viernes, 29 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Historias que gusta conocer (la espectroscopia)

Autor por Emilio Silvera    ~    Archivo Clasificado en Química estelar y Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El enigma que representaba en la antigüedad de qué estaban hechas las estrellas y otros objetos celestes, se pudo resolver finalmente no mediante el telescopio o la cámara solamente, sino combinando ambos con el espectroscopio, que revelaría de qué están hechas las estrellas y las nebulosas, algo que el filósofo Auguste Comte, todavía en 1844, citaba como ejemplo de un conocimiento que nunca llegaría a tener la mente humana.

Augusto Comte, pensador francé que decía que la Humanidad nunca llegaróa a conocer de qué estaban hechas las estrellas. Lo mismo que a él, le ocurrió, muchos años antes y en otro ámbito, al Presidente de la Real Society de Londres, cuando ante una gran audiencia dijo: “Nunca nada más pesado que el aire podrá volar” y, el hombre se llenó de gloria cuando, poco tiempo después, remontó el vuelo el primer avión de los hermanos  wright.

Flyer I

La prudencia, a la vista de las muchas anécdotas que como las anteriores podemos contar, nos aconseja no negar nada y dar la posibilidad, por increíble que nos parezca, a cualquier acontecimiento futuro que ahora nos parezca imposible y que, con los avances de la Ciencia, mañana podría ser posible.

Pero sigamos con la historia de cómo se desarrolló la espestroscopia y cuando comenzó esa aventura allá por el año 1666, cuando Newton observó que la luz blanca del Sol, al pasar un prisma, produce un arcoiris de colores. En 1802, el físico inglés William Wollaston descubrió que si colocaba una fina ranura frente al prisma, aparecían en el espectro una seríe de rayas oscuras paralelas, como las grietas entre las teclas del piano.

La figura de arriba representa el espectro de la luz solar (ahí están presentes elementos como el potasio, sodio, rubidio… etc. Pero Wollaston dejó su experimento de lado, y la elevación de la espectroscopia al rango de ciencia exacta quedó para un pobre adolescente enjuto con una tos persistente, que, cuando Wollaston hizo su descubrimiento, estaba en un hospital recuperándose de heridas sufridas en el derrumbe de un taller de óptica donde trabajaba en los suburbios de Munich. Su nombre era Joseph Frunhoufer, y su suerte estaba por mejorar.

En aquellos tiempos, la óptica comenzaba su andadura gloriosa hacia niveles de alta estima en campos como el de los telescopios y microscópios, las gafas, lupas y otros objetos de vidrio que cambiaron el mundo de alguna manera. Fraunhoufer nació en el seno del sector más pobre de esta floreciente profesión. Fue el undécimo hijo de un undigente maestro vidriero que había quedado huerfano a los 11 años y se hizo aprendiz del taller de un tal Philipp Weichselberger, un vidriero de pocas luces de Munich, quien le hacía trabajar en exceso, le pagaba miserablemente, le subalimentaba y no le educaba. El 21 de julio de 1801, el deteriorado edificio que contenía la casa y el taller, se desplomó, y Frunhofer, el único superviviente, finalmente fue sacado de aquellos restos y escombros.

Su rescate fue noticia y tuvo una gran difusión y, su difícil situación llamó la atención de Maximiliano José, elector de Baviera, quien visitó al muchacho herido en el hospital y quedó impresionado por su inteligencia y su carácter alegre. El elector le regaló a Frunhofer 18 ducados, suma suficiente para comprar una máquina que trabajase el vidrio y algunos libros, así como eludir lo que faltaba de su aprendizaje. Una vez libre, Fraunhofer nunca dejó de prosperar.

 

Telescopio de Fraunhofer

 

Fraunhofer tenía instinto para lo esencial, y sus intensas investigaciones sobre las características básicas de diversos tipos de vidrios pronto le hicieron ganarse la fama de ser el primer fabricante de lentes para los mejores telescopios del mundo.

“Vi con el telescopio -escribió- un número casi incontables de rayas verticales fuertes y débiles, más oscuras que el resto de la imagen de color. Algunas parecían totalmente negras.” Detectó centenares de tales rayas en el espectro del Sol, y halló regularidades idénticas en los espectros de la Luna y los planetas, como era de esperar, pues estos cuerpos brillan por la luz solar que reflejan. Pero cuando dirigía su telescopio a otras estrellas, sus lineas espectrales parecían  muy diferentes. La significación de esa diferencia era un misterio.

Joseph von Fraunhofer Biografie - Fraunhofer präsentiert 1814 das Spektroskop

Fraunhoufer llegó a ser un personaje muy conocido y reconocido pero, su delicada salud acabó con su vida el día 7 de junio de 1826, a los treinta y nueve años, de tuberculosis, dejando como legado las misteriosas lineas de Fraunhofer. En 1849, León Foucault en Paris y W. A. Miller en Londres hallaron lineas brillantes que coincidían con las lineas oscuras de Fraunhofer. Hoy unas y otras son conocidas, respectivamente como lineas de emisión y lineas de absorción, y tienen en la espectroscopia un papel tan importante como la de los fósiles en la geología, pues dan información sobre la temperatura, la composición y los movimientos de las nebulosas gaseosas y las estrellas que, a pesar de sus inmensas lejanías, nos pueden contar de qué están conformadas gracias a las líneas de Fraunhofer,

emilio silvera

 

Algunos creen que somos únicos

Autor por Emilio Silvera    ~    Archivo Clasificado en Química estelar y Vida    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Yo no me siento como un extraño en este Universo. Cuanto más lo examino, cuanto más lo estudio, cuanto más aprendo de su arquitectura, más evidencias voy encontrando de que el Universo, en cierto sentido, debe haber sabido que nosotros, íbamos a venir. Si llegamos a comprender los grandes números de la Cosmología, todo esto se puede ver con más claridad. Las estrellas han tardado diez mil millones de años en fabricar los elemetos esenciales para la química de la vida. Después de eso…

La Tierra con la luna

      Surgimos aquí hace ahopra unos cuatro mil millones de años

El argumento de Dicke (uno de los trabajos expuestos aquí está a él dedicado) demostraba que había una buena razón para esperar que la vida entrase en escena tras varios miles de millones de años de expansión am partir del big bang. Esto demostraba que una de las coincidencia de los  Gramdes Números era una premisa inevitable para la presencia de observadores. era una aplicación de lo que Brandon Cartes llamó Principio antrópico Débil,

que lo que esperamos observar debe estar restringido por la condición necesaria para nuestra presencia como observadores.

Más tarde Carter lamentó haber utilizado el término “principio antrópico”. El abjetivo Antrópico ha sido fuente de mucha confusión porque implica que algo en este argumento se centra en el Homo Sapiens. Evidentemente no es así. Se aplica a todos los observadores con independencia de su forma química. Pero si éstos no estuvieran bioquímicqamente construidos a partir de los elementos que se fabrican en las estrellas, entonces la característica específica del Universo inevitablemente para ellos podría diferir de la que es inevitable para nosotros.

Foto de Las esponjas marinas guardan el 88 por ciento del silicio, fundamental para la vida marina

Las esponjas marinas retienen el 88 % del silicio del océano, un nutriente fundamental para la proliferación de microalgas (diatomeas) y de la vida marina, según ha concluido un estudio del Centro Superior de Investigaciones Científicas (CSIC). EFE/Archivo. Sin embargo, no sabemos que pueda pensar.

El compuesto más simple es el metano, un átomo de carbono con cuatro de hidrógeno (valencia = 1), pero también puede darse la unión carbono-carbono, formando cadenas de distintos tipos, ya que pueden darse enlaces simples, dobles o triples. Cuando el resto de enlaces de estas cadenas son con hidrógeno, se habla de huidrocarburos,  que pueden ser: saturados: con enlaces covalentes simples, alcanos. insaturados:,¡ con dobles enlaces covalentes (alqunos) o triples (alquinos).
alquinos: estructura cíclica.
La gran cantidad que existe de compuestos orgánicos tiene su explicación en las características del átomo de carbono, que tiene cuatro electrones en su capa de valencia: según la regla del octeto  necesita ocho para completarla, por lo que forma cuatro enlaces  (valencia = 4) con otros átomos formando un tetraedro una pirámide de base triangular.

Los científicos han especulado sobre la posibilidad de que otro átomo en lugar del carbono formara estructuras moleculares en otro tipo de bioquímica, pero nadie ha propuesto aún una teoría global coherente que utilice tales átomos para formar todos los compuestos moleculares necesarios para la vida.

Quizá el tipo de bioquímica “menos exótico” sería uno con una quiralidad alterna a la de las biomoléculas terrestres. En la bioquímica conocida, los aminoácidos son casi universalmente de tipo L “izquierdo” y los azúcares son de tipo D “derecho”. Las moléculas de quiralidad opuesta tendrían las mismas propiedades químicas que sus formas reflejadas. Así, una bioquímica que incorporara aminoácidos D y/o azúcares L, podría ser posible. El elemento químico básico que ha sido propuesto para un sistema bioquímico alternativo es el átomo de silicio,  puesto que el silicio tiene muchas propiedades químicas similares al carbono, tiene los mismos cuatro enlaces, y está en el mismo grupo del cuadro periódico, el grupo 14. Algunos bioquímicos van incluso más allá al definir la propia vida como una más de las complejas propiedades de los compuestos de Carbono.

  Los seres vivos están formados principalmente por C carbono, H hidrógeno, O oxígeno y N nitrógeno, y, en menor medida, contienen también S azufre y P fósforo junto con algunos halógenos y metales. De ahí que los compuestos de carbono se conozcan con el nombre de compuestos orgánicos(o de los seres vivos). Pero, cuidado, también hay muchos otros compuestos de carbono que no forman parte de los seres vivos.
    La parte de la Química que estudia los compuestos del carbono es la Química Orgánica o Química del Carbono, pues este elemento es común a todos los compuestos orgánicos.
¿Cómo se las arregla éste para ser un elemento tan versátil y adaptable?
En la pregunta que hacíamos más arriba, sólo podemos dar una respuesta: Es que el Carbono es un gran “combinador”: debido a que su corteza dispone de espacio para cuatro electrones más, se puede enlazar a otros átomos de Carbono y formar cadenas de longitud indefinida, de manera que cada eslabón de la misma (cada átomo de carbono) tiene dos ramas, por así decirlo, a las que se pueden unir otros átomos o grupos de átomos, como los colgantes de un brazalete.
La cadena puede ser sencilla o compleja y ramificarse en distintas direcciones, pueden tener los extremos sueltos o bien unidos formando lazos cerrados o anillos. Si dos moléculas tienen exactamente el mismo número de átomos de los mismos tipos, pero difieren en la forma en que están dispuestos, se dice que son isómeros.
Archivo:Ethane conformation.gif
En la isomería los átomos se distribuyen de forma
distinta para cada isómero
                           Hidrocarburos
Son compuestos orgánicos formados únicamente por “átomos de carbono e hidrógeno”. La estructura molecular consiste en un armazón de átomos de carbono a los que se unen los átomos de hidrógeno.
Son los compuestos orgánicos más simples y pueden ser considerados como las sustancias principales de las que se derivan todos los demás compuestos orgánicos. Los hidrocarburos se clasifican en dos grupos principales, de cadena abierta y cíclicos. En los compuestos de cadena abierta que contienen más de un átomo de carbono, los átomos de carbono están unidos entre sí formando una cadena lineal que puede tener una o más ramificaciones. En los compuestos cíclicos, los átomos de carbono forman uno o más anillos cerrados. Los dos grupos principales se subdividen según su comportamiento químico en saturados e insaturados.
http://farm6.static.flickr.com/5206/5226436473_29924e2cf9.jpg
               El Carbono y el Hidrógeno son fundamentales para la Vida
Aquí, por ser un tema apasionante, hemos comentado en más de una ocasión, la importancia del Carbono para la vida y, también hemos tratado ya la cuestión de si puede existir vida en algún planeta sin la presencia de compuestos de Carbono. Por supuesto, nadie sabe contestar esa pregunta pero, muchos bioquímicos piensan que la auto duplicación y la mutación son demasiado complejas para que puedan producirse por medio de algún tipo de moléculas que dejen de lado la gran variedad y felxibilidad de los compuestos de Carbono.
   Se han imaginado y recreado posibles formas de vida basadas en el Silicio
El Silicio es el elemento más próximo al Carbono en cuanto a su capacidad de combinarse consigo mismo y con otros elementos para formar muchos compuestos diferentes, pero sus cadenas son relativamente cortas e inestables en comparación con las de los hidrocarburos (compuestos de carbono que contienen hidrógeno). El Boro es otro elemento que se cita a veces como posible base para una vida sin Carbono, pero sus propiedades hacen que sea todavía peor candidato que el Silicio.
Todos los elementos que existen en el Universo son los mismos en todas partes, en todos los posibles mundos que estén presentes en todas las galaxias del Cosmos “infinito”, conocemos todos esos elementos y sus propiedades y, los 92 desde el Hidrógeno al Uranio, son los elementos naturales, los que podemos encontrar en la Naturaleza. Otros elementos, los llamados transuránicos, son artificiales, radiactivos y más inestables.
Las leyes que rigen en nuestro Universo, de la misma manera que los elementos, también son las mismas en todas partes y, lo que aquí pueda pasar, también pasará allí, a miles de millones de años-luz de nosotros. Las fuerzas, las constantes universales, la materia… todo es como es y, ningún cambio de situación espacial, podrá nunca cambiar sus propiedades específicas.
Si eso es así (como parece que es), creo que la Vida en el Universo (al menos en su mayor representación), también, como en la Tierra, estará basada en el Carbono. Lo cual, no quita la posibilidad, por extraña que ésta pueda parecer de que, otras formas de vida desconocidas para nosotros puedan estar pululando por ahí fuera.
Todos los elementos más pesados que los gases químicamente inertes de hidrógeno, deuterio y helio se forman, como el carbono en las estrellas, y se requieren miles de millones de años para ser creados y distribuidos. Toda la materia del Universo ha estado evolucionando durante esos inmensos períodos de tiempo para que la vida pudiera florecer en el planeta Tierra y, ¿qué duda cabe? en otros planetas de nuestra misma galaxias y de otras vecinas dispersas por el vasto Universo. No debemos descartar la idea de que:
El Universo (y con él los parámetros fundamentales de los que depende) deben ser tal que admitan la creación de observadores dentro de su seno en alguna etapa de su evolución que, al parecer, queda centrada en las estrellas y los mundos que las rodean.
http://2.bp.blogspot.com/-az-rChkzpD4/Tm9SUJr4G_I/AAAAAAAAHMM/iynnMNxF0Cg/s1600/m42_vargas.jpg
Claro que estas conjeturas que aquí planteamos necesitan de una evidencia que las apoyen. En este caso se trata de que existan varias coincidencias aparentemente inusuales entre las constantes de la Naturaleza no relacionadas en el nivel superficial que parecen ser cruciales para nuestra propia existencia o la de cualquier otra forma de vida que en el Universo pueda estar presente y que podamos concebir. Los inusuales niveles resonantes del Carbono y el Oxígeno de Hoyle son ejemplos arquetipos. Hay muchos otros. Cambios pequeños en las intensidades de las diferentes fuerzas de la Naturaleza y en las masas de las diferentes partículas elementales destruirían muchos de los equilibrios delicados que hacen posible la vida.
Por el contrario, si se encuentra que las condiciones para que la vida se desarrolle y persista depende tan sólo muy débilmente de todas las constantes de la Naturaleza entonces no habría motivos para pensar en un principio antrópico del tipo más fuerte. Nosotros, hemos llegado aquí, al planeta Tierra, situado en la Galaxia Vía Láctera,  como otros individuos habrán llegado al Planeta Isat, en la galaxia Isatell. Ya que, en ambas galaxias separadas por 10.000 millones de años, rigen las mismas leyes y las mismas constantes y, en aqul mundo como pasa en el nuestro, están presentes todos los materiales que nosotros tenemos aquí, los mismos elementos y las mismas circunstancias de rotación, armósfera, núcleo de niquel y Hierro que crea la capa protectora de electromagnetismo y, de esta manera, se cumplen los designios del Universo y, la homogeneidad que en todas sus regiones prevalecen.
emilio silvera