miércoles, 13 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Divulgar las ideas de un amigo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

30 de agosto de 2024
Mensaje Nazca para:
Maestra María Auxiliadora Sánchez Fernández
Coordinación de Extensión Universitaria
Universidad Nacional Autónoma de México
PRESENTE

 

Cómo son las relaciones entre Rusia y Corea del Norte?El fortalecimiento de las relaciones entre China y Corea del Norte | Observatorio de Política China [OPCh]

 

Actualmente, los líderes de nuestra civilización preparan escenarios para desencadenar en cualquier momento una Tercera Guerra Mundial. Desafortunadamente, todavía en sus mentes no encuentran alguna solución plausible para evitarla, no hay duda de que este Mensaje Nazca puede aportar ideas necesarias para lograrlo.

 

Las Líneas de Nazca - Picchu Travel

Este Mensaje Nazca, que se deriva de las Figuras de Nazca del Perú, se presenta en forma de un documental en video de dos horas de duración. Este video que se presentará oportunamente se produjo en julio de 2001, tiempo después de haberse
descubierto la información correspondiente en el año de 1991. El autor considera que es un crimen hacia la humanidad detener más tiempo su divulgación mundial. Dicho mensaje, se está dando a conocer por primera vez a los seres humanos de
este planeta, aquí, en la Universidad Nacional Autónoma de México.

 

 

 OCCIDENTE en alerta ante las alianzas de CHINA, RUSIA, IRÁN Y COREA DEL NORTE

En nombre de nuestra sociedad mundial, pido el apoyo a esta iniciativa, para tratar de impedir que en futuro plazo se dé la destrucción de gran parte de la humanidad. Se sabe ampliamente que Rusia, China, Corea del Norte e Irán, principalmente, ya se coordinan militarmente para combatir a los países miembros de la OTAN, quienes, en consecuencia, también hacen lo mismo. Ninguno de ellos descarta el uso de armas nucleares, con tal de “anotarse triunfos”, lo cual, a ojos vistas, es una
falacia, pues se trata de una autodestrucción masiva.

Salvo mejores opiniones científicas, hemos encontrado que, aun sin importar el origen de su autoría, el contenido del mensaje Nazca es psicológicamente aplicable y replicable por el ser humano para que evite su propia autodestrucción.

Igualmente podríamos tener la posibilidad de construir una sociedad económica global, caracterizada por tener en sus reglas marcas de armonía con paz cotidiana, dinámica e intercambiable, propias y necesarias en un mundo de paz.

 

UMAN

Se agradecerá que, dentro de las posibilidades que la UNAM tiene y ofrece como función sustantiva a la sociedad mexicana a través de la Coordinación de Extensión Universitaria, se dé el estudio y divulgación del Mensaje Nazca que corresponda.
Atentamente:

José Germán Vidal Palencia

Escritor e Investigador Independiente (1 de 2)

OTROS ARTÍCULOS DEL AUTOR
Inteligencia extrema, herramienta de usar y guardar
(*) Física Global (en Amazon)
Monopolos gravitacionales
Física del Todo
Agujeros negros
(*) Electrón, Protón, origen descubierto
(*) El Universo, cometa lleno de galaxias
Alerta de calentamiento global
Fisioterapia Respiratoria vs Covid 19

Todas estas obras se encuentran en internet la mayoría en el Blog de Emilio Silvera Vázquez

Autor:
José Germán Vidal Palencia
Profesor experto en tecnología electrónica
Escritor e Investigador Independiente
vidalgerman100@gmail.com
Domicilio Particular
Oriente 237 No. 111 Int.2
Col. Agrícola Oriental
Alcaldía Iztacalco
C.P. 08500
Ciudad de México

(2 de 2)

El Universo asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Esa inmensidad que llamamos Universo… ¡Nunca lo podremos conocer al completo!

¿Las estrellas? ¡Sin ellas no estaríamos aquí!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

 

 

Un desahogo
Bueno, perdonad, no sigue igual sino que sigue… ¡Muchísimo peor! ¿Qué C… le pasa a la gente?
Vayamos con el trabajo.

La región de formación estelar S106

Es cierto que cuando vemos las cosas con cierta asiduidad y de forma permanente, esa cotidianidad nos hace perder la perspectiva y no pensamos en lo que realmente esas cosas pueden ser y, con las estrellas nos ocurre algo similar, ya que son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminoso que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

 

2018 febrero 02 : Blog de Emilio Silvera V.

 

Muchos son los ejemplos de estrellas masivas (más de 100 masas solares) que, para no morir, eyectan material al espacio interestelar y siguen viviendo.

Estrellas masivas que expulsan gases, ya que, cuando la masa es muy grande, su propia radiación las puede destruir y, de esta manera, descongestionan la tensión y evitan un final anticipado. Arriba tenéis una estrella super-masiva que ha expulsado gases formando una nebulosa para evitar su muerte, Eta Carinae ha hecho lo mismo. Estas son estrellas que están congestionadas y, sólo la expulsión de material la puede aliviar y conseguir que siga brillando como estrella evitando explotar como supernova.

Se calcula que la masa máxima de una estrella es de unas 120 masas solares, por encima de la cual sería destruida por su propia radiación. La masa mínima es de 0,08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno, y se convertirían en enanas marrones.

 

 

De la misma forma que al calentar una pieza de metal cambia de color, al principio rojo, luego amarillo hasta llegar al blanco, el color de una estrella varia según su temperatura superficial. Las estrellas más frías son las rojas, y las mas calientes las azules. Estos colores suelen percibirse a simple vista, como por ejemplo Antares (la estrella principal de Scorpius) que es de color rojo, o Rigel (en Orión) de color azul. En astronomía se utiliza la escala Kelvin para indicar temperaturas, donde el cero absoluto es -273 grados Celsius.

 

 

El diagrama de Hertzsprung-Russell proporcionó a los astrónomos un registro congelado de la evolución de las estrellas, el equivalente astrofísico del registro fósil que los geólogos estudian en los estratos rocosos. Presumiblemente, las estrellas evolucionan de algún modo, pasan la mayor parte de su tiempo en la serie principal (la mayoría de las estrellas en la actualidad, en el brevísimo tiempo que tenemos para observar, se encuentran allí), pero empiezan y terminan su vida en alguna otra parte, entre las ramas o en el mantillo. Por supuesto, no podemos esperar para ver que esto sucede, pues el tiempo de vida, aún de estrellas de vida corta, se mide en millones de años. Hallar la respuesta exigirá conocer la física del funcionamiento estelar.

El progreso en física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como la Barrera de Coulomb, y por un tiempo frustró los esfuerzos de los físicos teóricos para comprender cómo la fusión nuclear podía producir energía en las estrellas.

 

Coulomb Barrier for Nuclear FusionLas estrellas? Sin ellas no estaríamos aquí : Blog de Emilio Silvera V.

 

“La barrera de Coulomb, denominado a partir de la ley de Coulomb, nombrada así del físico Charles-Augustin de Coulomb (1736–1806), es la barrera de energía debida a la interacción electrostática que el núcleo atómico debe superar para experimentar una reacción nuclear. Esta barrera de energía es proporcionada por la energía potencial electrostática:

 

U_{coul} = k {{q_1\,q_2} \over r}={1 \over {4 \pi \e<a href=

donde:

k  es la constante de Coulomb = 8.9876×109 N m² C−2;
ε0  es la permeabilidad en el vacío;
q1q2  son las cargas de las partículas que interactúan;
r  es el radio de interacción.”

Un valor positivo de U es debido a una fuerza de repulsión, así que las partículas que interactúan están a mayores niveles de energía cuando se acercan. Un valor negativo de la energía potencial U indica un estado de ligadura, debido a una fuerza atractiva. La línea de razonamiento que conducía a esta barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de hidrógeno consiste en un sólo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford explicados aquí en otra ocasión). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno.

 

Ráfagas de partículas subatómicas disparadas desde el sistema estelar de Eta Carinae y capaces de alcanzar la Tierra | Noticias de la Ciencia y la Tecnología (Amazings® / NCYT®)Cadena protón-protón - Proton–proton chain - qaz.wiki

 

(Recordemos que la masa es igual a la Energía: E = mc2. (En el calor de una estrella los protones son esparcidos a altas velocidades -el calor significa que las partículas involucradas se mueven rápidamente- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben de tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. esta era la base de conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra cosa que energía subatómica, la cual, como se sabe, existe en abundancia en toda la materia”.

 

Las estrellas! : Blog de Emilio Silvera V.

 

Fusión de deuterio con tritio,  por la cual se producen helio 4,   se liberan un neutrón y se generan 17,59 MeV de energía, como cantidad de masa apropiada convertida de la energía cinética de los productos, según la fórmula E = Δm c2.

Hasta ese punto, todo iba bien, la ciencia estaba cerca de identificar la fusión termonuclear como el secreto de la energía solar. Pero aquí era donde intervenía la Barrera de Coulomb. Los protones están cargados positivamente; las partículas de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande  para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del centro de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromágnéticos y fundirse en un sólo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con su rostro radiante y sonriente al ver el esfuerzo y las ecuaciones que decían que no podía brillar.

 

tunnel

Dejemos aquí este proceso y digamos que, realmente, la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando la atravesará. Este es el “Efecto Túnel Cuántico”; que permite brillar a las estrellas. George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb, o casi. El efecto túnel cuántico se hizo cargo de los cálculos de la desalentadora predicción clásica, que establecía la fusión de los protones a sólo una milésima de la tasa necesaria para explicar la energía liberada por el Sol, y la elevó a una décima de la tasa necesaria. Luego se tardó menos de un año para dar cuenta del deficít restante: la solución fue completada en 1929, cuando Robert Atkinson y Fritz Houterman combinaron los hallazgos de Gamow con lo que se ha llamado teoría maxwelliana de la distribución de velocidades. En la distribución maxwelliana hay siempre unas pocas partículas que se mueven mucho más rápidamente que la media y, Robert Atkinson y Fritz Houterman hallaron que estas pocas partículas veloces bastqaban para compensar la diferencia. Finalmente se hizo claro como podía romperse la Barrera de Coulomb suficientemente a menudo para que la fusión nuclear se produjese en las estrellas.

 

Physicist Hans Bethe

Pero la figura clave en todos estos desarrollos fue Hans Bhete, un refugiado de la Alemania nazi que había estudiado con Fermi en Roma y fue a enseñar en Cornell en EE. UU. Como su amigo Gamow, el joven Bhete era un pensador efervescente y vivaz, con tanto talento que parecía hacer su trabajo como si de un juego se tratara. Aunque no preparado en Astronomía, Bhete era un estudioso de legendaria rapidez. En 1938 ayudó al discípulo de Gamow y Edward Teller, C.L. Critchfield, a calcular una reacción que empezase con la colisión de dos protones podía generar aproximadamente la energía irradiada por el Sol, 3,86 x 1033 ergios por segundo. Así, en un lapso de menos de cuarenta años, la humanidad había progresado de la ignorancia de la existencia misma de los átomos a la comprensión del proceso de fusión termonuclear primaria que suministra energía al Sol.

Pero la reacción protónprotón no era bastante energética para explicar la luminosidad muy superior de estrellas mucho más grandes que el Sol, estrellas como las supergigantes azules de las Pléyades, que ocupan las regiones más altas del diagrama de Herptzsprung-Russell. Bhete puso remedio a esto antes de que terminase aquel el año 1938.

 

George Gamow Edward Teller

    George Gamow          Edward Reller

En abril de 1938, Bhete asistió a una conferencia organizada por  Gamow y Teller que tenía el objeto de que físicos y astrónomos trabajaran juntos en la cuestión de la generación de energía en las estrellas. “Allí, los astrofísicos nos dijeron a los físicos todo que sabían sobre la constitución interna de las estrellas -recordoba Bhete-. esto era mucho (aunque) habían obtenido todos los resultados sin conocimiento de la fuente específica de energía.” De vuelta a Cornell, Bhete abordó el problema con celeridad y, en cuestión de semanas logró identificar el ciclo del Carbono, la reacción de fusión crítica que da energía a las estrellas que tiene más de una vez y media la masa del Sol.

Bhete que estaba falto de dinero, retiró el artículo que escribió sobre sus hallazgos y que ya tenía entregado en la Revista Physical Review, para entregarlo en un Concurso postulado por la Academia de Ciencias de Nueva York  sobre la producción de energía en las estrellas. Por supuesto, Bhete ganó el primer Premio uy se llevó los 500 dolares que le sirvieron para que su madre pudiera emigrar a EE UU. Después lo volvió a llevar a la Revista que lo publicó y, finalmente, se lo publicaron y tal publicación le hizo ganar el Nobel. Por un tiempo, Bhete había sido el único humano que sabía por qué brillan las estrellas.

 

 

Cuando miramos al cielo y podemos contemplar extasiados esas maravillas que ahí arriba, en el espacio interestelar están brillando, y, nos da la sensación de que están haciéndonos guiños, como si quisieran mandarnos un mensaje, decirnos algo y nosotros, no pensamos en todo lo que ahí, en esos “puntitos brillantes” se está fraguando. De lo que allí ocurre, depende que los mundos tengan los materiales que en ellos están presentes y, de entre esos materiales, se destacan aquellos que por su química biológica, permiten que se pueda formar la vida a partir de unos elementos que se hicieron en los hornos nucleares de las estrellas.

Proceso triple-alfa

               El Proceso Triple Alfa

 

 

Cinturón de Orión - Wikipedia, la enciclopedia libre

El cinturón de Orión, también llamado en algunos países hispanos “los tres reyes magos” o “las tres Marías”, es un conjunto estacionario de estrellas (asterismo) que forma parte de la constelación de Orión, y que está formado por tres estrellas específicas: AlnitakAlnilam y Mintaka.

Y sí, es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

Es un gran triunfo del ingenio humano el saber de qué, están estructuradas las estrellas y qué materiales se están forjando allí, al inmenso calor de sus núcleos. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir:

“Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”.

El hombre se vistió de gloria con la (desde entonces) famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.

1814. Fraunhofer y las líneas oscuras del Sol | Ciencia | elmundo.esilumtec: newsletter

Poco tiempo después, llegó ohan Franhufer  con sus líneas espectrales y echó al traste aquellas palabras

A nuestro planeta sólo llega una ínfima fracción del calor que se genera en el Sol y, sin embargo, es más que suficiente para mantener aquí la vida. El Sol tiene materia que supone la misma que tendrían 300.000 Tierras. Nuestra estrella madre está situada a una UA (150 millones de kilómetros de nosotros) y, todas esas circunstancias y otras muchas, hacen que todo sea tal como lo vemos a nuestro alrededor. Si cualquiera de esos parámetros fuera diferente o variara tan sólo unas fracciones, seguramente la Tierra sería un planeta muerto y, nosotros, no estaríamos aquí. Sin embargo… ¡Estamos! y, gracias a ello, se pueden producir descubrimientos como los que más arriba hemos relatado y han podido y pueden existir personajes de cuyas mentes surgen ideas creadoras que nos llevan a saber cómo son las cosas.

Lo cierto es que, cada día sabemos mejor como funciona ma Naturaleza que, al fin y al cabo, es la que tiene todas las respuestas que necesitamos conocer.

Emilio Silvera V.

Todo está relacionado… De una u otra manera

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Desde que la Ciencia moderna puede recordar, la conjetura de un universo continuo ha sido una verdad más que evidente e irrefutable. La materia, la energía y también el espacio-tiempo han sido así considerados y, sin embargo, llegaron nuevos descubrimientos que nos llevaron a saber, que todo, en el universo está cuantizado y, andamos a la búsqueda de saber, si también lo está el espacio-tiempo.
El espacio-tiempo podría ser un fenómeno cuánticoEl tiempo se diluye en el universo cuántico • Tendencias21
Si nos trasladamos al ámbito de la mecánica cuántica, todo allí parece diferente y resulta estar cuantizado, la energía se emite en pequeños paquetes que se llaman cuantos y de ahí, el nombre de ésta teoría tan extraña que nos habla de lo que pasa en los pequeños ámbitos del universo.
La Teoría de la Relatividad: Las escalas de PlanckEl Higgs, el universo líquido y el Gran Colisionador de Hadrones
Hay una combianción de c, G y h (las constantes universales que además dan los regímenes relativistas, gravitatorios y cuánticos) que tiene dimensiones de longitud. A esta longitud se la denomina longitud de Planck. Sin embargo, no es cierto que eso implique que el espacio-tiempo sea discreto en esencia, lo que implica es que no podemos medir distancias por debajo de esta longitud. Por lo tanto, no es que el espacio-tiempo sea discreto por la existencia de esta longitud de Planck.
Todos hemos repasado algunas veces, más o menos a fondo, la Teoría de la Relatividad General que nos dice que, las propiedades geométricas del espacio no son, ni están conformadas de una manera aleatoria, sino que, por el contrario, están sujetas y están condicionadas por la materia. Así, hablar de la estructura del Universo sin tener en cuenta esta premisa que nos lleva a considerar que, la geometría del universo viene dada por la materia que contiene, sería infundado y no ajustado a los conocimientos que actualmente tenemos. Hay que conocer el estado de la materia y las conformaciones -grandes y pequeñas estructuras que conforman en nuestro universo-, para saber de la geometría espacial.
Si la Gravedad es muy débil en una situación dada, las curvas del espacio-tiempo serán, también pequeñas en consonancia con dicha debilidad de la fuerza y, entonces, la RG deberá incluir a la RE como una aproximación de primer orden, como un caso especial en el cual la RG debe reducirse a la formulación matemática de un espacio-tiempo plano, es decir, deben reducirse a las trasformaciones de Lorentz.
Geometría Euclidiana: Euclides
Cualquier sistema de geometría que no está basado en el postulado paralelo de Euclides, que dice que una línea y sólo una línea se puede trazar a través de un punto fuera de una línea dada, paralela a esa línea. La geometría Euclidiana trata de la geometría de nuestro mundo diario. El postulado paralelo de Euclídes parece intuitivamente claro, pero nadie ha sido capaz de demostrarlo. Si sustituimos el postulado paralelo de Euclides con el supuesto que existe más de una línea paralela a una línea dada a través de un punto dado, tenemos una geometría no Euclidiana llamada geometría hiperbólica. Si asumimos que no existen líneas paralelas, tenemos una geometría no Euclidiana llamada geometría elíptica.
1 - Curso de Relatividad General
Queremos saber como el Universo es, y, para ello, aunque tenemos la Relatividad General que nos dice que en presencia de grandes masas el Universo se curva y su geometría se ve sometida a dicha presencia, a pesar de ello, no dejamos de buscar y queremos saber si, eso que los cosmólogos llaman Omega Negro -la cantidad de materia que existe en el Universo- nos dice, de una vez por todas si estamos en un universo plano, abierto o cerrado.
Cabría imaginar que nuestro mundo se comporta en el espacio geométrico como una superficie que está irregularmente curvada pero que en ningún punto se aparta significativamente de un plano, lo mismo que ocurre, por ejemplo, con la superficie de un lago rizado por las débiles ondas que crean el suave viento. A un mundo de esta especie podríamos llamarlo con toda propiedad cuasi-euclidiano, y sería espacialmente infinito. Los cálculos indican, sin embargo que, la densidad media de materia tendría que ser nula y, no es ese, precisamente el caso de nuestro mundo en el que la materia, está por todas partes y, lo queramos o no, genera gravedad y genera curvatura que se dejan sentir, en nosotros mismos, en la Luna y en todos los cuerpos que nos circundan.
 Deformación de la malla espacio-tiempo
De la misma manera que en presencia de grandes masas y debido a la fuerza de Gravedad que generan, es afectada la malla espacio-temporal, de la misma manera digo, también se ha podido comprobar que, la luz, aparentemente sin masa, también es curvada cuando pasa cerca de un estrella.
СҮНСНИЙ ТАЛХ: March 2012
Ya Hawking había hablado de la la incidencia que la gravedad podría tener en la propagación de la luz, Su primera explicación ni a él mismo dejo satisfecho y, finalmente, tuvo que admitir que los rayos de luz que pasaban cerca de un cuerpo masivo, como una estrella, serían desviados por el campo gravitatoria que esta genera. Es decir, lo mismo que decía Einstein en su RG.
Mecánica cuántica : Blog de Emilio Silvera V.La gravedad cuántica, camino de convertirse en ciencia | Investigación y Ciencia | Investigación y Ciencia
Como se está a la búsqueda de la Teoría Cuántica de la Gravedad, una de las preguntas más comunes es: ¿Desempeñan los campos gravitatorios un papel esencial en la estructura de las partículas elementales de la materia?
Realmente, consideradas de manera individuales, las partículas más o menos elementales e incluso los átomos, tienen una incidencia ínfima de la gravedad, ya que, las pequeñas masas que las conforman -infinitesimales- son tan insignificantes a a nivel individual que la Gravedad casi podría ser despreciada. De hecho, cuando llegamos a los ámbitos cuánticos, la Gravedad, hace mutis por el foro y, sólo se consideran parámetros electromagnéticos y de fuerzas nucleares fuerte y débil que sí, inciden, de lleno y con mucha potencia en esos pequeños objetos.
Está claro que ni la teoría Newtoniana ni tampoco la Relativista de la gravitación han llevado hasta ahora a ningún avance en la teoría de la constitución de la materia y, sin embargo, se piensa que, las formaciones elementales que van a constituir los átomos se mantienen unidas por fuerzas gravitatorias que, aún no hemos podido medir por no tener la tecnología necesaria para ello.
Grafeno: un paso hacia el futuro Nano-remediación del agua Crisis, negocio y avance nanotecnológico Interdisciplina en nanociencias. - PDF Descargar libre
El avance proporciona evidencia para apoyar una idea polémica, llamada la generación de múltiples excitón (MEG), que es la teoría de que es posible que un electrón que ha absorbido la energía de la luz, llamado un excitón, puede transferir esa energía a más de un electrón, consiguiendo más electricidad con la misma cantidad de luz absorbida.
Los puntos cuánticos son átomos artificiales que los electrones se limitan a un espacio pequeño. Ellos tienen un comportamiento atómico como que da lugar a inusuales propiedades electrónicas a nano-escala. Estas propiedades únicas pueden ser particularmente valiosos en la adaptación de la forma en la luz interactúa con la materia.

            Gustav Mie

Ese ha sido uno de las grandes esfuerzos realizados por desarrollar una teoría que diera cuenta del equilibrio de la electricidad que constituye el electrón y, los trabajos de Mie, han sido apoyados por toda la comunidad de los físicos teóricos, él se basa principalmente en la introducción de un tensor- energía de términos suplementarios que dependen de las componentes del potencial electromagnético, además de los términos de energía de la teoría de Maxwell-Lorentz. Estos nuevos términos que en el espacio exterior no son importantes, son sin embargo efectivos en el interior de los electrones al mantener el equilibrio frente a la repulsión eléctrica.

A pesar de la belleza de la estructura formal de esta teoría, erigida por Mie, Hilbelt y Weyl, sus resultados físicos hasta ahora han sido insatisfactorios. Por una parte, la multiplicidad de posibilidades es desalentadora, y por otra parte dichos términos adicionales no han podido ser formulados de una manera tan simple que la solución pudiera ser satisfactoria,

Hasta ahora la Teoría de la Relatividad General no ha realizado ningún cambio en este estado de la cuestión. Si por el momento no consideramos el término cosmológic0.

Pin page

 

Donde G denota el Tensor de curvatura de Riemann contraído, G es el escalar de curvatura formado por contracción repetida, y Tμν el Tensor de energía de “materia”. En fin, explicar toda la ecuación puede llegar a ser engorroso y es toda una larga historia que no siempre entretiene al personal. Así que, lo dejamos.

 

 

Muchos son los conceptos que tendríamos que explicar aquí para dilucidar todas estas cuestiones que, implicadas en estas teorías, nos llevan a la cinemática, la simultaneidad, transformaciones de coordenadas, relatividad de longitudes y tiempos, adición de velocidades, lo que nos dijo Maxwell y Lorentz. transformación de nergía en rayos luminosos, la gravedad y la propagación de la luz, la naturaleza física de los campos gravitatorios… y un sin fin de cuestiones que, hacen necesario un gran volumen y, también, un amplio dominio de conocimientos de los que carezco.

 

 

Lo cierto es que, la Teoría de la Gravedad, nos lleva a imaginar situaciones que podrían ser y, en alguna ocasión, se nos puede presentar como posibles caminos para solucionar cuestiones que, en el mundo físico que conocemos, nos parecen irresolubles pero… En física, amigos míos, lo imposible parece posible.

¡Encontrar la solución para burlar la velocidad de la luz, y, atravesando portales mágicos, ir a otras galaxias! Es cierto que la mente está muy delante de los hechos pero… Cuando se piensa en algo, ahí queda la posibilidad de plasmarlo en una realidad.

 

 

Al menos por el momento, no podemos saber si nuestro Universo es único. Sin embargo, hemos pensado en la posibilidad de que pudiera ser uno de tantos. Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, realizamos conjeturas y comparaciones con otros que podrían ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimensiones espacio-temporales, no contamos con las condiciones físicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado en ese “vacío” que no hemos llegado a comprender. Sin embargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para ello.

Emilio Silvera V.

La fascinación de otros mundos

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La bella y misteriosa Pandora y sus asombrosas criaturas.

Como el Universo es igual en todas partes, cualquier mundo que imaginemos con criaturas fascinantes… ¡Podrán existir!

Si tenemos en cuenta que, solo en nuestra Galaxia, tenemos 30.000 millones de estrellas como el Sol, y, que la mayoría tiene su propio sistema planetario, la lógica nos dice que muchos de esos mundos habrán venido a situarse en la zona habitable… ¿Qué más hay que saber para tener la certeza de que, en muchos de esos mudos habrá surgido la vida como lo hizo en la Tierra?

Emilio Silvera V.