Feb
19
El saber… ¡Sí ocupa un lugar, en nuestras Mentes!
por Emilio Silvera ~ Clasificado en Nuestro entorno ~ Comments (3)
Supongamos que fuésemos seres que viviésemos en un plano, que solo nos pudiésemos mover en dos dimensiones. Si quisiésemos ir de una esquina a otra de una hoja de papel, tendríamos que atravesarla. Pero si ese papel se doblase y las dos esquinas se tocasen, podríamos ir de una a otra casi sin desplazarnos. La pregunta es, ¿podría el espacio-tiempo doblarse de modo análogo para movernos muy lejos en el Universo? Si eso pudiere ocurrir, el atajo sería lo que la física conoce como agujero de gusano, que en principio sería un lugar hostil en el que estaríamos sometidos a fuerzas que nos despedazarían. Pero ahora una nueva teoría apunta a que podrían darse agujeros de gusano con el hueco suficiente para ser cruzados por un humano, y además bajo fuerzas soportables. De este modo podría hacer un viaje intergaláctico en segundos, aunque habría un problema: el tiempo del viajero no sería equivalente al nuestro. Al volver, descubriría que en la Tierra habrían pasado miles de años.
Si existieran, las estrellas de Quarks estarían situadas entre las de Neutrones y los agujeros negros
Hay veces en las que nos cuentan cosas y hechos de los que nunca hemos tenido noticias y, resultan del máximo interés. Nuestra curiosidad nos llama a desentrañar los misterios y secretos que, tanto a nuestro alrededor, como en las regiones más lejanas del Universo, puedan haber ocurrido, puedan estar sucediendo ahora, o, en el futuro pudieran tener lugar, ya que, de alguna manera, todas ellas tienen que ver con nosotros que, de alguna manera, somos parte de la Naturaleza, del Universo y, lo que sucedió, lo que sucede y lo que sucederá… ¡Nos importa!
Ene
2
Nuestra vecindad y lo que puede contarnos
por Emilio Silvera ~ Clasificado en Nuestro entorno ~ Comments (0)
¡Cómo somos! Nuestra Imaginación…sin límites
Séneca, en algunos de sus pensamientos, se refería al día lejano en el futuro en el que se desatarían los lazos que nos unían a los océanos y se revelará una tierra inmensa… Tule no será entonces el más lejano de los países. Era una metáfora de los lazos que nos atan a nuestro planeta y que algún día serán rotos para viajar a las estrellas.
Llegará el despertar de la investigación inteligente de la Naturaleza, sabremos de los secretos que en ella están profundamente escondidos, y, entonces, podremos por fin caminar por otros senderos que nos llevarán a lugares ignotos en los que podremos contemplar otras maravillas comparables a las que vemos aquí y que no sabemos apreciar.
Alguien dijo:
“Lo que me preocupa no es simplemente comunicar al lector lo que tengo que decir, sino, por encima de todo, transmitirle las razones, subterfugios y afortunadas casualidades que me condujeron a mis descubrimientos. Cuando Cristóbal Colón, Magallanes y los portugueses relatan como se perdieron más de una vez en sus viajes, no sólo debemos perdonarles, sino agradecerles que nos hayan dejado su narración, porque sin ella nos hubiéramos perdido lo más fundamental e interesante. Así que espero que no me culpen si, movido por idéntica consideración hacia el lector, sigo el mismo método.”
El destino final de las estrellas dependerá de la materia que contengan
Como mencioné otras veces, la evolución de nuestro Sol, con el paso del tiempo, lo llevará de manera irremediable primero a expandirse como Gigante Roja hasta alcanzar los límites de la Tierra y, segundo a contraerse más y más para ganar la densidad de una estrella enana blanca y, sólo podrá evitar su propio colapso por la presión de degeneración de los electrones. La densidad que alcanzará la enana blancaserás de 5×108 Kg/m3.
Desde la secuencia que el gráfico nos enseña, finalmente, el Sol puede quedar como la imagen de arriba, es decir, una Nebulosa planetaria que podría ser como esta o diferente -las versiones son muy variadas-, en la que, en el centro, reluce una caliente enana blanca que emite una fuerte radiación ultravioleta que ioniza todo el gas circundante.
En su fase anterior, la de gigante roja, crece varias veces su tamaño original, y en el caso de nuestro Sol su órbita sobrepasará al planeta Mercurio, al planeta Venus y probablemente al planeta Tierra, que para entonces, por lo elevado de las temperaturas reinantes, habrá visto evaporarse el agua de los ríos y océanos hasta dejarlo seco y yermo, sin posibilidad de vida.
Para cuando todo eso ocurra, ¿Quién estará aquí?; faltan varios miles de años y, si la Humanidad no se ha destruido a sí misma, espero que para entonces tenga preparado todos los medios necesarios para instalarse en otros mundos, preferiblemente fuera de nuestro Sistema Solar, ya que los planetas vecinos, una vez desaparecido el Sol, no creo que reúnan las condiciones idóneas para acoger la vida, y las lunas de esos planetas tampoco parecer suficientemente acogedoras: Io, el tercer satélite más grande de Júpiter, sólo tiene un diámetro de 3.630 Km y es una caldera volcánica donde la radiante lava fluye de sus muchos volcanes. Toda la superficie de Io tiene un color amarillento debido a los depósitos de azufre u óxido de azufre. Existen extensas llanuras y regiones montañosas en Io, aunque no cráteres de impacto, indicando que su superficie es muy joven geológicamente.
La densidad de Io, 3’57 g/cm3, sugiere que tiene un núcleo de hierro-azufre de unos 1.500 Km de radio y un manto de silicatos. Las actividades volcánicas de Io son el resultado del calor liberado por las fuerzas de marea, que distorsionan el satélite a medida que se acerca o se aleja de Júpiter en su órbita.
Europa, el cuarto satélite más grande de Júpiter y el segundo de los cuatro satélites galileanos en distancia al planeta, conocido también como Júpiter II, tiene un diámetro de 3.138 Km, ligeramente menor que nuestra Luna. La densidad de Europa es de 2’97 g/cm3 indicando que está compuesta fundamentalmente por rocas de silicio, mezcladas con, al menos, un 5% de agua.
La superficie es brillante y helada con un albedo de 0’64, dominada por redes de fracturas oscuras y lineales, algunas de más de 1.000 Km de longitud. Se han identificado en Europa al menos una docena de cráteres de impacto.
Ganímedes, el satélite más grande de Júpiter y el mayor del Sistema Solar, con un diámetro de 5.262 Km, conocido como Júpiter III y es el más brillante de los satélites galileanos. La densidad de este satélite es de 1’94 g/cm3 y posee una superficie helada llena de contrastes con regiones de alto y bajo albedo, cubiertos por complejos sistemas de surcos, indicando la existencia de varias fases de actividad en la corteza en el pasado. Algunos de los cráteres de impacto más grandes sobre la superficie se han convertido en palimpsestos debido al lento flujo del hielo, como en un glaciar.
Titán, el satélite más grande de Saturno y el segundo más grande del Sistema Solar, con un diámetro de 5.150 Km; también conocido como Saturno VI. Fue descubierto en 1.655 por C. Huygens. La composición más probable de Titán es rocas e hielo en partes iguales aproximadamente. Es el único satélite del Sistema Solar que tiene una atmósfera sustancial. La atmósfera está compuesta principalmente por nitrógeno, con un 2/10% de metano, un 0’2% de hidrógeno (porcentajes moleculares) y trazas de etano, propano, etino, cianuro de hidrógeno y monóxido de carbono. Su temperatura es de -180 ºC y pueden existir lloviznas de metano en la superficie y posiblemente nieve de metano. A unos 200 Km de altura abundan espesas nubes anaranjadas de hidrocarburos y existen además capas de neblina atmosférica hasta los 500 Km.
Las sondas Voyager revelaron un casquete polar de Titán, con un collar ligeramente más oscuro a su alrededor. Además, el hemisferio norte era marcadamente más oscuro que el sur. Ambos son probablemente efectos estacionales.
Otras muchas lunas acompañan a nuestros planetas vecinos: Phobos y Deimos en Marte; Callisto, Amalthea, Leda, etc. en Júpiter; Pan, Atlas, Prometheus, Pandora, etc. en Saturno; Cordelia, Ophelia, Bianca, Ariel, etc. en Urano; Galatea, Larissa, Tritón, Nereid, etc. en Neptuno; Charon en Plutón… hasta formar un conjunto aproximado de más de 60 lunas.
Mercurio y Venus
De los planetas vecinos, Mercurio y Venus están descartados para la vida, y Marte con su delgada atmósfera compuesta (en volumen) por alrededor del 95% de dióxido de carbono, 2’7% de nitrógeno, 1’6% de argón, 0’1% de monóxido de carbono y pequeñas trazas variables de vapor de agua, con unas temperaturas superficiales de entre 0 y -125 ºC, siendo la media de -50 ºC.
Es relativamente frecuente la presencia de vapor de agua en nubes blancas o de dióxido de carbono en dichas nubes cerca de latitudes polares. Existen dos casquetes de hielo de agua permanentes en los polos, que nunca se funden y que en invierno aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado, hasta alcanzar los 60º de longitud.
Ocurren esporádicamente tormentas de polvo, pudiendo extenderse hasta cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares. La superficie de Marte es de basalto volcánico con un alto contenido en hierro, que le da al planeta el color característico por el que se le denomina “el planeta rojo”. Existen muchas áreas de dunas de arena rodeando los casquetes polares que constituyen los mayores campos de dunas del Sistema Solar.
Olimpus Mont en Marte
El volcán que da lugar al Monte Olimpo, en Marte, es la mayor cumbre conocida en el Sistema Solar: tiene unos 27 km de altura, tres veces la altura del Everest (8,85 km) Sus dimensiones son tales que una persona que estuviese en la superficie marciana no sería capaz de ver la silueta del volcán, ni siquiera desde una distancia a la cual la curvatura del planeta empezara a ocultarla. El efecto por tanto sería el de estar contemplando una “pared”, o bien confundir la misma con la línea del horizonte. La única forma de ver la montaña adecuadamente es desde el espacio. Igualmente, si alguien se encontrara en la cima del volcán y mirase hacia abajo no podría ver el final, ya que la pendiente llegaría hasta el horizonte…
La actividad volcánica fue intensa en el pasado. Tharsis Montes es la mayor región volcánica, estando Olympus Monts situado en el noroeste, y la vasta estructura colapsada Alba Patera, en el norte. Juntas, estas áreas volcánicas constituyen casi el 10% de la superficie del planeta. No hay volcanes activos en Marte, aunque en el pasado produjeron llanuras de lava que se extendieron cientos de kilómetros.
Muchos de los cráteres de impacto más recientes, como cráteres de terraplén, tienen grandes pendientes en los bordes de sus mantas de proyecciones, sugiriendo que la superficie estaba húmeda o llena de barro cuando se produjo el impacto.
Aunque -según parece- no existe en la actualidad agua líquida en la superficie de Marte, hay indicios muy firmes de que en el suelo si como lo han podido comprobar varias de las sonsas allí enviadas como, por ejemplo, La Mars Phoenix. Las huellas halladas en el terreno de Marte, nos habla de que allí antiguamente el planeta tuvo ríos y lagos cuando existía una atmósfera más densa, caliente y húmeda. Uno de los canales secos es Ma’adim Vallis, de unos 200 Km de longitud y varios kilómetros de ancho.
El cañón natural más grande del Sistema solar está en Marte
Muchos son los lugares del planeta Marte en los que están presentes las huellas del agua corriente y cantarina que en otros tiempos, alegró el sonido del planeta. Internamente, Marte probablemente tiene una litosfera de cientos de kilómetros de espesor, una astenosfera rocosa y un núcleo metálico de aproximadamente la mitad del diámetro del planeta.
Marte no posee un campo magnético importante; su diámetro ecuatorial es de 6.794 Km, su velocidad de escape de 5,02 Km/s y su densidad media de 3’94 g/cm3. Dista del Sol 1’524 UA.
Tanto las lunas antes mencionadas como el planeta Marte son objetos de interesantes estudios que nos facilitarán importantes conocimientos de los objetos que pueblan el espacio exterior y de cómo serán muchos de los planetas y lunas que nos encontraremos más allá de nuestro Sistema Solar.
Sin embargo, como lugares para vivir e instalarse no parecen, por sus condiciones físicas-ambientales, los más idóneos. Si acaso, en algunos de estos objetos celestes se podrán instalar bases intermedias para el despegue hacia otros mundos más lejanos, para aprovechar sus recursos de materiales minerales, hidrocarburos, etc. que poseen en abundancia pero, desgraciadamente, no son lugares aptos para instalar a la Humanidad que necesitaría crear, artificialmente, costosas instalaciones que simularan las condiciones terrestres, y tal empresa ni económica, ni tecnológicamente es tarea fácil.
Próxima Centauri b podría ser un buen destino
Así las cosas, el único camino posible para el futuro de la Humanidad será avanzar en la exploración del espacio exterior, construir naves espaciales mejor dotadas en todos los sentidos, sobre todo: aislante de radiaciones nocivas y peligrosas para la salud de los tripulantes, dispositivo anti-flotabilidad que imite la gravedad terrestre, espacios hidropónicos que produzcan cosechas continuas de verduras y tubérculos, plantas de reciclaje que depuren de manera continuada el agua de toda la nave, motones lumínicos de fotones, antimateria, etc. que de alguna manera imite la velocidad relativista, laboratorios con instalaciones tecnológicas de última generación con potentes y sofisticados ordenadores que avancen y mejoren continuamente sobre el conocimiento científico de la física, la química y la biología, y, en fin y sobre todo, una conciencia colectiva de todos los gobiernos del mundo para comprender que su principal cometido es mirar y tratar de conseguir el mayor bienestar y la seguridad de todos los ciudadanos y, de entre otras cuestiones, una importante es la de destinar una parte importante de los recursos para investigar, explorar y preparar el futuro de las generaciones futuras.
No podemos descansar.
emilio silvera
Ago
6
Nuestra vecindad y lo que puede contarnos
por Emilio Silvera ~ Clasificado en Nuestro entorno ~ Comments (0)
Como mencioné otras veces, la evolución de nuestro Sol, con el paso del tiempo, lo llevará de manera irremediable primero a expandirse como Gigante Roja hasta alcanzar los límites de la Tierra y, segundo a contraerse más y más para ganar la densidad de una estrella enana blanca y, sólo podrá evitar su propio colapso por la presión de degeneración de los electrones. La densidad que alcanzará la enana blancaserás de 5×108 Kg/m3.
Desde la secuencia que el gráfico nos enseña, finalmente, el Sol puede quedar como la imagen de arriba, es decir, una Nebulosa planetaria que podría ser como esta o diferente -las versiones son muy variadas-, en la que, en el centro, reluce una caliente enana blanca que emite una fuerte radiación ultravioleta que ioniza todo el gas circundante.
En su fase anterior, la de gigante roja, crece varias veces su tamaño original, y en el caso de nuestro Sol su órbita sobrepasará al planeta Mercurio, al planeta Venus y probablemente al planeta Tierra, que para entonces, por lo elevado de las temperaturas reinantes, habrá visto evaporarse el agua de los ríos y océanos hasta dejarlo seco y yermo, sin posibilidad de vida.
Para cuando todo eso ocurra, ¿quién estará aquí?; faltan varios miles de años y, si la Humanidad no se ha destruido a sí misma, espero que para entonces tenga preparado todos los medios necesarios para instalarse en otros mundos, preferiblemente fuera de nuestro Sistema Solar, ya que los planetas vecinos, una vez desaparecido el Sol, no creo que reúnan las condiciones idóneas para acoger la vida, y las lunas de esos planetas tampoco parecer suficientemente acogedoras: Io, el tercer satélite más grande de Júpiter, sólo tiene un diámetro de 3.630 Km y es una caldera volcánica donde la radiante lava fluye de sus muchos volcanes. Toda la superficie de Io tiene un color amarillento debido a los depósitos de azufre u óxido de azufre. Existen extensas llanuras y regiones montañosas en Io, aunque no cráteres de impacto, indicando que su superficie es muy joven geológicamente.
La densidad de Io, 3’57 g/cm3, sugiere que tiene un núcleo de hierro-azufre de unos 1.500 Km de radio y un manto de silicatos. Las actividades volcánicas de Io son el resultado del calor liberado por las fuerzas de marea, que distorsionan el satélite a medida que se acerca o se aleja de Júpiter en su órbita.
Europa, el cuarto satélite más grande de Júpiter y el segundo de los cuatro satélites galileanos en distancia al planeta, conocido también como Júpiter II, tiene un diámetro de 3.138 Km, ligeramente menor que nuestra Luna. La densidad de Europa es de 2’97 g/cm3 indicando que está compuesta fundamentalmente por rocas de silicio, mezcladas con, al menos, un 5% de agua.
La superficie es brillante y helada con un albedo de 0’64, dominada por redes de fracturas oscuras y lineales, algunas de más de 1.000 Km de longitud. Se han identificado en Europa al menos una docena de cráteres de impacto.
Ganímedes, el satélite más grande de Júpiter y el mayor del Sistema Solar, con un diámetro de 5.262 Km, conocido como Júpiter III y es el más brillante de los satélites galileanos. La densidad de este satélite es de 1’94 g/cm3 y posee una superficie helada llena de contrastes con regiones de alto y bajo albedo, cubiertos por complejos sistemas de surcos, indicando la existencia de varias fases de actividad en la corteza en el pasado. Algunos de los cráteres de impacto más grandes sobre la superficie se han convertido en palimpsestos debido al lento flujo del hielo, como en un glaciar.
Titán, el satélite más grande de Saturno y el segundo más grande del Sistema Solar, con un diámetro de 5.150 Km; también conocido como Saturno VI. Fue descubierto en 1.655 por C. Huygens. La composición más probable de Titán es rocas e hielo en partes iguales aproximadamente. Es el único satélite del Sistema Solar que tiene una atmósfera sustancial. La atmósfera está compuesta principalmente por nitrógeno, con un 2/10% de metano, un 0’2% de hidrógeno (porcentajes moleculares) y trazas de etano, propano, etino, cianuro de hidrógeno y monóxido de carbono. Su temperatura es de -180 ºC y pueden existir lloviznas de metano en la superficie y posiblemente nieve de metano. A unos 200 Km de altura abundan espesas nubes anaranjadas de hidrocarburos y existen además capas de neblina atmosférica hasta los 500 Km.
Las sondas Voyager revelaron un casquete polar norte en las nubes de Titán, con un collar ligeramente más oscuro a su alrededor. Además, el hemisferio norte era marcadamente más oscuro que el sur. Ambos son probablemente efectos estacionales.
Otras muchas lunas acompañan a nuestros planetas vecinos: Phobos y Deimos en Marte; Callisto, Amalthea, Leda, etc. en Júpiter; Pan, Atlas, Prometheus, Pandora, etc. en Saturno; Cordelia, Ophelia, Bianca, Ariel, etc. en Urano; Galatea, Larissa, Tritón, Nereid, etc. en Neptuno; Charon en Plutón… hasta formar un conjunto aproximado de más de 60 lunas.
Mercurio y Venus
De los planetas vecinos, Mercurio y Venus están descartados para la vida, y Marte con su delgada atmósfera compuesta (en volumen) por alrededor del 95% de dióxido de carbono, 2’7% de nitrógeno, 1’6% de argón, 0’1% de monóxido de carbono y pequeñas trazas variables de vapor de agua, con unas temperaturas superficiales de entre 0 y -125 ºC, siendo la media de -50 ºC.
Es relativamente frecuente la presencia de vapor de agua en nubes blancas o de dióxido de carbono en dichas nubes cerca de latitudes polares. Existen dos casquetes de hielo de agua permanentes en los polos, que nunca se funden y que en invierno aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado, hasta alcanzar los 60º de longitud.
Ocurren esporádicamente tormentas de polvo, pudiendo extenderse hasta cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares. La superficie de Marte es de basalto volcánico con un alto contenido en hierro, que le da al planeta el color característico por el que se le denomina “el planeta rojo”. Existen muchas áreas de dunas de arena rodeando los casquetes polares que constituyen los mayores campos de dunas del Sistema Solar.
Olimpus Mont en Marte
El volcán que da lugar al Monte Olimpo, en Marte, es la mayor cumbre conocida en el Sistema Solar: tiene unos 27 km de altura, tres veces la altura del Everest (8,85 km) Sus dimensiones son tales que una persona que estuviese en la superficie marciana no sería capaz de ver la silueta del volcán, ni siquiera desde una distancia a la cual la curvatura del planeta empezara a ocultarla. El efecto por tanto sería el de estar contemplando una “pared”, o bien confundir la misma con la línea del horizonte. La única forma de ver la montaña adecuadamente es desde el espacio. Igualmente, si alguien se encontrara en la cima del volcán y mirase hacia abajo no podría ver el final, ya que la pendiente llegaría hasta el horizonte…
La actividad volcánica fue intensa en el pasado. Tharsis Montes es la mayor región volcánica, estando Olympus Monts situado en el noroeste, y la vasta estructura colapsada Alba Patera, en el norte. Juntas, estas áreas volcánicas constituyen casi el 10% de la superficie del planeta. No hay volcanes activos en Marte, aunque en el pasado produjeron llanuras de lava que se extendieron cientos de kilómetros.
Muchos de los cráteres de impacto más recientes, como cráteres de terraplén, tienen grandes pendientes en los bordes de sus mantas de proyecciones, sugiriendo que la superficie estaba húmeda o llena de barro cuando se produjo el impacto.
Aunque -según parece- no existe en la actualidad agua líquida en la superficie de Marte, hay indicios muy firmes de que en el suelo si como lo han podido comprobar varias de las sonsas allí enviadas como, por ejemplo, La Mars Phoenix. Las huellas halladas en el terreno de Marte, nos habla de que allí antiguamente el planeta tuvo ríos y lagos cuando existía una atmósfera más densa, caliente y húmeda. Uno de los canales secos es Ma’adim Vallis, de unos 200 Km de longitud y varios kilómetros de ancho. También se han hallado huellas mareales de antiguos mares y océanos.
Muchos son los lugares del planeta Marte en los que están presentes las huellas del agua corriente y cantarina que en otros tiempos, alegró el sonido del planeta. Internamente, Marte probablemente tiene una litosfera de cientos de kilómetros de espesor, una astenosfera rocosa y un núcleo metálico de aproximadamente la mitad del diámetro del planeta.
Marte no posee un campo magnético importante; su diámetro ecuatorial es de 6.794 Km, su velocidad de escape de 5,02 Km/s y su densidad media de 3’94 g/cm3. Dista del Sol 1’524 UA.
Tanto las lunas antes mencionadas como el planeta Marte son objetos de interesantes estudios que nos facilitarán importantes conocimientos de los objetos que pueblan el espacio exterior y de cómo serán muchos de los planetas y lunas que nos encontraremos más allá de nuestro Sistema Solar.
Pero todo de queda ahí, en una interesante experiencia que tenemos que confirmar
Sin embargo, como lugares para vivir e instalarse no parecen, por sus condiciones físicas-ambientales, los más idóneos. Si acaso, en algunos de estos objetos celestes se podrán instalar bases intermedias para el despegue hacia otros mundos más lejanos, para aprovechar sus recursos de materiales minerales, hidrocarburos, etc. que poseen en abundancia pero, desgraciadamente, no son lugares aptos para instalar a la Humanidad que necesitaría crear, artificialmente, costosas instalaciones que simularan las condiciones terrestres, y tal empresa ni económica, ni tecnológicamente es tarea fácil.
Así las cosas, el único camino posible para el futuro de la Humanidad será avanzar en la exploración del espacio exterior, construir naves espaciales mejor dotadas en todos los sentidos, sobre todo: aislante de radiaciones nocivas y peligrosas para la salud de los tripulantes, dispositivo antiflotabilidad que imite la gravedad terrestre, espacios hidropónicos que produzcan cosechas continuas de verduras y tubérculos, plantas de reciclaje que depuren de manera continuada el agua de toda la nave, motones lumínicos de fotones, antimateria, etc. que de alguna manera imite la velocidad relativista, laboratorios con instalaciones tecnológicas de última generación con potentes y sofisticados ordenadores que avancen y mejoren continuamente sobre el conocimiento científico de la física, la química y la biología, y, en fin y sobre todo, una conciencia colectiva de todos los gobiernos del mundo para comprender que su principal cometido es mirar y tratar de conseguir el mayor bienestar y la seguridad de todos los ciudadanos y, de entre otras cuestiones, una importante es la de destinar una parte importante de los recursos para investigar, explorar y preparar el futuro de las generaciones futuras.
No podemos descansar.
emilio silvera
Jul
21
Desde el pasado al presente…¿Qué será de mañana?
por Emilio Silvera ~ Clasificado en Nuestro entorno ~ Comments (0)
La ruta de la seda que tantos sueños despertaron en las mentes de muchos
La investigación rigurosa del pasado con el fin de descubrir las raíces humanas, la percepción y el estudio de las diferencias culturales, el interés por indagar los mecanismos profundos que gobiernan los sistemas económicos y sociales, e incluso el análisis del funcionamiento de la mente humana, surgieron y se desarrollaron en épocas relativamente recientes. Salvo la Psicología, que tiene una original y larguísima y valiosa tradición en la India, las restantes ciencias sociales son una creación propia de de la culturta europea occidental, lo que no deja de llamar la tención de muchos estudiosos puesto que culturas milenarias con trayectorias practicamente ininterrumpidas como la de China e India parecían las mása adecuadas para que de ellas surgieran disciplinas como Historia, la Econmomía o la Sociología. Es curioso el indagar sobre la génesis y los primeros logros de las ciencias que tienen como objeto el hombre y la sociedad que este ha creado.
Hemos pasado de la tradicción oral a las bibliotecas.
Antes de la invención de la escritura, la cultura humana ya se había desarrollado extensamente en áreas tan variadas como las artes plásticas, la religión, , la agricultura, la poesía y las técnicas de la metalurgía, la alfarería y de la construcción. Nuestra especie, comenzó a crear Sociedades de convivencia que ganaron estadios superiores en áreas hasta entonces desconocidas.
Pero incluso después de que se generalizaran los escritos, la transmisión oral y la memorización de los acontemcimientos continuaron siendo imprescindibles durante mucho tiempo, por lo que el cultivo y mejoramiento de la memoria humana fue una de las gransdes preocupaciones de la Antigüedad.
Sutra del Diamante, hallado en la cueva de Dunhuang (China). Es el documento impreso de fecha conocida más antiguo que se conserva. Fue realizado el 11 de mayo del año 871. La imprenta es un método mecánico destinado a reproducir textos e imágenes sobre papel, tela u otros materiales. En su forma clásica, consiste en aplicar una tinta, generalmente oleosa, sobre unas piezas metálicas (tipos)para transferirla al papel por presión. Aunque comenzó como un método artesanal, su implantación trajo consigo una revolución cultural.
Muchos expertos estudiosos han sido los que han explicado el largo proceso de seguido por la Humanidad desde que empleo las antiguas técnicas de memorización y recitación hasta la invención de la imprenta de tipos móviles, la producción masiva de libros y su clasificación y conservación en extensas bibliotecas.
Culturas como la China, la Japonesa y la Coreana, fueron pioneras en la utilización de la imprenta, pero sería el europeo Gutemberg quien le dió el impulso defintivo que habia de convertirla en la herramienta básica de la cultura moderna.
Del mito a la construcción del pasado histórico.
Sin embargo, hasta el siglo XV no aparecería un pionero que introdujera las primeras técnicas de lo que hoy conmocemos como crítica histórica. En efecto, fue Lorenzo Valla quien utilizó por primera ves el conocimioento de la gramética histórica para descubrir anacronismos en documentos falsificados y quien aplicó el análisis filológico y del estilo para fijar autoría de libros y documentos.
Por otra parte, también durante los siglos y XV y XVI surgió el interés por el estudio de las ruinas, sobre todo las de Roma, aunque no fue hasta el XVIII, con la obra de Johann Joachim Winckekmnn, que se sentaron las bases de la formación de la moderna arqueología: esta conocería durante esta centuria y la siguiente un espectacular desarrollo.
De la construcción del pasado al análisis del presente.
Boorstin demuestra finalmente cómo el descubrimioento y la conolización americana fueron elementos fundamentales para que surgiera la Antropología y la Etnología y, con ellas, ideas como la del origen común de toda la humanidad, a pesar de la diversisdad racial y cultural.
Más propias de los siglos XVIII y XIX son la Economía, la Sociología y la Psicología , de las que Adam Smith, Jonh Graunt y Sigmund Freud fueron, más que precursores, auténticas fundadores. Hay otras paortaciones considerables como las de David Ricardo, Kal Marx, o John Mynard Keynes en los análisis económicos. Malthus en los estudios demográficos y Adolphe Quletet en la Estadísitica aplicada a la sociología.
Pero, tosdo este recorrido, estaría falto de algo esencial, los descubrimientos de la Fisica del siglo XIX que han posibilitado a los físicos de nuestro tiempo conquistar los secretos de la constitución íntima de la materia, llegando hasta las constituyentes del núcleo atómico.
Es verdad, aquellos que comentó Valery, cuando en 1924 dijo: “El hombre sólo está en mala compañía” Sí, el hombre es eminentemente un animal social y, necesita, que sus congéneres sean sabedores y admiradores de su s obras. Sin otros que vean lo que haces el esfuerzo tendrá menor sentido. Se estaba refiriendo a la divulgación de los conocimientos, de los descubrimientos, de que investigar sin divulgar tenía poco o ningún valor.
Con todo este repaso llegamos a la conclusión de que debimos descubrir la historia antes de poder explorarla. Y, como he deicho antes, los mensajes del pasado se transmitían primero a través de las habilidades de la memnoria, luego de la escritura, y, finalmente, de manera explosiva en los libros.
Los pensamientos llevados a la escritura para decir al mundo cómo están conformadas las cosas, la Naturaleza y el Universo mismo
El insospechado tesoro de reliquias que guarda la tierra se remontaba a la prehistoria. El pasado se conviertió en algo más que un almacen de mitos o un catálogo de lo familiar. Nuevos mundos trerrestres y marinos, riquezas de continentes remotos, modos de vida de pueblos lejanos, abrieron nuevas perspectivas en nuestras mentes que, así, de esa manera, comprendieron que, muchos antes que nosotros estuvieron aquí y crearon grandes cosas, hicieron grandes ciudades, inventaron grandes formas de vivir y elevaron los grupos humanos a la categoria de Sociedad, de Civilización que trajeron progreso y novedades,
Así, las nuevas formas cotidianas de convivencia en Sociedad, llevó a estos seres a tener que aprender a convivir de distinta manera, a compartir con los demás y, se dió cuenta de que, las ideas, en conjunto, alcanzaban cotas mayores y mayores logros también no quedándo perdidas como tantas veces ocirrió a la lorga la historia de la Humanidad.
Claro que, hoy tenemos una idea muy clara: Toda la Humanidad es una. El origen y el destino de todos… ¡Es el mismo!
Sin embargo, nos falta dar el paso final y hacer que esa unidad sea realmente cierta, estamos en la edad de la globalización, las noticias diarias nos traen escenas de cualquier parte del muindo en tiempo real, y, sin embargo, las diferencias continúan.
Necesitamos un sólo Gobierno Mundial, un Consejo compuesto por seres de todo el planeta y que rija nuestros destinos y distribuya las riquezas de manera proporcional al número de la población de cada región. La igualdad debe estar presente en todas partes. No hablar de ella con bonitas palabras en un alto estrado, NO, sino que, se deben evitar desigualdades que, a estas alturas están fuera de lugar.
Así se conforman los pobres para no caer en la desesperación e impotencia
Es imperdonable que puedan existir algunas personas (unos pocos cientos de miles, o, incluso algunos millones) que domine el 90% de toda la riqueza mundial. Eso no es moral. Algunas familas, para que sus hijos puedan estudiar están pasándolo mal y tienen carencias de necesidades primarias, mientreas que otros, tienen a sus hijos estudiando en el extranjero en colegios por los que paga en un año lo que aquí en España se paga por todo el curso, y, los padres del primero están pasando necesidades mientras que, los del segundo, su mayor preocupación es hacer una lista de los invitados que vendrásn el domingo a su próxima monteria en la finca de 6.000 Has.
Mientras todo esto siga a sí, el avance será pequeño. Hoy días, el lugar de quellos Sacerdotes de las épocas pasadas, lo ocupan los gurus del dinero que se pavonean por el mundo y…si se escarvara un pocoi en el origen de las fortunas, muy pocos podrían pasar el examen.
En fin amigos, me desvío de mi cometiodo principal que es hablaros de lo que pasó en tiempos pasados, de como podemos actuar en el presente para preparar el terreno y tener un futuro mejor.
Hablamos de Ciencia y de Cultura, de Letras y de Números, de lo infinito y de lo infinitesimal, de la Mente y de la Conciencia pero, ¿seremos alguna vez conscientes? En cuanto a la pregunta planteada…. ¡El futuro siempre será incierto!
emilio silvera
Sep
15
El saber… ¡Sí, ocupa un lugar, en nuestras Mentes!
por Emilio Silvera ~ Clasificado en Nuestro entorno ~ Comments (0)
Hay veces en las que nos cuentan cosas y hechos de los que nunca hemos tenido noticias y, resultan del máximo interés. Nuestra curiosidad nos llama a desentrañar los misterios y secretos que, tanto a nuestro alrededor, como en las regiones más lejanas del Universo, puedan haber ocurrido, puedan estar sucediendo ahora, o, en el futuro pusidieran tener lugar, ya que, de alguna manera, todas ellas tienen que ver con nosotros que, de alguna manera, somos parte de la Naturaleza, del Universo y, lo que sucedió, lo que sucede y lo que sucederá… ¡Nos importa!
El Cinturón de Gould es un sector del Brazo de Orión. El Brazo de Orión es la primera gran estructura a la que pertenecemos; grande en sentido galáctico. Es un larguísimo arco estelar de 10.000 años-luz de longitud y 3.500 de ancho. Mucho más del 99% de lo que ven nuestros ojos a simple vista, en una noche normal, está aquí. Muchas personas de ciudad vivirán y morirán sin ver en persona nada más allá del Brazo de Orión.
Se ha discutido, argumentado y teorizado sobre la vida durante siglos, quizás milenios. Lo que conocemos como vida es ni más ni menos que una estructura formada de átomos que se han organizado y que lograron crear mecanismos que les permiten mantener esa organización. Decir que los átomos “se han organizado” es una locura. En el mundo material no hay nada más básico que un átomo, y algo tan básico no es capaz de hacer algo tan complejo como “organizarse”.
¿O sí?
Una célula es un sistema muy complejo (célula animal)
La realidad es que sí. Los átomos, en cumplimiento de leyes físicas simples, se organizan en estructuras. La más sencilla es una molécula, que puede estar formada por algunos átomos, pero se llega a estructuras bastante complejas y ordenadas, como los cristales y fibras
naturales y maravillosas formas como las buckyballs. Buckyballs es el nombre coloquial utilizado para describir un fullereno. Los avances logrados por la Humanidad, son tan grandes que, estando a nuestro alrededor, no somos conscientes de su verdadero alcance.
Nanomateriales aplicados a dispositivos electrónicos y los tres tipos de geometrías de nanotubos de carbono
|
Los avances fueron de hecho tan espectaculares que hacia mediados del siglo XX ya se había dado respuesta a todas las cuestiones sencillas. Conceptos tales como la teoría general de la relatividad y la mecánica cuántica explicaron el funcionamiento global del universo a escalas muy grandes y muy pequeñas respectivamente, mientras el descubrimiento de la estructura del ADN y el modo en que éste se copia de una generación a otra hizo que la propia vida, así como la evolución, parecieran sencillas a nivel molecular. Sin embargo, persistió la complejidad del mundo a nivel humano –al nivel de la vida-. La cuestión más interesante de todas, la que planteaba cómo la vida pudo haber surgido a partir de la materia inerte, siguió sin respuesta.
Un descubrimiento así no podía dejar al mundo indiferente. En unos años el mundo científico se puso al día y la revolución genética cambió los paradigmas establecidos. Mucha gente aún no está preparada para aceptar el comienzo de una era poderosa en la que el ser humano tiene un control de sí mismo mayor al habitual. Había nacido la Ingeniería genética. No debe extrañarnos que sea precisamente a escala humana donde se den las características más complejas del universo.
Claro que nada de esto se aproxima al nivel de organización que implica la vida. Recordemos ahora la parte de la frase sobre los átomos que dice “lograron crear mecanismos”, lo cual jamás puede ser cierto… al menos no en la forma directa que uno se imagina al primer momento. Un virus, por ejemplo, es una especie de “máquina” capaz de propagarse. No de reproducirse, al menos no en el sentido que se le da a la palabra en biología, pero sí de activar un mecanismo que permite obtener copias de sí mismo.
Los virus infectan tanto células como bacterias porque no pueden multiplicarse por sí mismos. Al hacerlo, usan las moléculas y enzimas de su desafortunado hospedero para replicar su genoma y construir sus cápsulas virales, las cuales son muy parecidas a unas sondas espaciales pero que, en este caso, sólo transportan ADN o ARN con el único fin de repetir el ciclo en otra víctima.
Antes de seguir quiero hacer una salvedad: todo lo que diga encontrará alguien para discutirlo. Los conceptos básicos que se aplican a la vida aún no están del todo definidos. Por ejemplo, sé que hay corrientes de pensamiento para las cuales los virus no son seres vivos. De acuerdo, sólo es cuestión de definiciones, y no es necesario —ni posible— discutirlas aquí. Yo prefiero incluir a los virus en este análisis porque son algo así como el primer nivel de estructura a discutir (sí, sé que existen estructuras menores, pero no con tanta entidad).
Siguiendo en la línea que venía, la cuestión es que parece haber una barrera entre el nivel de organización que pueden alcanzar los átomos por leyes simples de la física y la estructura que presenta la vida. ¿Es esto cierto? Da para discutir mucho, pero creo, en base a muchas líneas de investigación y descubrimientos que se vienen presentando, que no. La estructuración de la vida es gradual. De un evento físico no surge una célula ni, mucho menos, un ratón, pero la realidad es que cada uno de los pasos intermedios que llevan desde un amasijo de átomos a una de estas formas de vida son dados por fenómenos que tienen que ver con la física, la química y… la propia orientación de lo que es la vida. Digamos que la vida, una vez aparecida, crea un entorno de leyes propias que impulsan su desarrollo. ¿Cómo y por qué se crean estas leyes, en base a qué voluntad? Ninguna. (Y aquí surgirán de nuevo las discusiones.) Simplemente, no puede existir la vida sin esas leyes. El hecho de que estemos en un planeta que tenga vida por doquier, y muy desarrollada, es porque la vida, cuando existe, sigue estas reglas que le permiten desarrollarse, y si no las sigue desaparece. Es como decir que hay leyes físicas, leyes básicas del universo, que han sido puestas especialmente para la vida. De hecho, considerando la vida una forma de la materia, creo que es así. Es decir, la vida —cumpliendo los requisitos— sería algo inevitable en el Universo…
Kepler A y Kepler B son dos astros con el 69% y el 20% de la masa del Sol respectivamente, mientras que Kepler-16b es un exosaturno que tiene 0,33 veces la masa de Júpiter. Posee un periodo de 229 días y se halla situado a 105 millones de kilómetros del par binario, la misma distancia que separa a Venus del Sol en nuestro Sistema Solar. Pero debido a que Kepler-16 AB son dos estrellas relativamente frías, la temperatura “superficial” de este gigante gaseoso ronda unos gélidos 170-200 K dependiendo de la posición orbital. Es decir, nada que ver con el infierno de Venus. Otros mundos, más parecidos a nuestra Tierra, ¿por qué no tendrían formas de vida? Lo lógico es pensar que sí, que albergue la vida más o menos inteligente y conforme se haya producido su evolución.
Me estoy extendiendo fuera del tema. No pretendo estudiarlo filosóficamente, sino usar un poco de lógica para llegar a una respuesta para una pregunta que se hacen los científicos, y que nos hacemos todos, excepto aquellos que quieren creer en entidades superiores que se ocuparon de ello (lo cual es, simplemente, pasar el problema a otro nivel, sin resolverlo): ¿Cómo es que la vida evolucionó desde átomos, moléculas, células, seres simples, a una especie como la nuestra, tan tremendamente compleja y capaz de, como lo estoy haciendo yo, reflexionar sobre sí misma, transmitirlo y, además, cambiar el mundo como lo estamos cambiando?
Lo estamos cambiando de muchas maneras. Estuve pensando que, si se prueba que es cierta, esta teoría de los georreactores planetarios se debe aplicar a todos los cuerpos planetarios del universo. Estoy seguro de que ustedes deben conocer la ecuación de Drake que intenta estimar el número de inteligencias que podrían existir en el universo, algo que se tiene en gran consideración en el SETI. ¿Se debería agregar un nuevo valor a esta fórmula que represente el tiempo esperado de vida del georreactor en un planeta tipo Tierra? Quizá en el núcleo de los planetas que forman ese escudo magnético a su alrededor, esté el secreto del surgir de la vida en ellos.
Yo creo en una cosa, y esto puede desatar miles de discusiones: llegar desde materiales básicos a la creación del ser humano se basó en juntar los materiales (átomos), tener las leyes físicas actuando y a la casualidad (o azar). ¿Qué quiero decir con “casualidad”? Que la existencia de la vida está ligada a un sorteo permanente. Que hay una enormidad de cosas que son necesarias para que pueda haber vida (es innegable que se han dado en este planeta) y para que pueda continuar una vez producida. Que fue necesario un transcurso determinado de hechos y situaciones para que los microorganismos aparecieran, se propagaran, compitieran y se fueran haciendo más y más complejos. Que se debieron dar infinidad de circunstancias para que estos organismos se convirtieran en estructuras multicelulares y para que estas estructuras se organizaran en órganos ubicados dentro de seres complejos. Y que se necesitaron enormidad de coincidencias y hechos casuales para que las condiciones llevaran a algunos de estos seres terrestres, vertebrados, pequeños mamíferos (por los cuales durante una enormidad de tiempo ningún juez cósmico hubiese apostado), a evolucionar para convertirse en los animales que más influimos en este mundo: nosotros.
La cantidad de circunstancias, situaciones y condiciones en juego es enorme. En un libro muy interesante de Carl Sagan, anterior a Cosmos, llamado Vida inteligente en el Cosmos (junto a I. S. Shklovskii), se plantea muy bien este tema. Se puede encontrar allí una enumeración de las condiciones que requiere la vida y una especie como la nuestra para existir. Desde las características de nuestra galaxia, su edad, composición, situación, forma; a las de nuestro Sol, su sistema de planetas, la ubicación de la Tierra, su tamaño, su rotación, su inclinación, su composición, los vecinos que tiene… y mucho más.
Llegar a esta red compjeja que es nuestra mente, ha costado, más de diez mil millones de años, el tiempo que necesitaron las estrellas para fabricar esos elementos de los que estamos hechos. El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos. Pero sigamos.
Yo voy a agregar algunas cosas que me parecen significativas, que han surgido de los últimos descubrimientos y observaciones. Enumero algunas, aunque ya verán que hay más. Extinciones y cambios físicos producidos por impactos de asteroides; influencia de estrellas cercanas, fijas y viajeras; el “clima” interestelar; el “clima” galáctico; las circunstancias que han sufrido los otros planetas; nuestras circunstancias, nada comunes…
Extinciones
Grandes rocas errantes pululan por el Sistema Solar. Los asteroides no son ni cosa del pasado ni riesgos de muy baja probabilidad. Hay pruebas muy concretas sobre diversos impactos de consideración sobre nuestro mundo y, no hace mucho, tuvimos un ejemplo de ello. Encima, hasta parecen tener una regularidad. No es sólo que tenemos la suerte de que en los últimos 10 millones de años no haya caído un gran asteroide en la Tierra, lo que nos hubiese hecho desaparecer incluso antes de que apareciéramos, sino que tenemos la suerte de que antes de eso sí cayeron de esos asteroides, y de que cambiaran las cosas a nuestro favor. ¿Estaríamos aquí si no hubiese impactado un cuerpo de unos 10 km de diámetro en el Caribe, más precisamente sobre el borde de la península de Yucatán, y hubiese producido una hecatombe para quienes reinaban en el mundo en esa época, los dinosaurios? ¿Quién puede saberlo? ¿Y si no hubiesen ocurrido las extinciones anteriores, fueran por las causas que fueran, estaríamos aquí? Quizás un día se sepa lo suficiente como para simular en computadoras una ecología planetaria entera y ver qué hubiera pasado. Será muy interesante.
Los asteroides cayeron, es un hecho. Y forman parte de las condiciones necesarias —algunos discutirán que no— para que estemos aquí… Veamos algunas nuevas informaciones:
Los Amonites fueron contemporáneos de los Dinosaurios. Los amonites eran una de las clases de moluscos cefalópodos que existieron en las eras del Devónico hasta el Cretácico. Hay de diferentes tipologías según la profundidad en la que estaban inmersos, dependiente las distintas zonas de todo el mundo. Al ser un fósil, poco se puede saber de las partes blandas de este organismo marino, suponiéndose que fueron similares a los actuales nautilos, cuyo cuerpo constaba de una corona de tentáculos en la cabeza que asoman por la abertura de la llamada concha. El fósil encontrado en las cercanías de El Chaltén pertenecería al cretácico inferior del estrato llamado Río MAYER, con una antigüedad de unos 500 millones de años.
Hace 380 millones de años se produjo una importante extinción entre los animales que poblaban el mar, en especial de los amonites, unos moluscos emparentados con los pulpos y calamares pero cubiertos con una concha espiralada y de tamaños a veces gigantescos. Nunco se supo por qué fue. Ahora surgen pistas de que esta mortalidad estuvo relacionada —igual que hace 65 millones de años, en el momento en que los dinosaurios dominaban nuestro mundo— con el impacto de un cuerpo extraterrestre.
Algunos geólogos dicen que hace unos 380 millones de años, un asteroide llegado desde el espacio golpeó contra la Tierra. Creen que el impacto eliminó una importante fracción de los seres vivos. Esta idea puede fortalecer la discutida conexión entre las extinciones masivas y los impactos. Hasta ahora, el único candidato para hacer esta relación era el meteoro que habría causado el exterminio de los dinosaurios, caído en la península de Yucatán, en México.
Brooks Ellwood, de Louisiana State University en Baton Rouge, Estados Unidos, dice que los signos de una antigua catátrofe coinciden con la desaparición de muchas especies animales. “Esto no quiere decir que el impacto en sí mismo haya matado a los animales; la sugerencia es que tuvo algo que ver.” Y agregó que hoy, aunque no se puedan encontrar rastros del cráter de una roca del espacio, se puede saber dónde ha caído.
Otros investigadores coinciden en que hubo un impacto más o menos en esa época, pero creen que la evidencia de que produjo una extinción masiva es muy débil. Claro que, tal valoración no está avalada por hechos y, si tenemos en cuenta el tiempos transcurrido desde los hechos, buscar pruebas materiales…no es nada fácil
El equipo de Ellwood descubrió rocas en Marruecos que fueron enterradas alrededor de 380 millones de años atrás bajo una capa de sedimento que parece formada por restos de una explosión cataclísmica. El sedimento tiene propiedades magnéticas inusuales y contiene granos de cuarzo que parecen haber experimentado tensiones extremas.
Más o menos para esa época se produjo la desaparición del registro fósil de alrededor del 40% de los grupos de animales marinos.
El geólogo Paul Wignall, de la Leeds University, Reino Unido, dice que hay una fuerte evidencia del impacto. Si se lo pudiese relacionar con una extinción masiva sería un gran hallazgo. Si fuera cierto, el potencial letal de los impactos crecería enormemente.
Pero no está claro cuántas desapariciones se produjeron en la época del impacto. Wignall dice que la mortalidad puede haber sido mucho menor que lo que sugiere el equipo de Ellwood. Él piensa que los paleontólogos deberían buscar las pistas que les den una mejor imagen de lo que pasó en aquella época.
El paleontólogo Norman MacLeod, que estudia las extinciones masivas en el Natural History Museum de Londres, coincide en que aunque 40% es el valor correcto para aquel período de la historia de la Tierra, no es una extinción masiva, sino parte de una serie de sucesos mucha más extensa. MacLeod duda de que las extinciones masivas sean resultado de intervenciones extraterrestres. “Los impactos son un fenómeno bastante común”, dice. “Pero no coinciden significativamente con los picos de extinción.”
Las estrellas vecinas
Aunque nuestro entorno es inmenso, hemos llegado a conocer muy bien nuestra vecindad
Nuestro vecindario galáctico es muy humilde. Nada de supergigantes o exóticas estrellas de neutrones. La mayoría de estrellas vecinas -unas 41- son simples enanas rojas (estrellas de tipo espectral M), las estrellas más comunes del Universo. Cinco son estrellas de tipo K, dos de tipo solar (tipo G, Alfa Centauri A y Tau Ceti), una de tipo F (Procyon) y una de tipo A (Sirio). Los tipos espectrales se ordenan según la secuencia OBAFGKM, siendo las estrellas más calientes (y grandes) las de tipo O y las más pequeñas y frías las de tipo M (siempre y cuando estén en la secuencia principal, claro). Además tenemos tres enanas blancas y tres candidatas a enanas marrones. Como vemos, no nos podemos quejar. Hay toda una multitud de posibles objetivos para nuestra primera misión interestelar. ¿Cuál elegir?
|
El llamado Grupo Local de galaxias al que pertenecemos es, afortunadamente, una agrupación muy poco poblada, sino podríamos ser, en cualquier momento (o haber sido aún antes de existir como especie) destruidos en catástrofes cósmicas como las que ocurren en los grupos con gran población de galaxias. Los astrónomos comprenden cada vez más el porqué de las formas de las galaxias, y parece que muchas (incluso la nuestra) han sufrido impactos contra otras para llegar a tener la figura que tienen. Gracias al telescopio espacial Hubble se están viendo en los últimos tiempos muy buenas imágenes de colisiones entre galaxias.
El “clima” interestelar
La Nube Interestelar Local se encuentra dentro de una estructura mayor: la Burbuja Local. La Burbuja Local es una acumulación de materia aún mayor, procedente de la explosión de una o varias supernovas que estallaron hace entre dos y cuatro millones de años. Pero aunque estemos atravesando ahora mismo la Nube Interestelar y la Burbuja locales, nuestra materia no procede de ellas. Sólo estamos pasando por ahí en este momento de la historia del universo. Entramos hace unos cinco millones de años, y saldremos dentro de otros tantos. Nuestro sistema solar –y la materia que contiene, incluyéndonos a ti y a mí– se formó mucho antes que eso, hace más de 4.500 millones de años.
“Banda de estrellas calientes y brillantes que forman un círculo alrededor del cielo. Representa una estructura local de estrellas jóvenes y material interestelar inclinada unos 16º con respecto al plano galáctico. Entre los componentes más prominentes del cinturón se encuentran las estrellas brillantes de Orión, Can mayor, constelación de la Popa, Carina, Centauro y Escorpio, incluyendo la asociación Sco-Cen. El cinturón tiene el diámetro de unos 3.000 años luz (alrededor de una décima parte del radio de la Galaxia), hallándose el Sol en él. Visto desde la Tierra, el Cinturón de Gould se proyecta por debajo del plano de nuestra Galaxia desde el borde inferior del Brazo de Orión, y por encima en la dirección opuesta. El cinturón se estima que tiene unos 50 millones de años de antigüedad, aunque su origen es desconocido. Su nombre proviene del astrónomo Benjamin Apthorp Gould, quien lo identificó durante la década de 1879.”
Al parecer, la Vía Láctea, nuestra galaxia, reside dentro de una “burbuja local” en una red de cavidades en el medio interestelar que probablemente fue esculpida por estrellas masivas que explotaron hace millones de años. Se le llama Medio Interestelar a la materia que existe en el espacio y que se encuentra situada entre los sistemas estelares. Esta materia está conformada por gas en forma de iones, átomos y moléculas, además de gas y rayos cósmicos.
Nuestra Burbuja Local forma a su vez parte del Cinturón de Gould que presentamos más arriba. El Cinturón de Gould es ya una estructura mucho más compleja y mayor. Es un anillo parcial de estrellas, de unos 3.000 años luz de extensión. ¿Recuerdas aquella nave espacial tan rápida que utilizamos antes? Pues con ella, tardaríamos 12.800.000 años en atravesarlo por completo. Vaya, esto empieza a ser mucho tiempo.
|
Vivimos dentro de una burbuja. El planeta, el Sistema Solar, nuestro grupo local. El estallido de una supernova ha dejado un resto fósil en nuestro entorno: creó una enorme burbuja en el medio interestelar y nosotros nos encontramos dentro de ella. Los astrónomos la llaman “Burbuja local”. Tiene forma de maní, mide unos trescientos años luz de longitud y está prácticamente vacía. El gas dentro de la burbuja es muy tenue (0,001 átomos por centímetro cúbico) y muy caliente (un millón de grados), es decir, mil veces menos denso y entre cien y cien mil veces más caliente que el medio interestelar ordinario. Esta situación tiene influencia sobre nosotros, porque estamos inmersos dentro. ¿Qué pasaría si nos hubiese tocado estar dentro de una burbuja de gases ardientes resultantes de una explosión más reciente o de otro suceso catastrófico? ¿O si estuviésemos en una zona mucho más fría del espacio? No estaríamos aquí.
En algunos lugares de la Tierra, podemos ir viajando por caminos y carreteras y encontrarnos de frente con imágenes que, por su magnificencia, ¡asustan! Nuestra galaxia está en movimiento constante. No es una excepción en relación con el resto del universo. La Tierra se mueve alrededor del Sol, este último gira en torno a la Vía Láctea, y la gran mancha blanca a su vez forma parte de súper cúmulos que se mueven en relación a la radiación remanente de la gran explosión inicial. Pero hablemos del…
”Clima” galáctico
La galaxia en que vivimos podría tener una mayor influencia en nuestro clima que lo que se pensaba hasta ahora. Un reciente estudio, controvertido aún, asegura que el impacto de los rayos cósmicos sobre nuestro clima puede ser mayor que el del efecto invernadero que produce el dióxido de carbono.
|
Según uno de los autores de este estudio, el físico Nir Shaviv de la Universidad Hebrea de Jerusalén, en Israel, el dióxido de carbono no es tan “mal muchacho” como dice la gente. Shaviv y el climatólogo Ján Veizer de la Universidad Ruhr, de Alemania, estiman que el clima terrestre, que exhibe subas y bajas de temperatura global que al graficarse forman una figura de dientes de sierra, está relacionado con los brazos espirales de nuestra galaxia. Cada 150 millones de años, el planeta se enfría a causa del impacto de rayos cósmicos, cuando pasa por ciertas regiones de la galaxia con diferente cantidad de polvo interestelar.
Los rayos de todo tipo se nos vienen encima desde todos los rincones del Universo, y, algunos no llegan a la superficie de nuestro planeta gracias al escudo protector que salvaguarda nuestra integridad física.
Los rayos cósmicos provenientes de las estrellas moribundas que hay en los brazos de la Vía Láctea, ricos en polvo, incrementan la cantidad de partículas cargadas en nuestra atmósfera. Hay algunas evidencias de que esto ayuda a la formación de nubes bajas, que enfrían la Tierra.
Shaviv y Veizer crearon un modelo matemático del impacto de rayos cósmicos en nuestra atmósfera. Compararon sus predicciones con las estimaciones de otros investigadores sobre las temperaturas globales y los niveles de dióxido de carbono a lo largo de los últimos 500 millones de años, y llegaron a la conclusión de que los rayos cósmicos por sí solos pueden ser causa del 75% de los cambios del clima global durante ese período y que menos de la mitad del calentamiento global que se observa desde el comienzo del siglo veinte es debido al efecto invernadero.
La teoría, como es normal en la ciencia, no es del todo aceptada. Los expertos en clima mundial están a la espectativa, considerando que algunas de las conexiones que se han establecido son débiles. Se debe tener en cuenta, dicen los paleontólogos, que se trata de una correlación entre la temperatura, que es inferida de los registros sedimentarios, de la cantidad de dióxido de carbono, que se deduce del análisis de conchas marinas fosilizadas, y de la cantidad de rayos cósmicos, que se calculan a partir de los meteoritos. Las tres técnicas están abiertas a interpretaciones. Además, uno de los períodos fríos de la reconstrucción matemática es, en la realidad, una época que los geólogos consideran caliente. De todos modos, también hay muchos otros que están muy interesados e intrigados.
La variabilidad solar afecta la cantidad de rayos cósmicos que impactan a nuestro planeta. El Sol produce radiaciones similares a los rayos cósmicos, especialmente en el período más caliente, llamado máximo solar (maximum), de su ciclo de 11 años. Estudios anteriores no pudieron separar el impacto climático de esta radiación, de los rayos cósmicos que llegan desde la galaxia y de la mayor radiación calórica que llega desde el Sol.
Los otros planetas y la Luna
Recientemente, se ha anunciado el hallazgo de un sistema planetario que podría ser similar al nuestro. En realidad no se ha logrado aún una observación tan directa que permita afirmarlo, sino que se deduce como posibilidad. Este sistema presenta un planeta gaseoso gigante similar a nuestro Júpiter, ubicado a una distancia orbital similar a la que tiene Júpiter en nuestro sistema. El sol es similar al nuestro, lo que deja lugar a que haya allí planetas ubicados en las órbitas interiores, dentro de la franja de habitabilidad en la que la radiación solar es suficiente para sostener la vida y no es excesiva como para impedirla. Si nuestro sistema no tuviese las características que posee, la vida en la Tierra tendría problemas. Por ejemplo, podría haber planetas, planetoides o grandes asteroides (de hecho algo hay) que giraran en planos diferentes y con órbitas excéntricas y deformes. Cuerpos así podrían producir variaciones cíclicas que hicieran imposible —o difícil— la vida. Venus parece haber sufrido un impacto que le cambió el sentido de rotación sobre sí mismo. Es posible que este impacto también haya desbaratado su atmósfera y su clima. Podría habernos pasado a nosotros, y de hecho parecería que nos ocurrió, sólo que fue durante el génesis del sistema planetario y además (otra gran casualidad y premio cósmico) nos dejó a la Luna, excelente compañera para facilitar la vida.
¿Características especiales de nuestro mundo?
|
La cosa no acaba aquí: si el calor del reactor es el que produce la circulación de hierro fundido (por convección) que genera el campo magnético terrestre, entonces los planetas que no tienen su reactor natural no tendrían un campo magnético (magnetósfera) que los proteja de las radiaciones de su sol —como Marte y la Luna— lo que hace que difícilmente puedan sostener vida.
Pero ésta es sólo una teoría. Lo que está más en firme es que nuestro mundo y su luna forman un sistema muy particular, mucho más estable que si se tratara de un planeta solitario. Gracias a esto —a nuestra Luna— tenemos un clima más o menos estable, conservamos la atmósfera que tenemos y la velocidad y el ángulo de nuestro giro son los que son. Si no estuviese la Luna, el planeta se vería sujeto a cambios en su eje de rotación muy graves para los seres vivos.
emilio silvera