haber cometido algún error o sobreestimado la precisión de sus resultados.

Hace poco, el equipo estadounidense completó un largo y concienzudo proyecto para estudiar la principal fuente de error que afectaba a sus mediciones. Lejos de zanjar la cuestión, sus esfuerzos solo confirmaron los resultados previos. Al mismo tiempo, otros investigadores verificaron los resultados del grupo de Geltenbort. Esta discrepancia nos ha dejado más perplejos de lo que ya estábamos, pero no hemos abandonado. Por el momento, ambos equipos y otros físicos experimentales seguimos buscando una respuesta.

CRONOMETRAR NEUTRONES

Dibujo20130128 neutron lifetime weighted average - particle data group 2012

El neutrón y el protón forman los núcleos de los átomos; el protón es estable (su vida media es superior a 10³² años, según PDG 2012), pero el neutrón es inestable (vía la interacción electrodébil se desintegra en un protón) y aislado su vida media es de solo 880,1 ± 1,1 segundos (14 minutos y 40,1 segundos)

En teoría, determinar la vida media del neutrón es sencillo. Entendemos bien la física del proceso y disponemos de las herramientas adecuadas para estudiarlo. Sabemos que, siempre que una partícula pueda desintegrarse en otras de menor masa, acabará haciéndolo si en el proceso se conservan ciertas propiedades, como la carga eléctrica o el espín. En la llamada desintegración beta, un neutrón se transforma en un protón, un electrón y un antineutrino. Las masas de estas tres partículas suman algo menos que la masa del neutrón, pero la carga y el espín totales permanecen idénticos. Entre las cantidades conservadas se incluye la suma de masa y energía, por lo que las tres partículas finales incorporan esa pequeña diferencia de masa en forma de energía cinética.”

Nota: El artículo me ha sido enviado por Don José Gómez, un contertulio y visitante de ésta página que, con buen criterio, apunta que en cuanto a esas diferencias, las pruebas deben ser repetidas en distintos lugares y, si es posible, por distintos científicos también, ya que, en física de partícula, los resultados de un experimento, debe coincidir sin fisuras.

¿Qué será la materia?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « Higgs? ¡Si existen!

 

En primaria, nos decían que estaba en tres estados. Se profundizaba poco más y, el desconocimiento de la materia era grande: Sólido, Líquido y Gaseoso, esa era toda la explicación que sobre la materia nos daban.

Qué es el estado PLASMA de la materia - para niños

 

En este estado la materia, muy poco densa, no tiene ni forma ni volumen fijo. Plasma: Es un estado parecido al gas, pero compuesto por átomos ionizados, donde los electrones circulan libremente. Calentando un gas se puede obtener plasma.

 

El condensado de Bose-Einstein — IV | Cuentos Cuánticos

En física, condensado de Bose-Einstein es el estado de la materia que se da en ciertos materiales a temperaturas cercanas a 0 K (cero absoluto).​ La propiedad que lo caracteriza es que una cantidad macroscópica de las partículas del material pasan al nivel de mínima energía, denominado estado fundamental.

La Física nos habla de otros estados de la materia:

  • lido. Los objetos en estado sólido se presentan de forma definida, es decir, normalmente su forma no cambia, no es posible alterarla sin aplicar una gran fuerza o cambiar el estado del objeto en cuestión. …
  • Líquido. …
  • Gas. …
  • Plasma. …
  • Condensado de Bose-Einstein. …
  • Condensado de Fermi. …
  • Super-sólido. …
  • Super-cristal.

El nuevo misterio de la materia oscura es su ausencia: detectan una galaxia que parece estar libre de ella y los científicos no se lo explican

 

 

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos.

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.

 

 

 

Maravillas como el proceso triple Alfa nos hace pensar que la materia está viva. La radiación ha sido muy bien estudiada y hoy se conocen sus secretos. Sin embargo,  son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

 El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lepto que significa “delgado”).

 

             El electrón es onda y partícula

 

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

Joseph John Thomson - Wikipedia, la enciclopedia libre

            Joseph John Thomson

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

 

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lepto que significa “delgado”).

 

Átomos

                Primeras imágenes de átomos en movimiento en una molécula

Investigadores de la Universidad Estatal de Ohio (Estados Unidos), han registrado, utilizando una nueva cámara ultrarrápida, la primera imagen en tiempo real de dos átomos vibrando en una molécula. La clave del experimento, que ha sido publicado en la revista ‘Nature’, fue la utilización de la energía del propio electrón de una molécula.

 

CAPTAN COMO UN ELECTRON SALTA DE UN ATOMO A OTRO – UNIVERSITAM

CAPTAN COMO UN ELECTRON SALTA DE UN ATOMO A OTRO

 Un equipo de siete científicos suecos de la Facultad de Ingeniería de la Universidad de Lund consiguieron captar en vídeo por primera vez el movimiento o la distribución energética de un electrón sobre una onda de luz, tras ser desprendido previamente del átomo correspondiente.

Previamente dos físicos de la Universidad Brown habían mostrado películas de electrones que se movían a través de helio líquido en el International Symposium on Quantum Fluids and Solids del 2006. Dichas imágenes, que mostraban puntos de luz que bajaban por la pantalla fueron publicadas en línea el 31 de mayo de 2007, en el Journal of Low Temperature Physics.

En el experimento que ahora nos ocupa y dada la altísima velocidad de los electrones el equipo de investigadores ha tenido que usar una nueva tecnología que genera pulsos cortos de láser de luz intensa (“Attoseconds Pulses”), habida cuenta que un attosegundo equivalente a la trillonésima parte de un segundo”.)

 

Las mejores 19 ideas de Los bebés más hermosos del mundo | fotos niños,  caras de niños, niños del mundo

¿Cuánto te puede hacer sentir? ¿No es lo más grande de tu vida?

¡No por pequeño, se es insignificante! Recordémoslo, todo lo grande está hecho de cosas pequeñas. Las inmensas galaxias son el conjunto de muchos pequeños átomos unidos para formar moléculas que a su vez se juntan y forman cuerpos. Los océanos de la Tierra, las montañas de Marte, los lagos de metano de Titán, los hielos de Europa… ¡Todo está hecho de materia bariónica! Es decir, son pequeños Quarks y Leptones que conforman los átomos de lo que todo está hecho en nuestro Universo. Bueno, al menos todo lo que podemos ver.

 

Por qué hay 6 tipos de quarks?

La familia Quarks: Tan pequeños y tan importantes

Uno de los enigmas más grandes de la física de partículas a día de hoy es por qué existen tres generaciones de partículas, tres copias idénticas pero de masa muy superior de las partículas que conforman toda la materia que observamos en el universo.

Un “simple” átomo está conformado de una manera muy compleja. Por ejemplo, un protón está hecho de tres quarks: 2 up y 1 down. Mientras tanto, un neutrón está constituido de 2 quarks down y 1 quark up. Los protones y neutrones son hadrones de la rama barión, es decir, que emiten radiación. También son fermiones y, debido a su función en el átomo, se les suele llamar nucleones. Dichos quarks existen confinados dentro de los protones y neutrones inmersos en una especie de pegamento gelatinoso formado por unas partículas de la familia de los Bosones que se llaman Gluones y son los transmisores de la Fuerza nuclear fuerte. Es decir, si los quarks se quieren separar son atrapados por esa fuerza que los retiene allí confinados.

Un "príncipe" de la física, Louis de Broglie, sobre el valor de la ciencia.  - Fundación Novia Salcedo. empleo, emprendizaje, futuro.

Louis de Broglie

Estudiar el “universo” de las partículas subatómicas es fascinante y se pueden llegar a entender las maravillas que nos muestra la mecánica cuántica, ese extraño mundo que nada tiene que ver con el nuestro cotidiano situado en el macromundo. En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones.)

 

 

Imagen ilustrativa de la dualidad onda-partícula, en el cual se puede ver cómo un mismo fenómeno puede tener dos percepciones distintas. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”. Recientemente he podido leer que unos científicos han logrado (de alguna manera) “congelelar” la luz y hacerla sólida. Cuando recabe más información os lo contaré con todo detalle. El fotón, el cuanto de luz, es en sí mismo una maravilla.

El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín).  La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.

 

 

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

 

Dibujo20090715_graviton_cartoon_(C)_animaginator

El Gravitón se ríe de nosotros que no sabemos encontrarlo. ¿Qué Bosón tan guasón!

El gravitón parece estar riéndose de todos y no se deja ver. El gravitón es la partícula elemental responsable de la fuerza de la gravedad. Todavía no ha sido descubierto experimentalmente. Teóricamente debería tener masa en reposo nula. ¿Qué límites para la masa del gravitón ofrece el fondo cósmico de microondas? El gravitón es la partícula elemental responsable de la “versión” cuántica de gravedad. No ha sido descubierto aún, aunque pocos dudan de su existencia. ¿Qué propiedades tiene? Debe ser un bosón de espín 2 y como la gravedad parece ser una fuerza de largo alcance, debe tener masa en reposo muy pequeña (billones de veces más pequeña que la del electrón), posiblemente es exactamente cero (igual que parecer ser la del fotón).

 

A Madman Dreams of Tuning Machines: The Story of Joseph Weber, the Tragic  Hero of Science Who Followed Einstein's Vision and Pioneered the Sound of  Spacetime – The Marginalian

 

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm., de longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

 

News | Gravitational waves from a binary black hole merger observed by LIGO  and Virgo | LIGO Lab | CaltechLIGO y Virgo reanudan la caza de nuevas ondas gravitacionalesLIGO (Laser Interferometric Gravitational-wave Observatory) - eoPortal

Finalmente lo consiguieron

  Para detectar ondas gravitacionales necesitamos instrumentos extremadamente precisos que puedan medir distancias en escalas diminutas. Una onda gravitacional afecta longitudes en escalas de una millonésima de billonésima de metro, así que ¡necesitamos un instrumento que sea lo suficientemente sensible para “ver” a esas escalas! Parece que al fín, LIGO y otros lo han conseguido.

 

 

El interferómetro funciona enviando un haz de luz que se separa en dos haces; éstos se envían en direcciones diferentes a unos espejos donde se reflejan de regreso, entonces los haces al combinarse presentarán interferencia.

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es 0, su carga es 0, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

 

Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- NASA

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones. Algunos proyectos como LIGO, están a la caza de esas ondas gravitatotias y, los expertos dicen que, cuando podamos leer sus mensajes, se presentará ante nosotros todo un nuevo universo que aíun no conocemos. Ahora, todo lo que captamos, las galaxias y estrellas lejanas, son gracias a la luz que viaja desde miles de millones de años luz hasta nosotros, los telescopios la captan y nos muestran esas imágenes de objetos lejanos pero, ¿qué veremos cuando sepamos captar esas ondas gravitatorias que viajan por el Espacio a la velocidad de la luz como los fotones y, son el resultado del choque de galaxias, de agujeros negros y de estrellas de neutrones?

 

La fusión de dos estrellas de neutrones abre una nueva ventana al universo

El choque de dos estrellas de neutrones producen ondas gravitatorias

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.

 

 

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e in-eliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven. Hace un par de días que hablamos de ello.

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultra-alto.

 

 

El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra a aproximadamente 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no sorprende a la comunidad de astrónomos y cosmólogos, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes. Claro que, según creo yo personalmente, ese vacío, finalmente, resultará que está demasiado lleno, hasta el punto de que su contenido nos manda mensajes que, aunque lo hemos captado, no lo sabemos descifrar.

No puedo dejar de referirme al vaciotheta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs). En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados.  Esto significa que el vacío theta es análogo a una fundón de Bloch en un cristal.

 

Instantones

 

 

Se puede derivar tanto como un resultado general o bien usando técnicas de instantón.  Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido. Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.

 

Emilio Silvera V.

 

¿Dónde están las respuestas?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Einstein y las cosas que decía »

René Descartes, filósofo, matemático y físico  francés, considerado el padre de la filosofía moderna, así como uno de los nombres más destacados de la revolución científica. El método científico ( del latín scientia = conocimiento; camino hacia el conocimiento) es un método de investigación usado principalmente en la producción de conocimiento en las ciencias. Para ser llamado científico, un método de investigación debe basarse en la empírica y en la medición, sujeto a los principios específicos de las pruebas de razonamiento.  El método científico es: «un método o procedimiento que ha caracterizado a la ciencia natural desde el siglo XVII, que consiste en la observación sistemática, medición, experimentación, la formulación, análisis y modificación de las hipótesis»
El método científico está sustentado por dos pilares fundamentales. El primero de ellos es la reproducibilidad, es decir, la capacidad de repetir un determinado experimento, en cualquier lugar y por cualquier persona. Este pilar se basa, esencialmente, en la comunicación y publicidad de los resultados obtenidos (por ej. en forma de artículo científico). El segundo pilar es la refutabilidad. Es decir, que toda proposición científica tiene que ser susceptible de ser falsada o refutada. Esto implica que se podrían diseñar experimentos, que en el caso de dar resultados distintos a los predichos, negarían la hipótesis puesta a prueba.

 

¡Son posibles tantas cosas!

Algunos quieren encontrar las respuestas en la religión (que si ha sido escogida voluntariamente… ¡bien está!). Pero, como todos sabemos, es cosa de fe. Creer en aquello que no podemos ver ni comprobar no es precisamente el camino de la ciencia que empieza por imaginar, después conjeturar, más tarde teorizar, se comprueba una y mil veces la teoría aceptada a medias y sólo cuando todo está amarrado y bien atado, todas esas fases pasan a la categoría de una ley o norma que se utiliza para continuar investigando en la buena dirección. Einstein solía decir: “La religión sin Ciencia es ciega.”

Otros han sido partidarios de la teoría del caos y argumentan que a medida que el nivel de complejidad de un sistema aumenta, entran en juego nuevos tipos de leyes. Entender el comportamiento de un electrón o un quark es una cosa; utilizar este conocimiento para comprender el comportamiento de un tornado es otra muy distinta. La mayoría está de acuerdo con este aspecto. Sin embargo, las opiniones divergen con respecto a si los fenómenos diversos y a veces inesperados que pueden darse en sistemas más complejos que las partículas individuales son realmente representativos del funcionamiento de los nuevos principios de la física, o si los principios implicados son algo derivado y están basados, aunque sea de un modo terriblemente complicado, en los principios físicos que gobiernan el ingente número de componentes elementales del universo.

 

“La teoría del todo o teoría unificada fue el sueño incumplido de Einstein. A este empeñó dedicó con pasíón los últimos 30 años de su vida. No lo logró, y hoy continúa sin descubrirse. Consiste en una teoría definitiva, una ecuación única que dé respuesta a todas las preguntas fundamentales del Universo. Claro que, Einstein no sabía que las matemáticas para plasmar esa Teoría mágica… ¡No se habían inventado en su tiempo ni tampoco en el nuestro!

La teoría del todo debe explicar todas la fuerzas de la Naturaleza, y todas las características de la energía y la materia. Debe resolver la cuestión cosmológica, es decir, dar una explicación convincente al origen del Universo. Debe unificar relatividad y cuántica, algo hasta ahora no conseguido. Y además, debe integrar otros universos en caso de que los haya. No parece tarea fácil. Ni siquiera se sabe si existe una teoría del todo en la Naturaleza. Y, en caso de que exista, si es accesible a nuestro entendimiento y a nuestras limitaciones tecnológicas para descubrirla.”

 

La ecuación E=mc² de Albert Einstein le dio forma a todo el siglo XX":  Christophe Galfard, discípulo de Stephen Hawking - BBC News Mundo

Hace ya muchos años, estando en Nueva York, paseaba por la 5ª Avenida y, me llamó la atención un escaparate en el que la gente, se arremolinaba. ¿Qué trataban de ver? Curioso me acerqué, y, asombrado ví que miraban las últimas ecuaciones de Einstein de la Teoría del Todo. Nadie entendía nada pero, se pegaban por verlas.

Einstein se pasó los últimos treinta años de su vida en la búsqueda de esa teoría que nunca pudo encontrar. En los escaparates de la 5ª Avenida de Nueva York, exponían sus ecuaciones y la gente, sin entender lo que veían, se arremolinaban ante el cristal para verlas.

 

La nueva teoría del todo que unifica la gravedad y la mecánica cuántica

 

Casi todo el mundo está de acuerdo en que el hallazgo de la Gran Teoría Unificada (teoría del Todo), no significaría de modo alguno que la psicología, la biología, la geología, la química, y también la física, hubieran resuelto todos sus problemas.

El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que esta planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas.  Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.

 

El sueño de una teoría final: La búsqueda de las leyes fundamentales de la  naturaleza (Booket Ciencia) : Weinberg, Steven, García Sanz, José Javier:  Amazon.es: Libros

La búsqueda de esa teoría final que nos diga cómo es el universo, el tiempo y el espacio, la materia y los elementos que la conforman, las fuerzas fundamentales que interaccionan, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que ha realizado durante los últimos décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado.

Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.

 

La física cuántica y el largo camino para entenderla | OpenMind

 

El Universo de lo muy grande y el de lo muy pequeño… ¡Es el mismo universo! Simplemente se trata de mirar en distintos ámbitos del saber, y, la importancia de las medidas… ¡también es relatividad! Porque, ¿podríamos valorar la importancia de los electrones. La existencia de los fotones,  o, simplemente la masa del protón? Si alguno de esos objetos fuese distinto, el Universo también lo sería.

La armoniosa combinación de la relatividad general y la mecánica cuántica es un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza.

 

Resultado de imagen de El fascinante marco de la teoría de cuerdas

 

Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.

Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo.

 

 

Espacio-tiempo curvo y los secretos del Universo : Blog de Emilio Silvera V.

“El espacio-tiempo es una estructura suave, al menos así lo sugiere un nuevo estudio, anotando una posible victoria para Einstein sobre los teóricos cuánticos que vinieron después de él.”

Accede al artículo original espacioprofundo.es/2013/01/11/einstein-tenia-razon-el-espacio-tiempo-es-una-estructura-suave/ © Espacio Profundo

 

Cómo explica la teoría de cuerdas el fenómeno de la gravedad?

¿Dónde estarán las cuerdas vibrantes? Dicen que se necesita una energía de 1019 GeV para poder verificarlas, y, esa energía corresponde al momento de la creación no disponemos de ella.

Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impedía ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar.

La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble belleza y de logros y avances tecnológicos que ahora ni podemos imaginar.

 

Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.

Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.

El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino revelador de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.

 

 

El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividad general y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch que, según parece, nunca será un hecho y, el universo, tendrá una “muerte” térmica, es decir, cuando el alejamiento de las galaxias lo haga más grande, más oscuro y más frío. En el cero absoluto de los -273 ºC, ni los átomos se moverán.

Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.

Pero… ¿somos en verdad tan insignificantes. 

Claro que, tampoco debemos tomar a pie juntillas todo lo que digamos.

Emilio Silvera V.