domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nunca podremos saberlo todo

Autor por Emilio Silvera    ~    Archivo Clasificado en Lo que no sabemos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 
                                   Historias y Leyendas ligadas a la Mitología. Minotaurus, Druidas, Dragones y Nibelungos que buscan anillos…

Hemos demostrado tener mucha imaginación y las historias y leyendas que nos llegan desde el pasado está mezclada con la Mitología de los pueblos que, en todos los rincones del mundo crearon sus propios mitos que nos dibujan escenarios que hablan de la inmensa diversidad. Siempre hemos buscado algo pero nunca logramos encontrarlo todo. ¡La búsqueda continúa!

Al menos de momento, tenemos que admitir que es así. No creo que nunca podamos adquirir un conocimiento pleno de todas las cosas. Siempre nos quedarán secretos que desvelar y misterios por descubrir, y, la inmensa variedad y la vastedad compleja de la Naturaleza, tendrá siempre para nosotros, algunos rincones oscuros en los que moran respuestas que deseamos , y que sin embargo, es posible, que nunca las podamos atisbar.

              ¿Oiremos alguna vez que han encontrado los restos de la Atlántida?

“De todos los misterios que andan por el mundo, ninguno puede competir con las historias de tierras pérdidas y civilizaciones que ya no existen, y entre todas ellas, destaca sobremanera una: la desaparición de la Atlántida, un continente entero, que existió más allá de las Columnas de Hércules (Gibraltar) o quién sabe dónde. A la Atlántida, se la tragó la tierra, en día y una noche, sin dejar rastro ni de ella ni de la floreciente civilización que poseía.

 

Al hombre por naturaleza le ha intrigado aquellos sucesos a los cuales no encuentra una explicacion lógica, y cuando sus respuestas no son las adecuadas, las ha convertido en misterios, leyendas o mitos pero, con el del tiempo, poco a poco, fue dejando de lado la mitología y a las divinidades para emplear la lógica y la observación del mundo, y, más tarde, llegó el experimento: la Ciencia había nacido.

Uno de los misterios más grandes se refieren a nosotros mismos, de manera fidedigna no sabemos lo que pasó para que ahora podamos estar aquí. El cráneo de Lucy y unos huesos diminutos , cuidadosamente dispuestos en una vitrina del museo para su exhibición al público, nos pueden transportar hasta la cálida sabana africana en la que, según todos los indicios, se gestó la Humanidad hace unos tres millones de años.

Las estrellas, como todo en el Universo, no son inmutables y, con el del Tiempo, cambian para convertirse en objetos diferenters de los que, en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar hasta la vida. Nebulosas hacedoras de mundos en las que, nacen estrellas nuevas y se transmutan los elementos sencillos en complejos, en ellas y en las estrellas surge el CHON (Carbono, Hidrógeno, Oxígeno y Nitrógeno) que son materiales esenciales para la vida.

          El Ardipithecus Ramidus recreado por el ilustrador Arturo Asencio para Quo

Si viajamos hacia atrás en el tiempo, por ejemplo,  unos tres millones de años, podríamos contemplar, con asombro, a nuestros primeros antepasados. Los dinosaurios nos llevan a un tiempo de setenta veces más antiguo, a unos bosques mezosoicos por los que discurren bestias prodigiosas. El mundo, nuestro mundo, ha ido cambiando a medida que el tiempo transcurría y, por ejemplo, el oxígeno que hoy respiramos no estaba presente hace algunos millones de años. De hecho, hay quien defiende la hipótesis de que los dinosaurios no cayeron por el meteorito sino que, el cambio de nuestra atmósfera los eliminó.

¿Qué habría pasado en la historia de la evolución si no hubiera caído aquel meteorito? ¿Habríamos podido nosotros llegar hasta aquí?

Claro que es mucho lo que aún desconocemos de la historia de la vida y, de la misma manera, se podrán expresar nuestros nietos, no es una asignatura de fácil comprensión, ya que, no teníamos aquí a un historiador recopilando todo lo que pasó, ni el tiempo que ha transcurrido nos permite obtener las huellas necesarias (eliminadas por los movimientos tectónicos, la erosión, y demás catástrofes naturales del planeta) que nos impiden encontrar una respuesta completa.

Claro que, a pesar de todo, incluso con esos enormes inconvenientes de la falta de pruebas, la historia de la Vida, es una narración tan apasionante que, seguimos y seguiremos buscando indicios del pasado que nos hablen de lo que pasó, de nosotros y de otros seres que, como nosotros mismos, surgieron a la vida tras un complejo proceso evolutivo del que, al parecer, sólo nosotros alcanzamos un nivel de conscienciatras un larguisimo proceso evolutivo que comenzó en las estrellas y siguió con la transmutación de los diversos materiales cada vez más complejos para crear sustancias que formaron aquelñ caldo primordial o protoplasma vivo que se organizó para que de él, surgieran aquellas primeras células replicantes. Algunos miles de millones de años más tarde, llegaron nuestros más antiguos antepasados que desembocaron en lo que hoy llamamos Humanidad.

La historia de la vida solemos relatarla al estilo de la genealogía de Abraham: las bacterias engendraron a los protozoos, los protozoos engendraron a los invertebrados, los invertebrados engendraron a los peces…y, así, sucesivamente, Claro que tales listas de conocimientos adquirido pueden ser memorizadas pero, no dejan mucho espacio para pensar que, en lugar de recitar como un papagallo esas cuestiones, es mejor, salir a espacios abiertos y a lugares remotos del planeta en los que, los vestigios e indicios nos digan que allí pasó algo, donde podamos rocas viejas y fósiles que sí, de manera fehaciente, nos hablaran de ese pasado que queremos conocer.

Los actuales descubrimientos de la Paleontología, la más tradicional de las científicas, se entrelazan con nuevas ideas nacida de la biología molecular y la geoquímica. Los huesos de los dinosaurios son grandes y espectaculares y nos llevan al asombro. Pero, aparte del tamaño de sus habitantes, el Mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutíles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hasta el mundo que conocemos hoy.

         En Australia fueron descubiertos los fósiles de bacterias más antiguas de la Tierra. Las rocas australianas se han convertido en el lugar más idóneo del planeta para buscar indicios del origen de la vida en la Tierra. Ha sido en la formación Strelley Poll, al oeste del país, en Pilbara, donde un equipo de científicos, australianos en su mayoría, ha descubierto los fósiles microscópicos de unas bacterias que vivieron hace 3.400 millones de años y que aparecen asociados a diminutos cristales de pirita.

Pero, ¿cómo podemos llegar a comprender acontecimientos que ocurririeron hace unos miles de millones de años? Una cosa es que en las llanuras mareales de hace mil quinientos millones de años vivían bacterias fotosintéticas, y otra muy distinta entender cómo se infiere que unos fósiles microscópicos pertenecen a bacterias fotosintéticas, cómo se averigua que las rocas que los rodean se formaron en antiguas llanuras mareales y cómo se estima su edad en mil quinientos millones de años.

En tanto que empresa humana, esta es también la historia de la exploración que se extiende desde el interior de las moléculas al espacio literalmente exterior del espacio interestelar y de los planetas como Marte y lunas como Europa, Encelado, Titán, Io y Ganímedes. En todos esos pequeños mundos pueden exitir sorpresas biológicas que ni podemos sospechar.

 Muchas de las imágenes del planeta Marte, nos hablan de secretos que… ¿De dónde sale el metano allí detectado? ¿Lo producen metanógenos? Esos inmensos escenarios que las naves allí enviadas nos han podido mostrar. El Olimpus Mont con el cañón fluvial más grande del Sistema solar de miles de kilómetros de largo oradado por las aguas turbulentas que en el pasaso, vertiginosas discurrían por allí dejando esa descomunal huella. Y, ¿que habrá en las entrañas del planeta, en el subsuelo rico en galerias dejadas por los ríos de lava que la actividad volcánica del pasado fueron creando a lo largo de los años. ¿A qué lugar fue a parar todo el agua de los acéanos de Marte?

Muestras recogidas en Marte nos podrán hablar de qué aspectos de nuestra biología terrestre se pueden encontrar allí donde existe la vida, existió la vida o, ¿quién sabe? existirá. Seguramente en Marte podremos encontrar, para nuestro asombro, productos específicos de nuestra particular historia que yacen allí para darnos una respuesta pero, el camino que hemos de seguir para la vida en el Universo dependerá, en gran medida, de lo que podamos encontrar en nuestro “barrio”: Marte, Encelado, Europa, Titán, Ganímedes y otros pequeños mundos que, cuando les dedicamos una profunda mirada, nos envían promesas que, no podemos desatender.

Uno de los temas más claros en la evolutiva es el carácter acumulativo de la diversidad biológica. Las especies individuales (al menos la de los organismos nucleados) aparecen y desaparecen en una sucesión geológica de extinciones que ponen de manifiesto la fragilidad de las poblaciones en un mundo de competencia y cambio ambiental. Pero la historia de las asociaciones -de formas de vida con una morfología y fisiología características- es una historia de acumulación. La visión de la evolución a gran escala es indiscutiblemente la de una acumulación  en el tiempo gobernada por las reglas del funcionamiento de los ecosistemas. La serie de sustituciones que sugieren los enfoques al estilo de la genealogía de Abraham no consigue captar este atribuito básico de la historia biológica.

Otro de los grandes temas es el de la coevolución de la Tierra y la Vida. Tanto los organismos como en Ambiente han cambiado drásticamente con el tiempo, a menudo de forma concertada. Los cambios del clima, la geología e incluso la composición de la atmósfera y de los océanos han influido en el de la evolución, del mismo modo que las innovaciones biológicas han influido, a su vez, en la historia del medio ambiente.

Los científicos saben que, la Vida, nació por mediación de procesos físicos -tectónicos, oceanográficos y atmósfericos- estos mismos procesos antes mencionados, sustentaron la vida era tras era al tiempo que modificaban  continuamente la superficie de la Tierra. Por fin la vida se expandió y diversificó hasta convertirse en una fuerza planetaria por derecho propio, uniéndose a los procesos tectónicos y físico-químicos en la transformación de la atmósfera y los océanos. Creo que, el surgimiento de la vida como una característica definitoria de nuestro planeta es algo que, no podemos calificar con una plabra a la de un hecho extraordinario. Sin embargo, creo, que para que surja la vida sólo se necesita “un sol” y “un planeta” que estén a la adecuada distancias, ya que todos los materiales necesarios estarán allí dispuestos para que se conformen… ¡de tántas maneras!

¿Cuántas veces habrá ocurrido en la vastedad del Universo, que la vida surgió y se extingiuió para volver a surgir en otros lugares ?

El próximo vehículo robótico para explorar Marte en 2020 deberá investigar mas intensamente que nunca la superficie del planeta rojo en busca de señales de vida pasadas, anunció un equipo de na NASA hace poco tiempo. Sin embargo, vuelven a equivocarse en una cosa, la vida en el planeta hermano, no la encontraran en la superficie del planeta. Ellos saben que si hay alguna posibilidad de encontrar la vida allí, ésta estará en el subsuelo pero, como no dispone de medios para enviar una misión tripulada por humanos… ¡Sigue jugando con el Azar! Si suena la campana… de la suerte.

emilio silvera

¡Nuestra curiosidad! Siempre desvelando misterios

Autor por Emilio Silvera    ~    Archivo Clasificado en Lo que no sabemos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

En cierta ocasión, Leonardo Da Vinci contaba:

“Arrastrado por mi apasionado deseo, anhelante de ver la gran confusión de las variadas y extrañas formas creadas por la ingeniosa Naturaleza, vagué durante un tiempo entre los oscuros acantilados y llegué a la entrada de una gran caverna. Permanecí delante de ella por un tiempo, estupefacto, e ignorante de la existencia de algo semejante, con la espalda curvada y la mano izquierda apoyada en las rodillas, y protegiéndome los ojos con la derecha, con los párpados bajos y semicerrados, inclinándome a menudo de un lado y otro para ver si podía distinguer algo del interior; pero no pude por la gran oscuridad que allí había. Y después de permanecer así un rato, de pronto surgieron en mí dos sentimientos, temor y deseo; temor de la amenazante caverna oscura, y deseo de ver si había dentro algo milagroso.”

La historia es un fiel reflejo metafórico de lo que sentimos cuando, ante nosotros, se nos presenta algo que no llegamos a comprender y que nos da miedo abordar pero, prevalece el deseo y la curiosidad que sentimos por desvelar aquel misterio y llegar a conocer que, se esconce dentro de él. Ese impulso, es el que ha llevado a muchos físicos a realizar descubrimientos que han hecho posible el avance del conocimiento del “mundo”.

 

                            Un temible agujero negro gigante

Aquí vemos la entrada a otra “Gruta de Leonardo” en la que no sabemos que fuerzas y energías podrían estar presentes y que fuerzas de marea nos arrastrarían hacia quíen sabe que lugares ignotos situados en otros universos o, por el contrario, en lugar de ser la entrada hacia un mundo maravilloso, sólo se trata del camino que nos lleva hacia la destrucción.

“Lo cierto es que cuanto más aprendamos acerca del mundo y cuanto más profundo sea nuestro aprendizaje, tanto más conscientes, específico y articulado será nuestro conocimiento de lo que no conocemos, nuestro conocimiento de nuestra ignorancia. Pues, en verdad, la fuente principal de nuestra ignorancia es el hecho de que nuestro conocimiento sólo puede ser finito, mientras que nuiestra ignorancia es necesariamente infinita.” Así lo escribió el gran filósofo de la ciencia, Karl Popper.

Hay una difundida y errónea suposición de que la ciencia se ocupa de explicarlo todo, y que, por ende, los fenómenos inexplicados preocupana los científicos al amenazar la hegemonía de la visión del mundo. El técnico en bata del Laboratorio, en la película de bajo presupuesto, se queda mirando para el techo, pensativo y, de pronto, se da una palmadita en la frente cuando se encuentra con algo nuevo, y exclama con voz temblorosa, entrecortada: “¡Pero, no hay explicación para esto!”. En realidad, por supuesto, cada científico digno se apresura a abordar lo inexplicado, pues es lo que hace avanzar la ciencia. Son, a veces, los grandes sistemas místicos de pensamientos, envueltos en terminologías demasiado vagas para ser erróneas, los que explican todo, raramente se euivocan y no crecen.

Exploratorio

La ciencia es intrínsicamente abierta y exploratoria, y comete errores todos los días. En verdad, ese será siempre su destino, de acuerdo con la lógica esencial del segundo teorema de incompletitud de Kurt Gödel. El teorena de Gödel demuestra que la plena validez de cualquier sistema inclusive un sistema científico, no puede demostrarse dentro del sistema. En otras palabras, la comprensibilidad de una teoría no puede establecerse a menos que haya algo fuera de su marco con lo cual someterla a prueba, algo más allá del límite definido por una ecuación termodinámica, o por la anulación de la función de onda cuántica o por cualquier otra teoría o ley. Y si hay tal marca de referencia más amplio, entonces la teoría, por definición, no lo explica todo.En resumen, no hay ni habrá nunca una descripción científica completa y copmprensiva del universo cuya validez pueda demostrarse. Estamos inmersos en una Naturaleza en la que, estará siempre presente ¡la incertidumbre!.

 

                      Sí, tratar de saber es bueno. Sin embargo, nunca llegaremos a saberlo todo. Miramos hacia el Universo inmenso, imaginamos lo que puede estar allí presente, y, por mucho que queramos saber con cuántos fenómenos nos podemos encontrar allí… ¡Nunca acertaremos! No sabemos siquiera si existen estrellas de Quarks, no hemos podido encontrar a ese esquivo Bosón que llamamos Gravitón, ni sabemos tampoco (a pesar de lo mucho que de ella hablamos), si realmente existe la “materia oscura”. Cada cierto tiempo tenemos que cambiar, muchos de los postulados científicos por otros nuevos.

Claro que, tal planteamiento, al menos como lo veo yo, es bueno y saludable. Pensemos en el infierno que sería un universo pequeñito al que pudiéramos explorar y comprender totalmente. Alejandro Magno, cuantan que lloró cuando le dijeron que había infinitos mundos (“¡Y nosotros no hemos conquistado ni siquiera uno!”, exclamó sollozando), pero la situación parece más optimista a quienes se inclinan a desatar, no a cortar, el nudo gordiano de la Naturaleza.

Ningún hombre, o mujer, realmente reflexivom deberían desear saberlo todo, pues cuando el conocimiento y su análisis son completos, el pensamiento se detiene y (cosa que no nos conviene), comienza a desaparecer la curiosidad y el interés por las cosas que, al conocerlas, no encierran ningún misterio que desvelar, con lo cual, la degradación comienza su camino en el interior de nuestras mentes.

                 La falta de interés nos hace caer en la melancolía, el aburrimiento, nada llama ya nuestra atención

tableau_guillaume

La paradoja del más conocido cuadro de la serie La trahison des images (1928–1929) de René Magritte. Serie  sobre la que Foucault escribió un no menos conocido ensayo.

René Magritte, en 1926, puntó un cuadro de una pipa y escribió debajo de él con una cuidadosa letra de escolar (lo que arriba podeis leer) y que, traducido, decía “Esto no es una pipa”. Esta pintura podría convertirse apropiadamente en el emblema de la Cosmología científica. La palabra “Universo” no es el Universo; ni lo son las ecuaciones de la teoría de la supersimetría, ni la ley de Hubble ni la métrica de Friedmann-Walker-Robinson. Generalmente, la ciencia tampoco sirve de mucho para explicar lo que algo, y mucho menos el universo entero, realmente “es”.

La Ciencia describe y predice sucesos, pero paga por este poder al tener que, rectificar muchas veces, dado que las predicciones que se hacen, son aproximaciones de la realidad que buscamos y que, poco a poco, tratamos de perfeccionar depurando los defenctos de aquellas más viejas con estas otras más nuevas que llevan incorporados nuevos parámetros despuñés descubiertos.

¿Por qué, pues, la Ciencia tiene éxito? La respuesta es que nadie lo sabe. Es un completo misterio-quizá el completo misterio- por qué la mente humana puede comprender algo del vasto universo. Como solía decir Einstein “Lo más incomprensible del universo es que lo podamos comprender”.

Quizá como nuestro cerebro evoluciona mediante la acción de las leyes naturles, éstas resuenan y vibran de alguna manera, por nosotros desconocida en él. La Naturaleza nos presenta una serie de repeticiones -pautas de conducta que reaparecen a escalas diferentes, haciendo posible identificar principios, como las leyes de conservación, que se aplican de moso universal- y estas pueden proporcionar el vínculo entre lo que ocurre dentro y fuera de nuestras mentes. Pero, el misterio, realmente no es que coincidamos de alguna manera con el universo, sino que en cierta medida estamos en conflicto con él, y sin embargo podemos comprender algo de él. ¿Por qué esto es asó? Sin lugar a ninguna duda es por el simple hecho de que somos “una parte del universo” ¡La que piensa! y, al estar a él conectados con esos hilos invisbles de la Mente, nos llegan mensajes que despiertan la intuición que nos lleva de la mano de los nuevos pensamientos que surgen hacia ese mundo mágico del saber.

Claro que, el teorema de Gódel indica que siempre estaremos limitados en el saber del universo u, esos limites subyacen, muy posiblemente en aquella ruptura de las simetrías cósmicas en el momento de la génesis o de lo que fuera lo que allí pasó, si fluctuación de vacío, a un cambio de fase especatacular que, desde otro iniverso, nos envió a éste nuestro creado en la transición.

¡Sabemos tan poco!

emilio silvera

¿Cómo podríamos resolver la estructura del Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Lo que no sabemos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Disco circumnuclear de La Galaxia

“Imaginaos este instante en que los murmullos se arrastran discretamente y las espesas tinieblas llenan el gran navío del Universo.”

 

Esas palabras de Chakesperare en Enrique V (acto IV, esc. 1), nos podría valer ahora a nosotros estrapolarlas a este tiempo y haciendo un ejercicio de imaginación, convertir esas tiniebles en la materia oscura imaginaria”, esa clase de materia que postulan los cosmólogos, que no podemos ver, que no emite radiación, que no sabemos de qué está hecha y, en realidad, tampoco sabemos donde está (sólo lo suponemos) pero, nos soluciona, de un plumazo, todos los problemas de la estructura del Universo. Esa clase de materia “invisible e indetectable” que sí emite, sin embargo, la fuerza gravitatoria y podría explicar el ritmo a grandes escalas que hemos podido observar en el comportamiento de nuestro universo y que antes de la llegada de la “materia oscura”, no sabíamos, a qué era debido… “¡ahora sí lo sabemos!”. Bueno, al menos, eso dicen algunos pero, lo tienen que demostrar.

Estrellas orbitando en torno a SgrA*

Sabemos, por ejemplo que, en el centro de la Galaxia, en Sagitario A, reside un gran mostruo que tiene tres millones de masas solares y, en la imagen de arriba podemos ver a un grupo de estrellas que lo orbitan en un perído de 15 años. Hemos hablado aquí de ese lugar, del Centro galáctico y, también de otras regiones que tienen inmensos Agujeros Negros que, al ser singularidades, hacen que el tiempo allí se distorsione y que el espacio adquiera una curvatura infinita. Sin embargo, la “materia oscura” no está compuesta por esos objetos exóticos y, según los cosmólogos, es otra cosa diferente, algo que no sabemos lo que es, algo que no podemos ver, algo que no tenemos ni idea de cómo se pudo formar ni de cuanto tiempo lleva aquí y de qué clase de partículas estará formada. La “materia oscura”  es, en realidad, un auténtico misterio. Todos hablamos de ella pero…, ¡nadie sabe lo que es!

 

Hablar de la materia oscura es mí como hacerlo de esos personajes y animales míticos que sólo están en la mente del autor que nos narra una historia en la que, pueden estar presentes los Unicornios y también los más extraños personajes y animales que sólo existen en las peores pasadillas de mundos inimaginalbes.

Con la Materia Oscura nos pasa como cuando un enfermo terminar recibe la noticia de que ha aparecido un medicamento milagroso que podría curar su mal. Allí ponen todas sus esperanzas. parecer extraño que los cosmólogos pongan todas sus esperanzas  en comprender el Universo centrándolo en una materia tan misteriosa como esa, pero eso es lo que está sucediendo en nuestros días.

Y no es que se trate  simplemente de agarrarse a un “clavo ardiendo”: aprovecharnos de la ignorancia de la naturaleza de la materia oscura adjudicarle todas las propiedades que se requieran para resolver los problemas más inmediatos. ¿Qué falta hace conocer las propiedades de clase de materia para que nos resuelva, por ejemplo,  el problema de la formación de las galaxias? Según la expansión de Hubble, las galaxias no tendrían que haberse formado, toda vez que la materia estaba “corriendo” y no hubiera tenido tiempo para formarlas. Sin embargo, algo tenía que estar allí presente que la !agarró” y la retuvo para que las galaxias se pudieran formar. ¿Sería la “materia oscura”?

Cuando nos encontramos con un problema desconocido del que ignoramos los motivos que lo producen, rápidamente construimos un modelo hipotético que lo resuelve y, nuestra ignorancia, queda a salvo y fuera de la vista de los demás.Según las leyes de la mecánica de Newton, la velocidad de una estrella a lo largo de su órbita depende de la masa de la galaxia contenida dentro de la órbita de la estrella. Sin embargo, la masa visible es mucho menor que lo esperado. ¿Donde está la masa que falta?

De la misma manera, las galaxias en el Universo se agrupan en cúmulos y supercúmulos de galaxias que para mantenerse unidos necesitan una inmensa cantidad de materia que genere la fuerza de gravedad necesaria para conseguirlo. Sin embargo, esa masa requerida no se observa ¿Donde está? ¿Cómo se comportan las galaxias como si estiuviera allí pero no se deja ver?

¿Cómo podríamos detectar la presencia de la Materia Oscura? ¿Cual será la naturaleza de la Materia Oscura? ¿Será posible que los objetos que constituyen la materia oscura del universo (si es que finalmente existe esa materia), esten formados por partículas que no hemos llegado a conocer por no emitir radiación y ser diferentes a los Quarks a los leptones que conforman los átomos de materia bariónica? A mí particularmente lo que más me llama la atención es que no teniendo ninguna de las propiedades que tiene la materia radiante, sí en cambio pueda emitir la fuerza gravitatoria que es, en definitiva, la que conviene en este caso explicar lo inesplicable.

Lo cierto es que andamos perdidos. Hay cosas en el vasto universo que no podemos explicar. La idea básica del papel de la materia oscura es fácil de entender. Como todos hemos llegado a saber, partimos de una dificultad primera que no hemos sabido resolver, nadie ha podido imaginar cómo evolucionó el universo, ya que tiene que ver con el hecho de que, si el cosmos entero está hecho de materia normal, la formación de galaxias no pudo haber empezado hasta muy avanzado el “juego”, después de que el universo se ha enfriado hasta el punto de que pueden existir átomos y la radiación se pueda desaparejar. entonces, la expansión de Hubble habría diseminado tanto la materia que la gravedad por sí sola no sería suficientemente fuerte reunir cúmulos antes de que  todo se escapara de su alcance.

¿Y si la materia oscura no importa? Para todo aquellos escépticos, un matemático italiano ha conseguido lo nunca antes visto. El hombre ha llegado a través de una serie de fórmulas complejas y con extraordinaria similitud, trazar las curvas de la rotación de las galaxias espirales sin necesidad de materia oscura. Dicho de otra , a través de sus cálculos, el matemático ha representado la fuerza que mantiene unidas a las galaxias sin la necesidad de materia oscura. El ha sido expuesto en contra y frente al razonamiento deductivo de toda la comunidad científica.

Hasta ahora todos los experimentos científicos tenían a la materia oscura como esencial del entendimiento de las galaxias, para explicar aquello que no vemos. Si contamos la cantidad de masa en las galaxias espirales como la nuestra y luego tomamos el modelo de su rotación, obtenemos una imagen muy diferente a la que empíricamente se observa. La cantidad de masa en el centro de las galaxias espirales es enorme pero las estrellas exteriores se mueven alrededor de los discos galácticos con tanta rapidez que deberían volar hacia el espacio interestelar.

Lo cierto es que, no todos están de acuerdo con la existencia de la materia oscura y creen que los fenómenos que observamos se deben a otros parámetros que nos son desconocidos, e, incluso, podría tratarsde de alguna propiedad desconocida de la Fuerza de la Gravedad, o, ¿por qué no? podrían ser fluctuaciones del vacío que rasgan el espaciotiempo y dejan entrar, en nuestro universo, esa fuerza misteriosa que incide directamente en el comportamiento de nuestras galaxias y estrellas…lo cierto es que, no sabemos, realmente lo que pueda ser el motor conductor de esa anomalía observada y, sin embargo, ahí estamos con “la materia oscura por aquí” “la matería oscura por allá” y, la representamos de mil maneras distintas para poder convencer, a los excepticos .

http://universitam.com/academicos/wp-content/uploads/2012/03/materia-oscura.jpg

        El colmo de los colmos está en noticias como esta:

“3 marzo 2012. Los astrónomos que usan datos del Telescopio Hubble de la NASA han observado lo que parece ser un grupo de materia oscura que es parte de restos de un naufragio entre los cúmulos masivos de galaxias. El resultado podría desafiar las teorías actuales sobre la materia oscura que predicen que las galaxias deberían estar ancladas a la sustancia invisible, incluso durante el choque de una colisión.” (¿ … ?).

File:A520-mass+xray+lum-4up-m-1.jpg

                                           Abell 520. Imaged January 2012.
Credit: NASA

Abell 520 es una fusión gigante de cúmulos de galaxias situadas a 2,4 mil millones de años luz de distancia. La materia oscura no es visible, aunque su presencia y la distribución se encuentra indirectamente a través de sus efectos. La materia oscura puede actuar como una lupa, curvar la luz y causar la distorsión de las galaxias y cúmulos detrás de ella. Los astrónomos pueden usar este efecto, llamado lente gravitacional, inferir la presencia de materia oscura en los cúmulos de galaxias masivas”.

¿”…han observado lo que parece ser un grupo de materia oscura que es de restos de un naufragio entre los cúmulos masivos de galaxias”? ¿Qué tonteria es esa?

http://farm5.static.flickr.com/4082/4926930572_8c5822e95c.jpg

Imágenes estas tratan de explicar lo que no tiene explicación y, “explican” a su conveniente manera lo que ahí se está viendo y que, no es, necesariamente, lo que la explicación que se nos da quiere dar a entender. Me recuerda a los astrónomos de la antigüedad, cuando miraban al cielo y explicaban los fenómenos observados que estaban relacionados con el futuro de su rey, o, si eran los sacerdotes del templo los que lo explicaban, aquellos fenómenos estaban siempre relacionados con su religión y creencias. Ahora, guardando las distancias, son los mismos astrónomos y sacerdotes los que nos hablan de la materia oscura.

Un grupo de astrónomos que utilizó telescopios de ESO anunció en abril una sorprendente falta de “materia oscura” en la galaxia dentro de la vecindad del Sistema Solar. Pero, me pregunto yo, si no sabemos es la materia oscura, ¿de qué manera podemos detectar su falta o su presencia? Las contradicciones saltan a la vista cuando escuchamos lo que dicen diferentes grupos de astrónomos y cosmólogos que, estando a ciegas (como todos) en esa realidad que ignoran, echan mano de la materia oscura con desesperación.

Por otra , el galimatias que se está formando en torno a la materia oscura es descomunal. ¿Cuántos estudios se han realizado con resultados dispares? Unos dicen que la materia oscura “se observa alrededor de las Galaxias” y otros, por el contrario, vienen a decirnos que la falta de materia oscura en las galaxias es desconcertante. ¿En qué quedamos?

Así las cosas, tenemos que convenir en una realidad que nadie puede negar: La materia oscura (al menos de momento) es algo intangible, algo que ¡se ha pensado que pueda existir! a partir de las anomalías observadas en el comportamiento de las galaxias y que nadie sabe explicar a qué puede ser debido y, en esas estábamos cuando alguien, mencionó la “materia oscura” y, todos se lanzaron en tropel sobre ella…, ¡era la salvación!

De todos es bien conocido mi excepticismo hacia la dichosa “materia oscura” que, no niego que pueda existir pero, lo que siempre me ha chocado es que todos hablan de “ella” como si estuviera ahí, a la vista. La han convertido en algo familiar y cercano cuando…, ¡está tan lejos…! Incluso el Gravitón, del que todos hablan como una partícula hipotética, un Bosón mediador en la fuerza gravitatoria, tiene más sentido que la materia oscura. Todas las fuerzas tienen partículas mediadoras como los Gluones la fuerza nuclear fuerte, las W+, W y Zº la fuerza débil, el fotón para el electromagnetismo y, el Gravitón para la fuerza de Gravedad que siendo la más débil de todas, no deja ver el cuanto de energía intercambiado en una interacción gravitacional.

¿La materia oscura? Sí, es la prueba palpable de nuestra ignorancia, de lo que decimos que sabemos pero que, en realidaddad desconocemos.

emilio silvera

¿Vida de Silicio? ¿Será posible?

Autor por Emilio Silvera    ~    Archivo Clasificado en Lo que no sabemos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En un lugar llamado “Un Blog Biotecnológico”, me encuentro un trabajo que versa sobre el tema que hoy tocamos aquí.

¿Puede existir la vida basada en el silicio?

 “Todos sabemos que la vida está esencialmente basada en el carbono … y quizá alguna vez te hayas sentido tentado a preguntarte …pero ¿por qué la vida no pudo evolucionar de un elemento diferente?
Y ¿qué elemento de la tabla perdiódica sería un buen candidato para reemplazar al carbono?, pues recordemos cómo se organizan los elementos en la tabla. Los elementos en un mismo grupo tienden a mostrar propiedades similares. El carbono pertenece al grupo IV, y el elemento más cercano a este en ese grupo es el silicio. Ambos tienen 4 electrones de valencia, lo que hace posible que ambos puedan formar hasta cuatro enlaces covalentes.
El primero en proponer en serio la vida basada en el silicio como una alternativa a la vida basada en el carbono en la comunidad científica fue el astrofísico alemán Julius Schneider. El usó esta teoría en 1891 para predecir la vida en los planetas rocosos de nuestro sistema solar. Luego en 1893, James Emerson Reynolds propuso  que la vida basada en el silicio podría existir, pero a temperaturas extremadamente altas, porque los compuestos de silicio conocidos en ese momento eran estables, incluso a altas temperaturas. Treinta años después, J.B.S Haldane sugirió que la vida basada en el silicio podría existir en las rocas fundidas en el interior de la Tierra. El manto de la Tierra contiene suficiente silicio y, como se dijo antes, los compuestos de silicio son muy estables a altas temperaturas. En años recientes el Dr. Thomas Gold, un renombrado astrofísico austríaco (ahora fallecido), escribió un libro sobre la posibilidad de la vida basada en el silicio en el interior de la Tierra: The Deep Hot Biosphere, un libro ciertamente muy controversial y que valdría la pena leer.”
No me hago a la idea de seres vivos basados en el silicio, y, alguna posibilidad tendría un planeta muy caliente que, cerca de su estrella, hiciera posible las condiciones ambientales necesarias para que, el silicio, se hiciera maleable y pudiera surgir alguna clase de vida… De todas las maneras, es raro pensarlo.
Yo sigo pensando (sin negar nada de otros posibles caminos) que, no es el Silicio sino el Carbono el que trae consigo la posibilidad de Vida en el Universo conocido. Conforme a las leyes que rigen nuestro Universo y las conocidas interacciones que tienen con la materia, es el Carbono el que, por sus excepcionales cualidades, puede proporcionarnos una cantidad de variedades y adaptabilidad que, ni el Silicio o cualquier otro elemento parece tener…pero, ¿quién sabe?

Como nuestra ignorancia es grande, no aparto la idea de que realmente existan seres de silicio que, aun estando a nuestro alrededor, no seámos capaces de percibirlos, y, viviendo en nuestro mundo es, como si vivieran en otro muy lejano.

Anoche acabé de repasar el pequeño librito de Asimov “Cien preguntas básicas sobre Ciencia” y, de entre todas ellas, os he sacado la que aquí os transcribo por ser un tema que muchas veces hemos comentado en esta página. Asimov, como sabéis, era químico y le gustaba la Ciencia en General, él se metía de cabeza en todos los campos y, para dejar volar su imaginación, se refugiaba en la Ciencia ficción, parcela en la que, no salió mal parado al conseguir grandes éxitos.

“Todos los seres vivientes, desde la célula más simple hasta la sequoia más grande, contienen agua, y además, como la molécula más abundante, con mucho. Inmersas en el agua hay moléculas muy complejas, llamadas proteínas y ácidos nucleicos, que al parecer son características de todo lo que conocemos por el nombre de vida. Estas moléculas complejas tienen una estructura básica compuesta en cadenas y anillos de átomos de carbono. A casi todos los carbonos van unidos uno o más átomos de hidrógeno. A una minoría, en cambio, van ligadas combinaciones de átomos como los de oxígeno, nitrógeno, azufre y fósforo.

Los átomos de silicio reemplazan a los de carbono dentro del grafeno.  ¿Lo hará también para la vida?

Expresándolo con la máxima sencillez podemos decir que la vida, tal como la conocemos, está compuesta de derivados de hidrocarburos en agua.

¿Puede la vida estar compuesta de otra cosa? ¿Existen otros tipos de moléculas que proporcionen la complejidad y versatilidad de la vida, algo distinto del agua que proporcione, sin embargo, las propiedades poco usuales, pero necesarias, que sirven como trasfondo de la vida?

¿Es posible concebir algo parecido al agua que pudiera sustituirla? Las propiedades del amoníaco líquido son las más afines a las del agua. En un planeta más frío que la Tierra, por ejemplo, Júpiter, donde el amoníaco abunda en estado de líquido mientras que el agua está solidificada, puede que sea concebible una vida basada en el amoníaco.

El amoniaco está constituido por moléculas de composición NH3. Los átomos del hidrógeno son equivalentes. La molécula tiene, por tanto, forma piramidal es decir presenta una hibridación sp3, donde tres de los orbitales se solapan con los hidrógenos y el que resta se queda con los electrones no compartidos. Los ángulos de enlace son algo menores que los de un tetraedro debido a la nube electrónica del par solitario que los reduce a un ángulo de 107º 20´. El nitrógeno ocupa el vértice de una pirámide, cuya base es un triángulo equilátero formado por los tres átomos de hidrógeno.

Así que, en el amoniaco tenemos átomos de hidrógeno unidos al nitrógeno , que es un átomo pequeño y electronegativo, por lo que el amoniaco presentará enlaces intermoleculares de puntes de hidrógeno al igual que la molécula de agua.El hecho de que el amoniaco presente este tipo de enlace entre sus moléculas hace que sus puntos de fusión y ebullición, el calor de vaporización, la constante dieléctrica, etc… sean anormalmente altos.

Bianca Atwell y el átomo

       Mirando dentro del átomo…

Por otro lado, hay que decir que si el hidrógeno va unido a tantos puntos de la cadena de carbono es porque se trata de un átomo muy pequeño que se acopla en cualquier lugar. El átomo de flúor es parecido al de hidrógeno en algunos aspectos y casi tan pequeño como él. Así pues, igual que tenemos una química de los hidrocarburos podemos tener una química de los fluocarburos, con la única salvedad de que éstos son mucho más estables que aquéllos. Quizá en un planeta más caliente que la Tierra podría concebirse una vida a base de fluorocarburos.

Pero ¿y en cuanto al átomo de carbono? ¿Existe algún sustituto? El carbono puede unirse a un máximo de cuatro átomos diferentes (que pueden ser también de carbono) en cuatro direcciones distintas, y es tan pequeño que los átomos de carbono vecinos se hallan suficientemente próximos para formar un enlace muy fuerte. Esta característica es la que hace que las largas cadenas y anillos de carbono sean estables.

Glucosa

Se puede ver que la glucosa se compone de seis átomos de carbono (Carbo…) y los elementos de seis moléculas del agua (…hidrato). La glucosa es un azúcar simple, en el sentido de que a nuestra lengua su sabor es dulce. Hay otros azúcares simples que también habrás escuchado:

  • Fructosa
  • Galactosa
  • Lactosa
  • Sacarosa
  • Maltosa

La glucosa, fructosa y galactosa se conocen como monosacáridos. Lactosa, sacarosa, maltosa y son llamados disacáridos (que contienen dos monosacáridos).

El silicio es, después del oxígeno (O) el segundo elemento más abundante en la tierra: la corteza terrestre está formada en aprox. 28 % de silicio. Cada átomo de silicio central puede enlazarse adicionalmente con dos átomos de carbono, normalmente en grupos metilo (CH3). En los átomos de silicio de los extremos se suelen enlazar tres grupos metilo. El silicio es un elemento tetravalente, es decir, que puede formar 4 enlaces covalentes. En la tabla periódica se encuentra en el grupo IV, justo debajo del carbono (C). El silicio presenta una gran afinidad con el oxígeno.

El silicio se parece mucho al carbono y también puede unirse a un máximo de cuatro átomos diferentes en cuatro direcciones distintas. El átomo de silicio, sin embargo, es mayor que el de carbono, con lo cual las combinaciones silicio-silicio son menos estables que las de carbono-carbono. La existencia de largas cadenas y anillos de átomos de silicio es mucho más improbable que en el caso de carbono.

Lo que sí es posible son largas y complicadas cadenas de átomos en las que alternan el silicio con el oxígeno.

Moléculas de dióxido de silicio formando una macla de cristales de cuarzo. Créditos: www.123rf.com

Personalmente creo que el Silicio dará más juego en el campo de la I.A. (Vida Artificial) que en esta otra clase de vida que nosotros representamos.

La estructura de la silicona contiene átomos de silicio y oxígeno alternantes en unidades periódicas, llamadas siloxano. Las moléculas formadas por varias unidades de siloxano se denominan polisiloxano o silicona. Cada átomo de silicio puede unirse a otros dos átomos o grupos de átomos, y este tipo de moléculas se denominan “siliconas”.

A la molécula de silicona pueden ir unidos grupos de hidrocarburos o de fluorcarburos, y estas combinaciones podrían resultar en moléculas suficientemente grandes, delicadas y versátiles como para formar la base de la vida. En ese sentido sí que es concebible una vida a base de silicio.

Pero ¿existen realmente esas otras formas de vida en algún lugar del universo? ¿O serán formas de vida basadas en una química completamente extraña, sin ningún punto de semejanza con la nuestra?

Quizá nunca lo sepamos.”

Al menos de momento, la vida basada en el Silicio ha sido cosa de la Ciencia ficción, nada hemos podido descubrir que nos indique esa dirección y, desde luego, aunque nunca podemos negar nada (el universo y su diversidad de mundos es muy complejo), afirmar que existe la vida basada en el Silicio, no tiene ninguna base científica pero… ¡negarlo tampoco!

El elemento químico básico que ha sido propuesto para un sistema bioquímico alternativo es el átomo de silicio, puesto que el silicio tiene muchas propiedades químicas similares al carbono, tiene los mismos cuatro enlaces, y está en el mismo grupo del cuadro periódico, el grupo 14.

[foto de la noticia]

En esta segunda imagen, obtenida por el mismo grupo de investigación, se observan los orbitales moleculares de la molécula (PTCDA) que en este caso está depositada sobre los átomos de silicio.

Parafraseando al premio Nobel Richard Feynman, efectivamente “hay un gran espacio al final”. Tenemos ante nosotros un universo de tamaño diminuto que justo ahora estamos comenzando a explorar, un lugar en donde los materiales se comportan de diferente manera y cuyas extrañas propiedades podemos aprovechar para desarrollar una mejor tecnología.

Tendrás este material la propiedad bioquímica para poder, a partir de ahí, otras formas de vida. La bioquímica que conocemos está basada en el Carbono pero…¡quién sabe! Es tan grande el Universo, son tantos los mundos que están alumbrados por estrellas distintas a las que… por distintas razones podríamos pensar que…Por ejemplo, pensemos en Titán.

Se trata de una molécula de Silicio. Se ha especulado con la posibilidad de encontrar vida en Titán, la luna de Saturno. Sin embargo los científicos creen que de existir sería una vida de tipo microbiana basada probablemente en el silicio debido a las bajas temperaturas, escasez de agua y la falta de oxígeno de su entorno.

Suponen también que su hábitat serían los hidrocarburos que se encuentran en Titán en forma líquida y que sus procesos biológicos serían muy distintos a los que conocemos, al ser el silicio más pesado que el Carbono. Son muchas las cosas que desconcemos y, de nada de lo que podamos encontrar, en el vasto universo, podremos sorprendernos.

Los Cristales de Cuarzo son una sorprendente creación de la Naturaleza, con dos moléculas de Silicio y una de Oxigeno (Si2 O) en su configuración química, podría decir que son agua fosilizada, su particularidad se podría explicar como catalizadora ya que enfoca, almacena, aumenta y transforma cualquier forma de energía. Muchas son las bellas formas que en la Naturaleza se pueden configurar con Silicio pero la vida…

Yo, de momento, apuesto por el Carbono y, algo me dice que, aunque existan seres distintos a nosotros (que existirán), estos, como nosotros, también estarán basados en el Carbono. Pienso que la mecánica del universo se rige por las leyes que conocemos y, siendo así (que lo es), todo lo que aquí ha ocurrido también podrá ocurrior en cualquier lugar lejano. La materia está conformada de la misma manera en todas partes y, sus transiciones de fase, tanto aquí como allí, siempre serán las mismas y, si es así…La Vida, será también la misma en todas partes independientemente de las formas que puedan adoptar en función de otros factores como gravedad del planeta, lejanía de su estrella, campo electromagnético, etc. etc.

Bueno, ya veremos si tenemos la oportunidad de comprobarlo.

emilio silvera

¿Monopolos magnéticos? ¿Hasta dónde podemos imaginar?

Autor por Emilio Silvera    ~    Archivo Clasificado en Lo que no sabemos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

 

el LHC se ponía en marcha, algunos hablaron de que se podían crear monopolos magnéticos.

“ Desde el punto de vista teórico, uno se siente inclinado a creer que los monopolos han de existir, debido a la belleza matemática de su concepción. Aunque se han hecho varias tentativas de hallarlos, ninguna ha tenido éxito. Debiera deducirse de ello que la belleza matemática en sí no es razón suficiente que la naturaleza aplique una teoría. Nos queda aún mucho que aprender en la investigación de los principios básicos de la naturaleza.”

P. A. M. DIRAC, 1981

 

En los treinta del pasado siglo Paul Dirac realizó unos cálculos teóricos que indicaban que si existieran los monopolos magnéticos, entonces se podría cuantizar fácilmente la carga del electrón. Bastaría que existiera un sólo monopolo magnético en el Universo para que los electrones tuvieran la carga que tienen y no otra.

Foto

La imagen de arriba vino acompañada de la noticia siguiente: “Afirman haber podido detectar por primera vez monopolos magnéticos como un de la materia que se daría a partir de una disposición especial de los momentos magnéticos dentro de un cristal a baja temperatura. “

 

En realidad, cohabitamos una naturaleza llena de fenómenos enigmáticos. Uno de estos fenómenos es la asimetría insólita que se observaba en el magnetismo y la electricidad: no hay cargas magnéticas comparables a las cargas eléctricas. Nuestro mundo está lleno de partículas cargadas eléctricamente, los electrones o los protones, pero nadie ha detectado jamás una carga magnética aislada. El objeto hipotético que la poseería se denomina monopolo magnético.

Foto

         Montaje experimental. Foto: HZB, D.J.P. Morris y A. Tennant.

El grupo de investigadores dispuso un montaje experimental especial poder detectar estas cuerdas de Dirac. Hicieron que un chorro de neutrones impactara sobre una muestra a la que aplicaban un campo magnético. En el interior de la muestra se formaban cuerdas de Dirac que dispersaban los neutrones con un patrón específico que delataba su presencia.

La muestra era un cristal de titanato de disprosio. La estructura cristalina de compuesto tiene una geometría notable, de tal modo que los momentos magnéticos de su interior se organizan en lo que se llama un “espagueti de espines”. El viene de la ordenación de los dipolos, que forman una red de tubos contorsionados (cuerdas) por los que se transporta flujo magnético.

Estos tubos pueden “hacerse visibles” los neutrones interaccionan con ellos; pues los neutrones, aunque no tienen carga eléctrica, sí tienen magnético. El patrón de dispersión de los neutrones obtenido es una representación recíproca de las cuerdas de Dirac contenidas en la muestra. Con el campo magnético aplicado los investigadores podían controlar la simetría y orientación de las cuerdas. A temperaturas de entre 0,6 a 2 grados Kelvin los investigadores pudieron ver pruebas de la existencia de monopolos magnéticos (la temperatura suele ser la peor enemiga del magnetismo, pues tiene a desordenarlo todo) en de este de cuerdas según se acaba de describir.

Además pudieron ver la firma que en la capacidad calorífica dejada el gas de monopolos, viendo que estas cuerdas interaccionan de manera similar a como lo hacen las cargas eléctricas, lo que era de prever para el caso de monopolos magnéticos. En este resultado los monopolos no son partículas, sino que emergen como un de la materia, en concreto a partir de un arreglo especial de los dipolos que forman del material.

hacernos una idea de cómo sería un monopolo magnético si existiera, imaginemos una barra imantada que, como sabemos, posee en cada extremos un «un polo magnético» por el cual se atraen o se repelen. Estos polos son de dos tipos, llamados «norte» y «sur», y se comportan como las cargas eléctricas, positiva y negativa. Esa configuración del campo es un ejemplo de «campo bipolar», y sus líneas de campo no paran: giran y giran interminablemente. Si partimos por la mitad la barra imantada, no tenemos dos polos, el norte y el sur, separados, sino dos imanes. Un polo norte o sur aislado (un objeto con líneas de campo magnético que sólo salgan o que sólo entren) sería un monopolo magnético. De hecho, es imposible aislar una de estas cargas magnéticas. Nunca se ha detectado monópolos magnéticos, es decir partículas que poseyeran una sola carga magnética aislada. que ello se deba a razones no aclaradas, o la naturaleza no creó monopolos magnéticos o creó poquísimos.

En cambio, los monopolos eléctricos (partículas que llevan carga eléctrica) son muy abundantes. chispa de materia contiene un increíble número de electrones y protones que son auténticos monopolos eléctricos. Podríamos imaginar las líneas de fuerza del campo eléctrico surgiendo de una partícula cargada eléctricamente o convergiendo en ella y empezando o acabando allí. Además, la experiencia ha confirmado la ley de conservación de la carga eléctrica: la carga monopólica eléctrica total de un sistema cerrado no puede ni crearse ni destruirse. Pero en el mundo del magnetismo, no existe nada similar a los monopolos eléctricos, aunque un monopolo magnético sea fácilmente concebible.

La teoría electromagnética unifica la fuerza eléctrica y la fuerza magnética. La fuerza eléctrica es generada por la presencia de cargas eléctricas (el electrón, por ejemplo), mientras que la fuerza magnética surge por el movimiento de estas mismas cargas. El campo magnético de un imán proviene del movimiento de los electrones alrededor de los núcleos de hierro.

James Clerk Maxwell, el físico escocés que unificó matemáticamente los campos magnético y eléctrico en 1864, incluía en sus ecuaciones electromagnéticas fundamentales la existencia de cargas eléctricas, no incluyó la posibilidad de cargas magnéticas. Le habría resultado fácil hacerlo; la inclusión, a nivel estético, habría hecho sus ecuaciones bellamente simétricas respecto a la electricidad y el magnetismo. Pero al igual que otros físicos, Maxwell no halló prueba alguna de que hubiera en la naturaleza cargas magnéticas y las excluyó, por principio, de sus ecuaciones. Los físicos consideran entonces extraña la asimetría natural de la electricidad y el magnetismo.

Siguieron profundizando en sus estudios del campo electromagnético maxwelliano. Sabían que las ecuaciones de Maxwell podían simplificarse si se derivaban matemáticamente los campos eléctrico y magnético de otro campo aún más básico: un campo de medida. El campo de medida electromagnético es el ejemplo primero y más simple de la concepción general de campo de medida que descubrirían mucho después Yang y Mills. Curiosamente, al aplicar las ecuaciones de Maxwell al campo simple de medida, los físicos comprobaron que la ausencia de carga magnética se explicaba matemáticamente. Recíprocamente, pudieron demostrar que la ausencia de carga magnética entrañaba matemáticamente la existencia de un campo de medida. El campo de medida introdujo así una asimetría los campos eléctrico y magnético.

       En realidad, ¿quién sabe lo que puede haber en el Universo?

la introducción del campo de medida estructura subyacente del electromagnetismo se consideraba entonces una novedad matemática, un truco conceptual y no verdadera física. De la idea del campo de medida sacabas exactamente (ninguna carga magnética) lo que ponías en ella (ninguna carga magnética). Luego, en los años veinte, el matemático Hermann Weyl demostró que la incorporación de los campos eléctrico y magnético en la nueva teoría cuántica exigía concretamente una interpretación en términos del campo de medida. Y se empezó así a comprobar que el campo de medida electromagnético era físicamente importante, además de interesante matemáticamente. La mecánica cuántica parecía hecha a la medida de los campos de medida, y, curiosamente, los campos de medida presuponían la ausencia de monopolos magnéticos. planteamiento teórico coincidía tan absolutamente con la experiencia que la idea del campo de medida electromagnético se asentó con mucha firmeza. Pero luego, llegó Paul Dirac.

En 1931, Dirac empezó a examinar las consecuencias físicas de la «belleza matemática» del campo de medida electromagnético en la teoría cuántica. Según él: « realicé este , tenía la esperanza de encontrar una explicación de la constante de estructura fina (la constante relacionada con la unidad fundamental de carga eléctrica). Pero no fue así. Las matemáticas llevaban inexorablemente al monopolo.» En contra del punto de vista teórico predominante, Dirac descubrió que la existencia de un campo de medida electromagnético y la teoría cuántica unidas presuponían que en realidad los monopolos magnéticos podían existir… siempre que la unidad fundamental de carga magnética tuviese un valor específico. El valor de la carga magnética que halló Dirac era tan grande que si en realidad existiesen monopolos magnéticos en la naturaleza, tendrían que ser fácilmente detectables, debido a los efectos de sus grandes campos magnéticos.

Entender mejor las consecuencias de las investigaciones de Dirac imaginemos una barra imantada delgada de kilómetro y medio de longitud, con un campo magnético en extremo. En este caso, el campo magnético se parece al de un monopolo magnético porque el imán es muy delgado y los extremos están muy alejados. Pero no es un auténtico monopolo, porque las líneas del campo magnético no terminan realmente en la punta ,del imán; se canalizan a través de éste y surgen por el otro extremo.

Imaginemos luego que un extremo de delgado imán se extiende hasta el infinito, reduciéndose su grosor matemáticamente a cero. El imán parece una línea matemática, o una cuerda, con un campo magnético radial que brota de su extremo: un auténtico monopolo magnético puntiforme: Pero, ¿y esa cuerda infinitamente delgada (llamada cuerda de Dirac) que canaliza el flujo del campo magnético el infinito? Dirac demostró que si la carga magnética del monopolo, con un valor g, cumplía la ecuación

ge = n/2

n = 0, ± 1, ± 2…

en la que e es la unidad fundamental de carga eléctrica (una cantidad conocida experimentalmente), la presencia de esa cuerda no podría detectarse nunca físicamente. Según Dirac, la cuerda se convierte entonces sencillamente en un artilugio matemático descriptivo sin realidad física, igual que las coordenadas de los mapas son artilugios matemáticos que utilizamos describir la superficie de la Tierra, carentes de significado físico. La cuerda de Dirac con un monopolo magnético en la punta era matemáticamente una línea en el espacio, a lo largo de la cual el campo de medida electromagnético no estaba definido. Pero sorprendentemente falta de definición no tenía consecuencias mensurables, siempre que la carga del monopolo magnético cumpliese la condición de Dirac. Otra consecuencia más del monopolo de Dirac era que la carga magnética se conservaba rigurosamente la carga eléctrica.

paul dirac 1907 250x212 Paul Dirac cuando era niño

¿Quién diría, viendo a niño, que de mayor, desarrollaría un trabajo sobre el electrón que nada que envidiar a las teorías de Einstein? Es Paul Dirac de niño, allá por el año 1907. Después de los importantes trabajos de Dirac, los físicos teóricos aceptaron la posible existencia de monopolos magnéticos, pensando que si ninguna ley física rechazaba su existencia, quizá existiesen.

Resumiendo, nada se opone, a priori, a la existencia de cargas magnéticas aisladas. Estos monopolos magnéticos producirían una fuerza magnética, mientras que sus movimientos engendrarían una fuerza eléctrica. , por una razón misteriosa, la naturaleza no parece haberse jugado aquí por la simetría, pues creó «monopolos eléctricos» y aparentemente no monopolos magnéticos.

¿Causa problemas tal asimetría?, ¿Deberían existir los monopolos magnéticos? La respuesta tradicional de los físicos es: No necesariamente. La teoría sugiere su existencia, pero no la exige, y se acomoda muy con su ausencia.

Mas en el marco de la teoría del Big Bang la situación es diferente. En el del quiebre de la simetría de gran unificación, se engendraron cantidades de monopolos magnéticos. Estas partículas, casi tan masivas como las X y las Y, ¡deberían ser tan numerosas como los protones! Masas tan gigantescas deberían poder señalarse fácilmente. ¿Por qué no se dejan percibir por nuestros detectores?

De hecho, con la masa de los monopolos magnéticos, si existiesen, otorgarían al universo una densidad bastante superior que la densidad crítica. Bajo su efecto gravitatorio, ¡el universo se habría cerrado hace mucho tiempo! Y ¿de nosotros?…  ¡Ni hablar!

No están aquí y tanto mejor. Pero, ¿por qué? El problema de los monopolos ausentes es otra de las patologías de las debilidades del Big Bang.

emilio silvera