domingo, 24 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Rumores del pasado

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  Faraday dando una charla sobre sus trabajos y explicándo al público lo que era la luz y la electricidad

En su juventud, Michael Faraday tuvo unos  humildes comienzos como repartidor de periódicos y aprendiz de encuadernador. Sin embargo, su afición al experimento y la investigación le llevó a descubrir algunos de los secretos más guardados de la Naturaleza. De hecho, el concepto de “Campo” que tanto hoy manejan los físicos, es debido a él. Gracias a sus trabajos y los resultados obtenidos en sus miles de experimentos, pudo Maxwell (un gran físico y matemático), crear su teoría de la luz y el electromagnetismo mediante sus famosas ecuaciones vectoriales.

                                   James Clark Maxwell

El trabajo más importante de Maxwell se efectuó entre 1864 y 1873, cuando dio forma matemática a las especulaciones de Faraday respecto a las líneas de fuerza magnéticas. Al hacerlo, Maxwell, pudo conseguir unas cuantas ecuaciones simples que expresaban todos los fenómenos variados de electricidad y magnetismo y las unió de un modo indisoluble. Su teoría demostraba que la electricidad y  el magnetismo no podían existir aisladamente, donde esta una allí estaba el otro, por tanto, se hace referencia a su obra, generalmente, como la teoría del electromagnetismo.

La “profesionalización” e “institución” de la ciencia, entendiendo por tal que la práctica de la investigación científica se convirtiese en una profesión cada vez más abierta a personas sin medios económicos propios, que se ganaban la vida a través de la ciencia y que llegasen a atraer la atención de gobiernos e industrias, tuvo su explosión a lo largo de 1.800, y muy especialmente gracias al desarrollo de dos disciplinas, la química orgánica y el electromagnetismo. Estas disciplinas, junto a las matemáticas, la biología y las ciencias naturales (sin las cuales sería una necedad pretender que se entiende la naturaleza, pero con menos repercusiones socio-económicas), experimentaron un gran desarrollo entonces, tanto en nuevas ideas como en el número de científicos importantes: Faraday, Maxwell, Lyell, Darwin y Pasteur, son un ejemplo. Sin olvidar a otros como Mendel, Helmholtz, Koch, Virchow, Lister o Kelvin, o la matemática de Cauchy, de Gauss, Galois, Fourier, Lobachevski, Riemann, Klein, Cantor, Russell, Hilbert o Poincaré. Pero vamos a pararnos un momento en Faraday y Maxwell.

Las ecuaciones de Maxwell

Las ecuaciones de Maxwell, por dar una simple explicación de lo que significan, hace posible que tengamos una información fidedigna de cómo se transmite la información para la televisión, Internet y la telefonía en general, cuánto tarda en llegarnos la luz de las estrellas, cuál es la base del funcionamiento de las neuronas o como funciona cualquier central de electricidad, aparte de otros miles de fenómenos que podemos estar experimentando en nuestras vidas cotidianas que están relacionados con la luz, la electricidad y el magnetismo. Y, todo ello, se explica con esas cuatro “sencillas ecuaciones”.

Para la electricidad, magnetismo y óptica, fenómenos conocidos desde la antigüedad, no hubo mejor época que el siglo XIX. El núcleo principal de los avances que se produjeron en esa rama de la física (de los que tanto se benefició la sociedad -comunicaciones telegráficas, iluminación, tranvías y metros, etc.-) se encuentra en que, frente a lo que se suponía con anterioridad, se descubrió que la electricidad y el magnetismo no eran fenómenos separados.

Estatua de Hans Christian Ørsted en Ørstedsparken,  Copenhague, Dinamarca. Hans Christian Orsted físico y químico danés, que descubrió  en 1819  que la aguja imantada de  una brújula se desviaba cuando se encontraba próxima a un cable conductor por el cual fluía  una corriente eléctrica. Esta desviación implica la existencia de un campo magnético en la región vecina al conductor. Asi se demostraba  la existencia de un campo magnético en torno a todo conductor por el que fluye una corriente eléctrica,  este descubrimiento fue crucial  ya que puso en evidencia la relación existente entre la electricidad y el magnetismo.

Así que, el  punto de partida para llegar a este resultado crucial fue el descubrimiento realizado en 1.820 por el danés Hans Christian Oersted (1777 – 1851) de que la electricidad produce efectos magnéticos: observó que una corriente eléctrica desvía una aguja imanada. La noticia del hallazgo del profesor danés se difundió rápidamente, y en París André-Marie Ampère (1775 – 1836) demostró experimentalmente que dos hilos paralelos por los que circulan corrientes eléctricas de igual sentido, se atraen, repeliéndose en el caso de que los sentidos sean opuestos.

La expresión diferencial

×HJ (“Ley de Ampère“)

conocida como “Ley de Ampère“, muestra la relación que existe entre el campo H y la fuente J cuando las corrientes y los campos no cambian el tiempo, pero falla cuando los fenómenos no son estacionarios. La contribución de Maxwell se resume en haber agregado a J, el sumando ∂D/∂t correspondiente a la corriente de desplazamiento en los fenómenos no estacionarios, algo que nadie había medido y que no resultaba intuitivo. La falta de ese término deja fuera los casos dinámicos, muchos casos tan importantes como por ejemplo las Ondas Electromagnéticas !

Con esta formulación, Ampère avanzaba la expresión matemática que representaba aquellas fuerzas. Su propósito era dar una teoría de la electricidad sin más que introducir esa fuerza (para él “a distancia”).

Pero el mundo de la electricidad y el magnetismo resultó ser demasiado complejo como para que se pudiera simplificar en un gráfico sencillo, como se encargó de demostrar uno de los grandes nombres de la historia de la ciencia: Michael Faraday (1791 – 1867), un aprendiz de encuadernador que ascendió de ayudante de Humphry Davy (1778 – 1829) en la Royal Intitution londinense.

                En este humilde rinconcillo trabajaba Faraday

En 1.821, poco después de saber de los trabajos de Oersted, Faraday, que también dejó su impronta en la química, demostró que un hilo por el que pasaba una corriente eléctrica podía girar de manera continua alrededor de un imán, con lo que vio que era posible obtener efectos mecánicos (movimiento) de una corriente que interacciona con un imán. Sin pretenderlo, había sentado el principio del motor eléctrico, cuyo primer prototipo sería construido en 1.831 por el físico estadounidense Joseph Henry (1797 – 1878).

Lo que le interesaba a Faraday no eran necesariamente las aplicaciones prácticas, sino principalmente los principios que gobiernan el comportamiento de la naturaleza, y en particular las relaciones mutuas entre fuerzas, de entrada, diferentes. En este sentido, dio otro paso importante al descubrir, en 1.831, la inducción electromagnética, un fenómeno que liga en general los movimientos mecánicos y el magnetismo con la producción de corriente eléctrica.

      Dinamo de Pacinotti, 1860.
               Dínamo de Pixii.
Dínamo pequeño Gramme, ca. 1878.

Este fenómeno, que llevaría a la dinamo, representaba el efecto recíproco al descubierto por Oersted; ahora el magnetismo producía electricidad , lo que reforzó la idea de que un lugar de hablar de electricidad y magnetismo como entes separados, sería más preciso referirse al electromagnetismo.

La intuición natural y la habilidad experimental de Faraday hicieron avanzar enormemente el estudio de todos los fenómenos electromagnéticos. De él es, precisamente, el concepto de campo que tanto juego ha dado a la física.

Sin embargo, para desarrollar una teoría consistente del electromagnetismo se necesitaba un científico distinto: Faraday era hábil experimentador con enorme intuición, pero no sabía expresar matemáticamente lo que descubría, y se limitaba a contarlo. No hubo que esperar mucho, ni salir de Gran Bretaña para que un científico adecuado, un escocés de nombre James Clerk Maxwell (1831 – 1879), hiciera acto de presencia.

Las ecuaciones de Maxwell cumplieron 150 años el pasado día 14 abril 2014. Publicado por Augusto en Divulgación, Historia de la Física. Las ecuaciones de Maxwell son un conjunto de cuatro ecuaciones (originalmente 20 ecuaciones) que describen por completo los fenómenos electromagnéticos. La gran contribución de James Clerk Maxwell fue reunir en estas ecuaciones largos años de resultados experimentales, debidos a Coulomb, Gauss, Ampere, Faraday y otros,  introduciendo los conceptos de campo y corriente de desplazamiento, y unificando los campos eléctricos y magnéticos en un solo concepto: El Campo Electromagnético.

Las cuatro ecuaciones de Maxwell describen todos los fenómenos electromagnéticos, aquí se muestra la inducción magnética por medio de una corriente eléctrica en la figura situada en primer lugar. En la segunda se quiere escenificar el Flujo eléctrico de una carga puntualen una superficie cerrada. En la tercera imagen, quedan escenificadas las líneas de campo magnético que comienzan y terminan en el mismo lugar, por lo que no existe un monopolo magnético.

Maxwell desarrolló las matemáticas para expresar una teoría del magnetismo-electricidad (o al revés) que sentó las bases físicas de aquel fenómeno y contestaba a todas las preguntas de los dos aspectos de aquella misma cosa, el electromagnetismo. En sus ecuaciones vectoriales estaban todos los experimentos de Faraday, que le escribió una carta pidiéndole que le explicara, con palabras sencillas, aquellos números y letras que no podía entender.

Pero además, Maxwell también contribuyó a la física estadística y fue el primer director del Laboratorio Cavendish, unido de manera indisoluble a la física de los siglos XIX y XX (y también al de biología molecular) con sede en Cambridge.

Su conjunto de ecuaciones de, o en, derivadas parciales rigen el comportamiento de un medio (el campo electromagnético) que él supuso “transportaba” las fuerzas eléctricas y magnéticas; ecuaciones que hoy se denominan “de Maxwell”. Con su teoría de campo electromagnético, o electrodinámica, Maxwell logró, además, unir electricidad, magnetismo y óptica. Las dos primeras, como manifestaciones de un mismo substrato físico, electromagnético, que se comporta como una onda, y la luz, que es ella misma, una onda electromagnética, lo que, en su tiempo, resultó sorprendente.

Más de ciento treinta años después, todavía se podía o se puede apreciar la excitación que sintió Maxwell cuando escribió en el artículo Sobre las líneas físicas de la fuerza, 1861 – 62, en el que presentó esta idea: “Difícilmente podemos evitar la inferencia de que la luz consiste de ondulaciones transversales del mismo medio que es la causa de los fenómenos eléctricos y magnéticos.”

Todo aquello fue posible gracias a las bases sentadas por otros y a los trabajos de Faraday como experimentador infatigable, que publicaba sus resultados en artículos y los divulgaba en conferencias en la sede de la Royal Institution londinense. Todos estos artículos y conferencias fueron finalmente publicados en el libro que llamaron Philosophical transactions de la Royal Society, y Experimental researches in chemistry and physics (Richard Taylor y William Francis, Londres, 1859; dos grandes científicos unidos por la historia de la ciencia que nos abrieron puertas cerradas que nos dejaron entrar al futuro).

Claro que, si miramos hacia atrás en el tiempo, ¿cuántas historias como ésta podemos encontrar? Para cualquiera de las cosas que ahora sabemos, casi siempre, ha sido necesario aunar los pensamientos dispersos de muchos que, aunados en un sólo y completo pensamiento, ha podido formar la teoría final que nos explicaron el funcionamiento de la Naturaleza. Así ha ocurrido siempre y seguirá pasando. Einstein se tuvo que vales de ideas dispersas de Mach, Maxwell, Riemann, Lorentz y algunos otros para poder formular su bella Teoría de la Relatividad.

     Faraday fue  el prototipo de expèrimentador de los fenómenos físicos

A finales del siglo XIX, poca gente sabía con exactitud a qué se dedicaban los “físicos”.  El término mismo era relativamente nuevo.  En Cambridge, la física se enseñaba como del grado de matemáticas. En este sistema no había espacio la investigación: se consideraba que la física era una rama de las matemáticas y lo que se le enseñaba a los estudiantes era como resolver problemas.

En la década de 1.870, la competencia económica que mantenían Alemania, Francia, Estados Unidos, y Gran Bretaña se intensificó.  Las Universidades se ampliaron y se construyó un Laboratorio de física experimental en Berlín.

Cambridge sufrió una reorganización. William Cavendish, el séptimo duque de Devonshire, un terrateniente y un industrial, cuyo antepasado Henry Cavendish había sido una temprana autoridad en teoría de la gravitación, accedió a financiar un Laboratorio si la Universidad prometía fundar una cátedra de física experimental.  Cuando el laboratorio abrió, el duque recibió una carta en la que se le informaba (en un elegante latín) que el Laboratorio llevaría su .

                                 Primer profesor J. J. Thomson director del laboratorio


Tras intentar conseguir sin éxito atraer primero a William Thomson, más tarde a lord Kelvin (quien otras cosas, concibió la idea del cero absoluto y contribuyó a la segunda ley de la termodinámica) y después a Hermann von Helmohltz, de Alemania (entre cuyas decenas de ideas y descubrimientos destaca una noción pionera del cuanto), finalmente se ofreció la dirección del centro a James Clerk Maxwell, un escocés graduado en Cambridge. Este fue un hecho fortuito, pero Maxwell terminaría convirtiéndose en lo que por lo general se considera el físico más destacado entre Newton y   Einstein.  Su principal aportación fue, por encima de todo, las ecuaciones matemáticas que permiten entender perfectamente la electricidad y el magnetismo.  Estas explicaban la naturaleza de la luz, pero también condujeron al físico alemán Heinrich Hertz a identificar en 1.887, en Karlsruhe, las ondas electromagnéticas que hoy conocemos ondas de radio.

En el Laboratorio Cavendish de la Universidad de Cambridge, Cockcroft y Walton construyeron este acelerador de 500 kilovolts en 1932. Si lo comparamos con el LHC del CERN nos podemos dar de cómo la Ciencia ha ido avanzando en relativamente tan poco tiempo y, desde entonces hemos alcanzado un nivel que nos permite trabajar con 14 TeV, una energía de todo punto imposible e impensable en aquellos primeros tiempos.

Maxwell también creó un programa de investigación en Cavendish con el propósito de idear un estándar preciso de medición eléctrica, en particular la unidad de resistencia eléctrica, el ohmio.  Esta era una cuestión de importancia internacional debido a la enorme expansión que había experimentado la telegrafía en la década de 1.850 y 1.860, y la iniciativa de Maxwell no solo puso a Gran Bretaña a la vanguardia de este campo, sino que también consolidó la reputación del Laboratorio Cavendish como un centro en el que se trataban problemas prácticos y se ideaban nuevos instrumentos.

Tubo de vacío usado por JJ Thomson en uno de los experimentos realizados para el electrón. Expuesto en el museo del laboratorio Cavendish. Aquellos físicos primeros que abrieron el camino a lo que más tarde sería la física moderna, tuvieron un gran mérito al poder avanzar hacia el conocimientos de las cosas, de la Naturaleza, con pocas herramientas y mucha imaginación.

A este hecho es posible atribuir del crucial papel que el laboratorio iba a desempeñar en la edad dorada de la Física, entre 1.897 y 1.933.  Los científicos de Cavendish, se decía, tenían “sus cerebros en la punta de los dedos.”

Maxwell murió en 1.879 y le sucedió lord Rayleigh, quien continuó su labor, pero se retiró después de cinco años y, de manera inesperada, la dirección pasó a un joven de veintiocho años, Joseph John Thomson, que a pesar de su juventud ya se había labrado una reputación en Cambridge como un estupendo físico-matemático.  Conocido universalmente como J.J., puede decirse que Thomson fue quien dio comienzo a la segunda revolución científica que creó el mundo que conocemos.

Ernest Rutherford otro experimentador

Se dedicó al estudio de las partículas radioactivas y logró clasificarlas en alfaa (α), beta  (β) y gamma (γ). Halló que la radiactividad iba acompañada por una desintegración de los elementos, lo que le valió ganar el Premio Nobel de Química de 1908. Se le debe un modelo atómico con el que probó la existencia de núcleol en los átomos, en el que se reúne toda la carga positiva y casi toda la masa del átomo.  Consiguió la primera transmutación artificial con la colaboración de su discípulo Frederick Soddy.

   Henry Cavendish en su Laboratorio

La primera revolución científica comenzó con los descubrimientos de Copérnico, divulgados en 1.543, y los de Isaac Newton en 1.687 con su Gravedad y su obra de incomparable valor Principia Matemática, a todo esto siguió los nuevos hallazgos en la Física, la biología y la psicología.

Pero fue la Física la que abrió el camino.  Disciplina en permanente cambio, debido principalmente a la de entender el átomo (esa sustancia elemental, invisible, indivisible que Demócrito expuso en la Grecia antigua).

               John Dalton

En estos primeras décadas del siglo XIX, químicos como John Dalton se habían visto forzados a aceptar la teoría de los átomos como las unidades mínimas de los elementos, con miras a explicar lo que ocurría en las reacciones químicas (por ejemplo, el hecho de que dos líquidos incoloros produjeran, al mezclarse, un precipitado blanco).  De similar, fueron estas propiedades químicas y el hecho de que variaran de forma sistemática, combinada con sus pesos atómicos, lo que sugirió al ruso Dimitri Mendeleyev la organización de la Tabla Periódica de los elementos, que concibió jugando, con “paciencia química”, con sesenta y tres cartas en su finca de Tver, a unos trescientos kilómetros de Moscú.

Pero además, la Tabla Periódica, a la que se ha llamado “el alfabeto del Universo” (el lenguaje del Universo), insinuaba que existían todavía elementos por .

DIMendeleevCab.jpg

          Dimitri Mendeléiev en 1897

La tabla de Mendeleyev encajaba a la perfección con los hallazgos de la Física de partículas, con lo que vinculaba física y química de racional: era el primer paso hacia la unificación de las ciencias que caracterizaría el siglo XX.

En Cavendish, en 1.873, Maxwell refinaría la idea de átomo al introducir la idea de campo electromagnético (idea que tomó prestada de Faraday), y sostuvo que éste campo “impregnaba el vacío” y la energía eléctrica y magnética se propagaba a través de él a la velocidad de la luz.  Sin embargo, Maxwell aún pensaba en el átomo como algo sólido y duro y que, básicamente, obedecían a las leyes de la mecánica.

El problema estaba en el hecho de que, los átomos, si existían, eran demasiado pequeños ser observados con la tecnología entonces disponible.

Esa situación empezaría a cambiar con Max Planck, el físico alemán que, como de su investigación de doctorado, había estudiado los conductores de calor y la segunda ley termodinámica, establecida originalmente por Rudolf  Clausius, un físico alemán nacido en Polonia, aunque lord Kelvin también había hecho algún aporte.

              El joven Max Planck

Clausius había presentado su ley por primera vez en 1.850, y esta estipulaba algo que cualquiera podía observar, a saber, que cuando se realiza un la energía se disipaba convertida en calor y que ese calor no puede reorganizarse en una forma útil.  Esta idea, que por lo demás parecería una anotación de sentido común, tenía consecuencias importantísimas.

Dado que el calor (energía) no podía recuperarse, reorganizarse y reutilizarse, el Universo estaba dirigiéndose gradualmente un desorden completo:

                                                                          cántaro roto…

Una casa que se desmorona nunca se reconstruye así misma, una botella rota nunca se recompone por decisión propia.  La palabra que Clausius empleó designar este fenómeno o desorden irreversible y creciente fue “entropía”: su conclusión era que, llegado el , el Universo moriría.

En su doctorado, Planck advirtió la relevancia de esta idea.  La segunda ley de la termodinámica evidenciaba que el tiempo era en verdad una fundamental del Universo, de la física.  Sea lo que sea, el tiempo es un componente básico del mundo que nos rodea y se relaciona con la materia de formas que todavía no entendemos.

La noción de tiempo implica que el Universo solo funciona en un sentido, hacia delante, nunca se está quieto ni funciona hacia atrás, la entropía lo impide, su discurrir no tiene marcha atrás. ¿No será nuestro discurrir lo que siempre marcha hacia delante, y, lo que tenemos por tiempo se limita a estar ahí?

En el Laboratorio Cavendish, me viene a la memoria que fue allí, donde Thomson, en 1.897, realizó el descubrimiento que vino a coronar anteriores ideas y trabajos de Benjanmin Franklin, Euge Goldstein, Wilhelm Röntgen, Henri Becquerel y otros.  El descubrimiento del electrón convirtió a la física moderna en una de las aventuras intelectuales más fascinantes e importantes del mundo contemporáneo.

Jj-thomson3.jpg

           Joseph John Thomson

Los “corpúsculos”, como Thomson denominó inicialmente a estas partículas, hoy conocidas como electrones, condujo de directa al trascendental avance realizado una década después por Ernest  Rutherford, quien concibió el átomo como una especie de “sistema solar” en miniatura, con los electrones diminutos orbitando alrededor de un núcleo masivo como hacen los planetas alrededor del Sol.  Rutherford demostró experimentalmente lo que Einstein  había descubierto en su cabeza y revelado en su famosa ecuación, E = mc2 (1905), esto es que la materia y la energía eran esencialmente lo mismo.

Todo aquello fue un gran paso en la búsqueda del conocimiento de la materia.  El genio, la intuición y la experimentación han sido esenciales en la lucha del ser humano con los secretos, bien guardados, de la Naturaleza.

emilio silvera

Runores del saber del mundo

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hubo un tiempo en el que el mundo, llevado por las religiones, dejaron de lado los conocimientos adquiridos y producidos por los antiguos griegos y, la sabiduría del mundo se estaba perdiendo. El  encargado de traducir aquellas obras al árabe fue Muhammad ibn-Ibrahim al-Fazari, en cuyo trabajo se bazó en buena medida el famoso astrónomo musulman Al-khwarizmi.

Mohammed Ibn Musa Al-Khwarizmi

Nació : hacia el 780 en Khwarizm (hoy Khiva, Uzbekistán)

Murió: hacia el 850 en Bagdad (hoy Irak)

Los árabes no se interesaron especialmente por la poesía, el teatro y las historias griegas.  Tenían sus propias tradiciones literarias y sentían que éstas eran más que suficientes.  No obstante, la situación era muy diferente en el caso de la medicina de Galeno, las matemáticas de Euclides y Ptolomeo, y la filosofía de Platón y Aristóteles.

Kazajstán - CIRCA 1993: Al-Farabi (872-951) en 1 Tenge 1993 billete de Kazajstán. Erudito musulmán y uno de los más grandes científicos y filósofos del mundo islámico en su tiempo.

Al-Farabi (872-951)
Erudito musulmán y uno de los más grandes pensadores

El principal, o por lo menos el primer pensador musulman que concibió un cuadro general de las ciencias fue al-Farabi (sobre 950), cuyo catálogo Ihsa al-ulum, conocido en latin como De Scentiis, organizó las diferente disciplinas y saberes de la siguiente forma:

  • ciencias lingüísticas.
  • lógica.
  • matemáticas (incluía la música).
  • astronomía y la óptica.
  • física.
  • Metafísica,
  • política.
  • jurisprudencia, y
  • teología.

            Ibn Sina o Avicena

Posteriormente, Ibn Sina dividiría las ciencias racionales en especulativas (que buscan la verdad) y prácticas (que buscan el bienestar). Ibn Sina o Avicena (por su nombre latinizado) es el nombre por el que se conoce en la tradición occidental a Abū ‘Alī al-Husayn ibn ‘Abd Allāh ibn Sīnā, fue un médico, filósofo, cintífico y polímata persa. Escribió cerca de trescientos libros sobre diferentes temas, predominantemente de filosofía y medicina.

Sus textos más famosos son El libro de la curación y El canon de medicina,  también conocido como Canon de Avicena. Sus discípulos le llamaban Cheikh el-Raïs, es decir ‘príncipe de los sabios’, o el más grande de los médicos, el Maestro por excelencia, o en fin el tercer Maestro (después de Aristóteles y Al-Farabi). La Civilización Islámica fue muy importante para la historia del libro. A lo largo de sus conquistas entraron en contacto con diferentes pueblos y, de todos, aprendieron y quisieron conservar su sabiduría.

                                                           Aquel Imperio abarcó mucho territorio y en todos, dejaron la huella de su paso

En las principales ciudades islámicas se crearon bibliotecas y centros de estudio, basado en su mayoría en el modelo griego que los árabes habían descubierto tras conquistar Alejandría y Antioquia.   La más famosa de estas instituciones fue la Casa de la Sabiduría (Batí al-Hikma) fundada por al-Ma’mun en el año 833.  Fueron innumerables las traducciones que allí se realizaron como la Física de los Griegos y los siete libros de anatomía de Galeno, o las obras de Platón, Hipócrates y otros como Euclides, Arquímedes, Ptolomeo (entre ellas el Almagesto) y Apolunio.  Gracias a estos trabajos conocemos hoy un mayor número de obras griegas, ya que, desgraciadamente, con la barbaridad cometida al incendiar la biblioteca de Alejandría, perdimos un enorme tesoro de la Humanidad.

                  Thabit ibn Qurra

Por aquellos tiempos, ya gente como Ibn Qurra e Ibn Ishaq, midieron y calcularon para concluir que la Tierra era redonda. Fue un matemático árabe que ejerció como médico, astrónomo, y traductor de la Edad de Oro Islámica, que vivía en Bagdad, en la segunda mitad del siglo IX, durante la época de califato abasí.  Ibn Qurra hizo descubrimientos importantes en el álgebra, la geometría y la astronomía. En astronomía, Thabit es considerado uno de los primeros reformadores del sistema de Ptolomeo, y fue el que hizo la mejhor demostración del Teorema de Pitágoras. En la mecánica fue fundador de la estática.

En aquellos tiempos la situación en filosofía y literatura, áreas en las que el éxito de cristianos y paganos subrayaba lo abierta que era Bagdad, tampoco era diferente al movimiento de los demás disciplinas.

Abú Bishr Matta bin Yunus, un colega cercano del famoso al-Farabi y quien intentó reconciliar Aristóteles y el Corán, era cristiano y estudió en Bagdad. Uno de los poetas más importantes del siglo VII y comienzos del siglo VIII también era cristiano, Ghiyath ibn aL-salt, de cerca de al-Hirab, sobre el Éufrates, quien incluso fue llevado a la Meca por su califa.  Aunque fue nombrado poeta de la Corte, se negó a convertirse, a renunciar a su adicción al vino y a llevar su cruz.

No es ningún secreto que la obra más famosa de la denominada literatura árabe, Alf Laylah wa-Laylah (Las mil y una noches), era en realidad una antigua obra persa.  Hazar Afsana ( un millar de cuentos), que contenía distintos relatos, muchos de los cuales eran de origen Indio.  Con el paso del tiempo, se hicieron adiciones a esta obra, no sólo a partir de fuentes árabes, sino también griegas, hebreas, turcas y egipcias.  La obra que hemos leído (casi) todos, en realidad, es un compendio de historias y cuentos de distintas nacionalidades, aunque la ambientación que conocemos, es totalmente árabe.

Además de instituciones de carácter académico como la Casa de la Sabiduría, el  Islam desarrolló los hospitales tal como los conocemos hoy en nuestros días.  El primero y más elaborado, fue construido en el siglo VIII bajo aL-Rashid (el Califa de Las Mil y una noches), ero la idea se difundió con rapidez.  Los hospitales musulmanes de la Edad Media que existían en Bagdad, El Cairo o Damasco, por ejemplo, eran bastante complejos para la época.  Tenían salas separadas para hombres y mujeres, salas especiales dedicadas a las enfermedades internas, los desordenes oftálmicos, los padecimientos ortopédicos, las enfermedades mentales y contaban con casa de aislamiento para casos contagiosos.

El Islam, en este campo, también estaba muy avanzado, e incluso tenían clínicas y dispensarios ambulantes y hospitales militares para los ejércitos.  Allí, en aquel ambiente sanitario, surgió la idea de farmacia o apotema, donde los farmaceutas, tenían que aprobar un examen, antes de preparar y recetar medicamentos.

La obra de Ibn al-Baytar Al-Jami’fi al-Tibb (Colección de dietas y medicamentos simples) tenía más de un millar de entradas basadas en plantas que el autor había recopilado alrededor de la costa mediterránea.  La noción de sanidad pública también se debe a los árabes que, visitaban las prisiones para detectar y evitar enfermedades contagiosas.

Grandes médicos islámicos como Al-Razi, conocido en occidente por su nombre latino, Rhazes, nació en la ciudad persa de Rayy y en su juventud fue alquimista, después de lo cual se convirtió en erudito en distintas materias.  Escribió cerca de doscientos libros, y aunque la mitad de su obra está centrada en la medicina, también se ocupó de temas teológicos, matemáticos y astronómicos. ¡Todo un personaje! Fue el primer médico Jefe del gran hospital de Bagdad.  Se dice que para elegir el sitio de ubicación del hospital, primero colgó tiras de carne en distintos lugares de la ciudad, y, finalmente eligió aquel donde la carne era menos putrefacta.

La gran obra de al-Razi fue el AL-Hawi (El libro exhaustivo), una enciclopedia de veintitrés volúmenes de conocimientos médicos griegos, árabes, preislámicos, indios e incluso chinos.

El otro gran médico musulmán fue Ibn Sina, a quien conocemos mejor por su nombre latinizado, Avicena.  Al igual que al-Razi, Avicena escribio doscientos libros, destacando la obra más famosa AL-Qanun (El canon) muy documentado e importante tratado.

Alejandría, en el año 641, había caído en manos de los musulmanes que, durante muchos años había sido la ciudad capital-mundial de los estudios matemáticos, médicos y filósofos, y allí los musulmanes encontraron una ingente cantidad de libros y manuscritos griegos sobre estos temas.  Posteriormente, entre el profesorado de la Casa de la Sabiduría encontramos a un astrónomo y matemático cuyo nombre, como el de Euclides, se convertiría en palabra de uso cotidiano en todo el mundo culto: Muhammad ibn-Musa aL-khwarizmi.

La fama de Al-khwarizmi descansa en dos libros, uno muchísimo más original que el otro.  El volumen menos original se basa en el Sindhind, que es el nombre árabe del Brahmaghuta Siddhanta, el tratado de Brahmagupta que había llegado hasta la corte de Al-Mansur y en el que se describen varios problemas aritméticos así comos los numerales indios.  El trabajo de AL-khwarizmi se conoce hoy en una única copia, una traducción latina de un original árabe actualmente perdido.

El título latino de esta obra es de numero indorum (sobre el arte de contar indio), este trabajo es el responsable de la falsa impresión de que nuestro sistema numérico es de origen árabe.

AL-khwarizmi no afirmó ser original en aquel sentido, sin embargo, la nueva notación terminaría siendo conocida como la de al-khwarizmi o, de forma corrupta, algorismi, lo que al final daría lugar a la palabra “algoritmo”, que define una forma particular de calculo.

Pero Al-khwarizmi también es conocido como el “padre del álgebra” y, ciertamente, su Hisab aL-jabr wa’L mugabalah contiene más de ochocientos ejemplos y, se cree que tiene su origen en complejas leyes islámicas relativas a la herencia.

La forma en  que evolucionaron los números:

En el al-jabr, aL-khwarizmi introduce la idea de representar una cantidad desconocida por un símbolo, como la x, y dedica seis capítulos a resolver los seis tipos de ecuaciones que conforman las tres clases de cantidades: raíces, cuadrados y números.

El al-jabr de al-khwarizmi ha sido considerado tradicionalmente como la primera obra de Algebra.  Sin embargo, un manuscrito hallado en Turquía a finales del pasado siglo XX pone en duda tal mérito.  Se titula Necesidades lógicas en las ecuaciones mixtas, el texto se ocupa más o menos de los mismos temas y resuelve algunas de las ecuaciones exactamente de la misma manera.  Por tanto, parece que un manuscrito se basó en otro, aunque nadie sabe cuál fue el primero.

Retrato de “Geber” del siglo XV, Codici Ashburnhamiani 1166, Biblioteca Medicea Laurenziana, Florencia.

En las ciencias químicas, la personalidad árabe más destacada fue Jabir ibn-Hayyan, conocido en Occidente como Geber, y quien vivió en aL-kufah en la segunda mitad del siglo VIII. Nacido en 721 en la provincia de Tus (hoy Irán) – y Fallecido en 815, en la provincia de Kufa (hoy Irak). Fue un alquimista  que cambió todo el significado de la alquimia de origen árabe.  Conocido también como Geber, forma latinizada de su nombre. Se le considera el máximo alquimista  de origen Árabe, por haber sido el primero en haberla estudiado de forma científica. Su padre pertenecía a la tribu árabe Azd originaria de Yemen.

Como todos en la época, él también estaba obsesionado con la alquimia y, en particular, por la posibilidad de convertir los metales en oro (algo que Jabir pensaba podía conseguir mediante una misteriosa sustancia aún no descubierta, a la que llamó, el aliksir, de donde proviene la palabra “elixir”).  Los alquimistas también creían que su disciplina era la “ciencia del equilibrio” y que era posible producir metales preciosos mediante la observación (y mejoramiento) de los métodos de la naturaleza mediante la experimentación y, es legitimo considerar a Jabir uno de los fundadores de la química.

Paralelamente a esto, al-Razi ofreció una clasificación sistemática de los productos de la naturaleza.  Dividió las sustancias minerales en espíritus (mercurio, sal amoníaco), sustancias (oro, cobre, hierro), piedras (hermatites, óxido de hierro, vidrio, malaquita), vitriolos (alumbre), Góraxes y sales.  A estas sustancias “naturales” añadió las “artificiales”:  el cardenillo, el cinabrio, la soda cáustica, las aleaciones.  AL-Razi también creía en lo que podríamos denominar investigación de laboratorio y desempeñó un importante papel en la separación de la química propiamente dicha de la alquimia.

Así como el mundo creado por Dios era perfecto y el “arte” sólo podía aspirar a ser “ornamento”, una forma de adornar la creación original a ser “ornamento”,  una forma de adornar la creación original de Dios, la filosofía, falsafah, era un conocimiento de ese mundo restringido por la propia capacidad del hombre para entenderlo por sí mismo.  Dicho de otra manera, la falsafah era, inevitablemente y por definición, un saber limitado:

“La revelación siempre sería superior a la razón”.

Al igual que ocurrió con la ciencia, la filosofía árabe era básicamente la filosofía griega, modificada por ideas indias y orientales y expresada en lengua árabe. A Los bukuma, los sabios, que practicaban la falsafah, se oponían los mutakallim, los teólogos que practicaban la kalam, teología.

Distintos nombres, distintos lugares y épocas diferentes que, en definitiva, siempre nos cuentan lo mismo: la lucha de la Humanidad por conquistar los conocimientos y los hombres que lo hicieron posible que, no siempre, recorrieron un camino de rosas para conseguirlo (Galileo es un buen ejemplo).

La ciencia y la filosofía islámica fueron con frecuencia obra de sirios, persas y judíos.  Sin embargo, su teología, incluida la ley canónica, fue principalmente obra árabe, lo que no quita que se inspiraron en otras foráneas como impulsó el mismo Mahoma con su famoso dicho: “busca la sabiduría aunque esté en China”.  Lo que llevó a innumerables estudiosos musulmanes a emprender largos viajes a la búsqueda de conocimiento, de tal manera se consideraban estos intrépidos buscadores del saber que, quien perdía la vida en el empeño era considerado mártir.

No creo que sea este el sitio ni el momento de ocuparnos del Corán y de Alá.  El estudio del Corán dominaba la enseñanza en las escuelas del antiguo mundo musulman y, el núcleo curricular, como lo denominaríamos hoy, consistía en la memorización del Corán y  de los hadith, junto con el aprendizaje de la escritura y las matemáticas. Es una lástima que ésta religión, llevada hasta sus más irracionales escenarios del entendimiento, sea la prcursora de guerras y muerte de un pueblo que, al fin y al cabo, no deja de ser hijo, como todos los demás seres vivos civilizados del planeta, de la misma cosa, del mismo origen, de la propia Naturaleza, del Universo en fin.

El mundo islámico daría para mucho más, y muchos más son las personajes que podríamos nombrar aquí.  Sin embargo, creo cumplido el objetivo y aquí lo dejo. Como decía el sabio:

“El Universo esta construido según un plan cuya profunda simetría está presente de algún modo en la estructura interna de nuestro intelecto”.

emilio silvera.

¡Qué historias!

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

—¿Qués es un ser humano?

—¡La perfección imperfecta!

 

 

En alguna ocasión me he referido a los orígenes de la escritura (una cuestión muy polémica sobre uno de los pasos más importantes de la Humanidad), y, propiamente reconocida como tal, tiene más de un candidato, y en éste momento, son al menos tres.  Para hablaros un poco de algunas hazañas del ser humano por este mundo, acudo a la obra de Peter Watson, Ideas, que hace un magistral recorrido por muchos de nuestros logros, y, aquí, en dos partes, os dejo una muestra.

Durante muchos años se dio como seguro que la escritura cuneiforme de Mesopotamia era la más antigua.  Había, sin embargo, un inconveniente.  El cuneiforme se compone de signos más o menos abstractos, y son muchos los que opinan que la primera escritura estaba relacionada con vínculos más fuertes e incuestionables con la pintura y los pictogramas, signos que son en parte dibujos de objetos y en parte símbolos.

                                    Tablilla Sumeria

En ese punto, hay que referirse a la obra de la arqueóloga Denise Schamndt-Besserat que, a finales de la década de los sesenta, esta investigadora advirtió que por todo Oriente Próximo se habían encontrado miles de “objetos de arcilla bastante prosaicos” que la mayoría de los arqueólogos habían considerados insignificantes.

Ella, pensaba lo contrario: que dichos objetos podían haber conformado un antiguo sistema que los estudiosos habían pasado por alto.  Visitó y estudió varias colecciones de estos “especimenes”, como los llamaba, en Oriente Próximo, el norte de África, Europa y América.

En el curso de sus estudios, descubrió que aquellos especimenes tenían, algunas veces, formas geométricas (esferas, tetraedros, cilindros) mientras que otras tenían forma de animales, herramientas o embarcaciones.  Además comprendió que se trataba de los primeros objetos de arcilla endurecidos por el fuego: fueran lo que fueran, su fabricación había requerido mucho trabajo y esfuerzo, y, desde luego, no eran prosaicos.

                                    Tablilla de Ur

Esta etapa silábica es conocida en sus comienzos por un grupo de textos de Ur correspondiente a la época de las dinastías I y II de Sumer (2800 a. C.).  En esos textos encontramos el primer uso identificable de elementos fonéticos y de gramática, y en la medida en la que se puede identificar el uso de sílabas en la escritura cuneiforme, podemos conocer el lenguaje sumerio. La tablilla, procedente de Ur, c. 2900-2600 a. C., describe una entrega de cebada y comida a un templo

                              Tablilla de Shuruppak

Los primeros ejemplos de tablillas cuneiformes ya muestran un desarrollo progresivo en la forma de los signos y en la flexibilidad de su uso. Por ejemplo, la tablilla lateral procedente de Shuruppak, Fara, (2600 a. C.) registra cifras de trabajadores. De allí, según la literatura sumeria, procede el héroe del Diluvio, Ziusudra.

La escritura pictográfica proto-sumeria de las tablillas de Uruk y Jemdet Nasr, está escrita dentro de rectángulos o cuadrados dispuestos aleatoriamente. Los rectángulos están puestos en filas a ser leídos de derecha a izquierda y cuando una fila se termina, comienza otra debajo.

                                                Tablilla con el poema Enuma Elish

“…la partió en dos partes, como una concha; la mitad la puso arriba y la denominó cielo. El construyó estancias para los grandes dioses. Fijando su apariencia astral como constelaciones. Designando las zonas, determinó el año.”

Finalmente, Dense tropezó con una descripción de una tablilla ahuecada encontrada en Nazi, un yacimiento del segundo milenio a. de C. al norte de Irak.  La inscripción cuneiforme decía: “Cuentas que representan ganado pequeño: veinte ovejas, seis borregas, ocho carneros adultos…” y así sucesivamente.

Cuando se abrió la tablilla, se encontraron dentro cuarenta y nueve cuentas, exactamente el número de animales escrito en la lista.

Para Schmandt-Besserat, aquello fue “como una piedra Rosetta”.  Durante los siguientes quince años examinó más de diez especímenes y concluyó que estos constituían un sistema primitivo de contabilidad y, en particular, uno que conduciría a la invención de la escritura.

Según el historiador H.W.F.Saggs, “ninguna invención ha sido más importante para el progreso humano que la escritura”.  Por su parte, Petr Charvát la llamó “la invención de las invenciones”.

Por tanto tenemos aquí otra idea capital que poner junto a la agricultura como “la más grandiosa de todos los tiempos”.  Pero, no podemos pararnos ahí.  Los sumerios inventaron también el carro, un hecho básico para la historia del progreso de la humanidad.  La cuestión es que si hacemos una lista de los logros que este formidable pueblo realizó antes que cualquier otro, sería difícil saber cuando parar.

En 1946, el erudito estadounidense Samuel Noah Kramer empezó a dar a conocer sus traducciones de las tablillas de arcilla sumerias, en las que identificó no menos de veintisiete “primeros históricos” logros conseguidos, descubiertos o registrados por primera vez por los antiguos iraquíes.  Entre ellos tenemos las primeras escuelas, el primer historiador, la primera farmacopea, los rimeros relojes, el primer arco arquitectónico, el primer código jurídico, la primera biblioteca, el primer calendario agrícola y el primer congreso bicameral.  Los sumerios fueron los rimeros que utilizaron los jardines para proporcionar sombra y frescor, los primeros en recoger proverbios y fábulas y los primeros en tener literatura épica y canciones de amor.

             Toda la historia de Sumeria está embebida en el misterio

La razón para tan extraordinaria explosión de creatividad no es difícil de encontrar: la civilización, lo que hoy reconocemos como tal, sólo apareció después de que el hombre antiguo hubiera empezado a vivir en ciudades.  Las ciudades era el entorno más competitivo y experimental que cualquier otro que las hubiera precedido.  La ciudad era la cuna de la cultura, el lugar en el que nació casi la totalidad de nuestras ideas más preciadas.  Allí se podía mostrar a otros las cosas que éramos capaces de realizar en todos los ámbitos: trabajo, arte, etc.

En algún momento a finales del cuarto milenio a. de C., la gente empezó a vivir en grandes ciudades.  El cambio transformó la experiencia humana, pues las nuevas condiciones de vida exigían que hombres y mujeres cooperaran de formas hasta entonces inéditas.  Fue este estrecho contacto, este nuevo estilo de cohabitación frente a frente,  lo que explica la proliferación de nuevas ideas encaminadas a satisfacer necesidades, ocio, y en definitiva: mejor forma de vida.

Muestra de cerámica encontrada en la “Casa Incendiada” TT6 en Tell Arpachiyah, norte de Irak, periodo Halaf, alrededor del 4500 a. C. Tell Brak alguna vez había sido un importante pueblo en una importante ruta de comercio que conectaba a la Mesopotamia con el Mediterráneo. El enorme montículo que marcaba el lugar estaba cerca de Chagar Bazar.

De acuerdo con la investigación publicada a finales de 2.004, los primeros centros urbanos fueron Tell Brak y Tell Hamourak al norte de Mesopotamia, en la actual frontera entre Irak y Siria, que se remontaría al año 4.000 a. de C. Pero estos asentamientos eran relativamente pequeños (Hamourak tenía doce hectáreas) y las primeras ciudades propiamente dichas emergieron más al sur hacia 3.400 a. de C.  Entre las ciudades de Mesopotamia se incluyen (el orden cronológico es aproximado) Eridu, Uruk, Ur, Umma, Lagash y Shuruppak.

Uruk, por ejemplo, tenía una población fija de unos cincuenta mil habitantes. El origen más obvio de éstas grandes ciudades hay que buscarlo en la seguridad.  Sin embargo, hay otras grandes ciudades de la antigüedad -especialmente en países  de África occidental como Malí- que nunca levantaron murallas.  En el mismo Uruk (que significa área amurallada).  Las murallas no se construyeron hasta mucho después de estar, en buena medida construida, aproximadamente hacia el año 2.900 a. de C.

Las especiales condiciones dinásticas reinantes en Mesopotamia, donde la irrigación pudo mejorar de forma sustancial los cultivos y donde había suficiente agua disponible, hizo del lugar un paraíso y las ciudades crecieron en aquellos lugares donde relativamente cerca, tenían piedra, madera, minerales, metales y en definitiva, materias primas.

En aquellos tiempos y en aquellos lugares la Humanidad fue creando su verdadera historia de seres modernos que miraban las estrellas del cielo y se hacían preguntas, que observaban la Naturaleza y de ella aprendían y que, en fin, idearon mil y una maravillas para que, muchos miles de años más tarde, nosotros, nos pudiéramos aprovechar de todas aquellas proezas de la mente humana.

        En realidad, todavía no sabemos con certeza dónde surgió por primera vez el cero, y el concepto de nada, de  vacío, y si llegaron los mayas de manera independiente.   Algunos sitúan la aparición del cero en China.  No obstante, nadie discute la influencia india, y todo aparece indicar que fueron ellos los primeros que emplearon a la vez los tres nuevos elementos en que se funda nuestro actual Sistema numérico:

  • una base decimal,
  • una notación posicionad y cifras para diez, y
  • sólo diez, numerales.  Y esto ya establecido en 876.

En algún momento se dio por hecho que el cero provenía originalmente de la letra griega omicrón, la inicial de la palabra ouden, que significa “vacío”. Claro que el paso del Tiempo distorsiona los hechos y, cuando se profundiza y se hallan vestigios del pasado… Los logros de estas ciudades y Ciudades-Estados fueron asombrosos y perduraron unos veintiséis siglos. Introdujeron un extraordinario número de las innovaciones que contribuyeron a crear el mundo que hoy conocemos.

emilio silvera

Fuente: De la Obra Ideas de Peter Watson.

Hablemos de Alejandría

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

[I] Las 7 Maravillas del Mundo Antiguo

La construcción del Faro de Alejandría consistía en una amplia base cuadrada y una torre octogonal de unos 100 metros de altura. En la parte superior ardía leña y resina; ésa luz servía de aviso y señal a los navegantes. Para los marineros, significó un guía seguro para sus retornos al gran puerto. Para los arquitectos, significó aún más; era el edificio más alto sobre la tierra y para los científicos era lo misterioso; poseía un espejo que los fascinó. El espejo daba un reflejo que podría ser visto a más de 50 Km., fuera de la costa. Su ubicación se sitúa sobre la antigua Isla de Faros, un promontorio dentro de la ciudad de Alejandría.

 

 

 

 

La ciudad de Alejandría, en Egipto, una ciudad situada entre Oriente y Occidente, que fue durante varios siglos el centro del saber, “un centro de cálculo”, “un lugar paradigmático”. Fundada por Alejandro Magno en 331 a.C., en por su deseo de acercar Egipto al mundo griego y en parte porque quería un puerto que no se viera afectado por las inundaciones del Nilo.

Alejandría fue pensada desde el principio como una “megalópolis”, construida en de chlamys, una capa militar Macedonia, y  provista de murallas que se extenderían “sin cesar” en la distancia, con las calles tan amplias como nunca se había visto, basada en el diseño aristotélico de la ciudad ideal (una cuadrícula dispuesta de tal manera que se beneficiara de las brisas marinas, pero proporcionara refugio frente al viento).

Un tercio de la ciudad era “territorio real”, y ésta constituía un centro de comercio convenientemente situado en el extremo oriental del Mediterráneo, cerca del lugar en el que el Nilo y el mar Rojo conforman un cruce de caminos internacional, y donde muchas caravanas procedentes del interior de África y de Asia convergían en la costa.

Disponía de dos puertos, uno de los cuales ostentaba el famoso faro de casi cuarenta y cinco metro de alto (otros historiadores dicen que cien), una de las maravillas del mundo antiguo, que podía ser visto una distancia de más de cincuenta kilómetros.

 

 

 

 

Tras la muerte de Alejandro, sus generales se pelearon entre sí, lo que finalizó con una división del imperio en la que Selenco se hizo con el control de la parte septentrional, incluidos Israel y Siria, mientras que los territorios egipcios quedaron bajo el control de Ptolomeo I, al menos desde el año 306 a.C.

Con todo, Alejandría era principalmente famosa como centro de conocimiento.   Según la tradición, el mismo Alejandro, cuando hubo decidido cuál era el lugar ideal su nueva ciudad, ordenó también la construcción en ella de una gran Biblioteca dedicada a las musas.

La idea no era nueva: en Babilonia se habían reunido diversas bibliotecas y otras habían surgido en diversos lugares del Mediterráneo, en particular en Pérgamo y Efeso.  No obstante, el principio la ambición era mayor en Alejandría que en cualquier otro lugar y, en palabras de un estudioso, lo que se organizó allí fue una verdadera “fuente del conocimiento”.  Ya en 283 a.C. había un sínodo, una comunidad de entre treinta y cincuenta hombres instruidos (sólo hombres), vinculado a la biblioteca y dotado de especiales privilegios: los estudiosos estaban exentos del pago de impuestos y podían abastecerse y hospedarse gratis en el sector real de la ciudad.

 

 

 

 

La biblioteca estaba dirigida por un erudito-bibliotecario, nombrado por el rey y quien además ocupaba el cargo de tutor real.  Esta biblioteca tenía varias alas, con filas de anaqueles, o thaike, dispuestos a lo largo de paseos cubiertos y provistos de nichos, en los que se guardaban las distintas categorías del saber.  Había y un jardín botánico.

El primer bibliotecario fue Demetrio y para la época del poeta Calímaco, uno de sus sucesores más famosos, en el siglo III a. de C., la biblioteca poseía más de 400.000 rollos múltiples y noventa mil rollos únicos.  Posteriormente, el Serapeo, la biblioteca hija de la de Alejandría, alojada en el templo de Serapis, un culto greco-egipcio, acaso basado en el de Hades, el dios griego de los muertos, llegó a reunir otros 40.000 rollos.

Calímaco creó el primer catálogo temático del mundo, el Pinakes, uno de cuyos efectos fue que para el siglo IV d.C., hasta cien estudiosos acudían a la vez a la biblioteca para consultar sus libros y discutir los textos unos con otros.  distinguida comunidad existió durante unos setecientos años.  Los estudiosos escribían sobre papiro, material sobre el que Alejandría mantuvo un monopolio durante cierto tiempo, y luego sobre pergamino, cuando el rey dejó de exportar papiro en un intento de impedir la construcción de bibliotecas rivales en otros lugares, en especial en Pérgamo.

 

 

Resultado de imagen de Los libros de pergamino y papiro se escribían en rollos

 

 

Los libros de pergamino y papiro se escribían en rollos (su longitud era más o menos equivalentes a la de uno de nuestros capítulos) y se almacenaban en fundas de cuero o lino y se colocaban en estantes.  la época de los romanos, no todos los libros eran ya rollos: se habían introducido los códices que se almacenaban en cajas de madera.

La biblioteca también contaba con muchos charakitai, “amanuenses” se los denominaba, y que eran de hecho traductores.

A los reyes de Alejandría, los Ptolomeos, les encantaba adquirir copias de todos los libros que aún no poseían, en un esfuerzo por reunir toda la sabiduría de Grecia, Babilonia, la India y demás lugares.  En particular, Ptolomeo III Evergetes encargó a agentes que registraran todo el Mediterráneo en busca de textos y él mismo escribió a todos los soberanos del mundo conocido pidiéndoles que le prestaran sus libros para copiarlos.

Cuando le fueron prestadas las obras de Eurípides, Esquilo y Sófocles, conservó los originales y devolvió las copias que habían hecho, renunciando a la fianza  que había pagado.  De igual , todas las embarcaciones que pasaban por Alejandría estaban obligadas a depositar todos sus libros (los que transportaran) en la biblioteca, donde se los copiaba y catalogaba como “de las naves”.  En su mayoría, lo que se devolvía a las naves eran las copias de los libros confiscados.

 

 

 

Una de aquellas bibliotecas de la antigüedad

 

Así, la riqueza de saber y cultura que acumuló aquella biblioteca del pasado fue incalculable e hizo que desempeñara un papel primordial en el mundo civilizado de la antigüedad. Entre los famosos estudiosos que se hicieron en Alejandría se encuentran Euclídes, quien pudo haber escrito sus Elementos durante el reinado de Ptolomeo I (323-285 a.C.), Aristarco, que propuso una descripción heliocéntrica del sistema planetario, y Apolunio de Perga, “el gran geómetra”, que escribió su influyente libro sobre las secciones cósmicas en la ciudad.  Apolunio de Rodas fue el autor de la epopeya El de los argonautas (c. 270 a.C.) y quien presento a Arquímedes de Siracusa, que durante un tiempo se dedico a estudiar las crecidas del Nilo e inventó el tornillo que lo haría famoso.  Arquímedes también inició la hidrostática y esbozó su método para calcular el área y el volumen que, mil ochocientos años después, conformaría las bases del cálculo.

 

 

 

 

Un bibliotecario posterior, Eratóstenes (276-196 a.C.), fue geógrafo y  matemático.  Gran amigo de Arquímedes, creía que todos los océanos de la Tierra estaban conectados entre sí, que algún día sería posible circunnavegar África y que podría llegarse a la India “navegando en dirección oeste España”.

 

 

 

 

En el solsticio de verano los rayos solares inciden perpendicularmente sobre Siena. En Alejandría, más al norte, midiendo la altura de un edificio y la longitud de la sombra que proyecta, se determinar el ángulo formado con el plano de la eclíptica, en el que se encuentran el Sol y la ciudad de Siena, ángulo que es precisamente la diferencia de latitud entre ambas ciudades. Conocida ésta, basta medir el arco de circunferencia y extrapolar el resultado a la circunferencia completa (360º).

Fue Eratóstenes quien calculó la duración correcta del año, quien propuso la idea de que la Tierra es redonda y quien calculó su diámetro con un error de 80 km.

Eratóstenes también dio origen a la ciencia de la cronología al establecer con mucho cuidado las fechas de la caída de Troya (1.184 a.C.), la primera olimpiada (776 a.C.) y el estallido de la guerra de peloponeso (432 a.C.).  Asimismo, ideó el calendario que finalmente establecería Julio Cesar y diseño un método identificar los números primos.

los estudiosos se le conocía como “Beta” (Platón era “Alfa”).

 

 

 

 

Los Elementos de Euclides es un texto reconocido por lo general como el más influyente de todos los tiempos.  Escrito hacia el año 300 a. C., de él se han hecho muchísimas copias de ediciones que, lo convierta en el libro más reeditado en el mundo después de la Biblia (sus contenidos, más de 2.000 años después, aún se enseñan en las escuelas de secundarias).

Es posible que Euclides (ev significa “bueno” y kleis significa “llave”) estudiara en la Academia de Platón, incluso con el gran maestro en persona (nació en Atenas hacia el año 330 a.C.); aunque no produjo ninguna nueva idea en sí, sus Elementos (Stoichia) se consideran una historia completa de la matemática griega hasta ese .

El libro comienza con una serie de definiciones, como la del punto (“lo que no tiene ”) o la línea (“una longitud sin amplitud”), describe diversos ángulos y planos, sigue después con cinco postulados (como el de que “puede trazarse una línea de un punto cualquiera a otro punto cualquiera”) y cinco axiomas, como el de que” todas las cosas iguales a la  misma cosa son iguales entre sí”.  Los trece libros, o capítulos, que siguen exploran la geometría del plano, la geometría de los sólidos, la teoría de los números, las proporciones y su famoso método de “agotamiento”.  En este Euclides muestra cómo “agotar” el área de un círculo inscribiendo polígonos en él.

 

 

Dadme una palanca y moveré el mundo

 

Los famosos espejos de Arquímedes quemaban las velas de las embarcaciones enemigas.

 

El Tornillo de Arquímedes y su funcionamientouncionamiento. Verdaderamente era un adelantado a su tiempo y tenía ideas que, aún hoy, prevalecen.


También es digno de mención aquí un personaje singular como Arquímedes de Siracusa (287-219 a.C.), el más versátil de los matemáticos helénicos.  Al parecer estudió en Alejandría durante un tiempo, con discípulos de Euclides, y aunque vivió principalmente en Siracusa, donde murió, estuvo en constante con los investigadores de esta ciudad.

Durante la segunda guerra púnica, Siracusa fue arrastrada por el conflicto entre Roma y Cartago y, unida a este último bando, fue sitiada por los romanos entre 214 y 212 a.C. Durante esta guerra, nos dice Plutarco en su vida del general romano Marcelo, Arquímedes inventó un gran de ingeniosas armas para defenderse del enemigo, incluidas catapultas y espejos capaces de prender fuego a las embarcaciones romanas.  Pese a todo, sus esfuerzos resultaron inútiles y la ciudad cayó.   Pese a que Marcelo había ordenado que respetaran la vida de Arquímedes, un soldado romano le mató con su espada mientras dibujaba una figura geométrica en la arena.

Arquímedes fue un innovador con sus ideas de extraordinario valor sobre las palancas, en su obra sobre el equilibrio de los planos, y sobre hidrostática, en sobre los cuerpos flotantes.  En este último encontramos su famosa idea de que “cualquier sólido menos pesado que un fluido se hundirá, al ser colocado en él, el punto en el que el peso del fluído desplazado sea igual al peso del sólido”.

También exploró los números grandes, una preocupación que siglos después conduciría a la invención de los logaritmos, y consiguió el cálculo más acertado de p.

                                     Mapa mundi de Claudio Ptolomeo

El último de los grandes matemáticos helénicos de Alejandría fue Claudio Ptolomeo, activo de 127 d.C.a 151 d.C. Su gran obra denominada inicialmente como Sintaxis matemática, compuesta por trece libros o capítulos, terminó conociéndose como Megiste, “la más grande”.  Posteriormente, en el mundo musulmán, surgió la costumbre de llamar a libro por su equivalente árabe: Almagesto

Así es conocido entonces.  Es fundamentalmente una obra de trigonometría, la rama de las matemáticas referente a los triángulos que estudia las relaciones entre sus ángulos y las longitudes de sus lados y cómo todo ello está relacionada con los círculos que los abarcan.  A su vez, estos están relacionados con las órbitas de los cuerpos celestes y los ángulos de los planetas respecto de quien los observa desde la Tierra.  Los libros siete y ocho de Almagesto ofrecen un catálogo de más de un millar de estrellas, dispuestas en cuarenta y ocho constelaciones.

A mediados del siglo III a. C. Aristarco de Samos había propuesto que la Tierra giraba alrededor del Sol.  La mayoría de los astrónomos, Ptolomeo incluido, rechazaban tal idea y el tiempo pasó sin que su predicción fuese comprobada y, muchos años más tarde, llegó Copérnico para apropiarse de su idea y ganar la fama.

               Aristarco de Samos

Quiero significar aquí que Alejandría fue por mucho tiempo el centro de las matemáticas griegas:  Menéalo, Hezón, Diofanto, Pappo y Proclo de Alejandría contribuyeron todos a ampliar y desarrollar las ideas de Euclides, Arquímedes, Apolunio y Ptolomeo.  No debemos olvidar que la gran era de la ciencia y la matemática griegas se prolongó desde el siglo VI a.C. hasta los comienzos del siglo VI d.c., más de un milenio de gran productividad.  Ninguna otra civilización ha aportado tanto un periodo de tiempo tan largo. En aquel movimiento cultural también estuvo presente alguna mujer que todos tenemos en la mente.

Sin embargo, en Alejandría, las matemáticas o, al , los números tuvieron otro aspecto muy importante, y también muy diferente.  Se trata de los denominados “misterios órficos” y su énfasis místico.

Según Marsilio Ficino, autor del siglo XV d.C., hay seis grandes teólogos de la antigüedad que forman una linea sucesoria.  Zoroastro fue “el principal referente de los Magos”; el segundo era Hermes Trismegisto, el líder de los sacerdotes egipcios; Orfeo fue el sucesor de Trismegisto y a él le siguió Aglaofemo, que fue el encargado de a Pitágoras en los secretos, quien a su vez los confió a Platón. En Alejandría, Platón fue desarrollado culturalmente por Clemente y Filón, para crear lo que se conocería como neoplatonismo.

Tres ideas conforman los cimientos de los misterios órficos.  Una  es el poder místico de los números.  La existencia de los números, su cualidad abstracta y su comportamiento, tan vinculado el del Universo, ejercieron una permanente fascinación sobre los antiguos, que veían en ellos la explicación de lo que percibían como armonía celestial.

La naturaleza abstracta de los números contribuyó a reforzar la idea de un alma abstracta, en la que estaba implícita la idea (trascendental en este contexto) de la salvación: la creencia de que habrá un futuro de éxtasis, al que es posible llegar a través de la trasmigración o reencarnación.

Por último, estaba el principio de emanación, esto es, que existe un bien eterno, una unidad o “monada”, de la que brotaba toda la creación.  Como el , esta era considerada una entidad básicamente abstracta.  El alma ocupada una posición intermedia entre la monada y el mundo material, entre la mente, abstracta en su totalidad, y los sentidos.

Según los órficos, la monada enviaba (“emanaba”) proyecciones de sí misma al mundo material y la tarea del alma era aprender usando los sentidos.  De esta , a través de sucesivas reencarnaciones, el alma evolucionaba hasta el punto en el que ya no eran necesarias más reencarnaciones y se alcanzaba el momento de profunda iluminación que daba lugar a una forma conocida como gnosis, allí la mente esta fundida con lo que percibe.  Es posible reconocer que esta idea, original de Zoroastro, subyace en muchas de las regiones principales del mundo, con distintas variantes o matices que, en esencia, viene a ser los mismos.

Pitágoras, en particular, creía que el estudio de los números y la armonía conducían a la gnosis.   Para los pitagóricos, el número uno no era un número en realidad,  sino la “esencia” del número,  de la cual surge todo el sistema numérico.  Su división en dos creaba un triángulo, una trinidad, la forma armónica más básica, idea de la que encontramos ecos en santísimas religiones.

Platón sobre la familia y la educación

Platón, en su versión más mítica, estaba convencido de que existía un “alma mundial”, también fundada en la armonía y el , y de la cual brotaba toda la creación.  Pero añadió un importante refinamiento al considerar que la dialéctica, el examen crítico de las opiniones era el método para acceder a la gnosis.

La tradición sostiene que el cristianismo llegó a Alejandría a mediados del siglo I d.C., cuando Marcos el evangelista llegó a la ciudad predicar la nueva religión.

Las similitudes espirituales entre el platonismo y el cristianismo fueron advertidas de muy clara por Clemente de Alejandría (150-215 d.C.), pero fue Filón el indio quien primero desarrolló esta nueva fusión. En Alejandría habían existido escuelas pitagóricas y platónicas desde hacía un largo tiempo, y los judíos cultos conocían los paralelos entre las ideas judías y las tradiciones Geténicas, hasta el punto de que para muchos de ellos el orfismo no era otra cosa que “una emanación de la Torá de la que no había quedado constancia”.

                                                    El filósofo judio Filón de Alejandría

Filón era el típico alejandrino que “nunca confiaba en el sentido literal de las cosas y siempre estaba a la búsqueda de interpretaciones músticas y alegóricas”.  Pensaba que podía “conectar” con Dios a través de ideas divinas, que las ideas eran “los pensamientos de Dios” porque ponían orden a la “materia informe”.  Al igual que Platón, tenía una noción dualista de la Humanidad:

 

“De las almas puras que habitan el espacio etéreo, aquellas más cercanas a la tierra resultan atraídas por los seres sensibles y descienden a sus cuerpos”.

 

Las almas son el lado divino del hombre, se decía por aquel entonces.

Es interesante reparar en los hechos pasados y la evolución del pensamiento humano que, en distintos lugares del mundo y bajo distintas formas, todos iban en realidad a desembocar en el mismo mar del pensamiento. Siempre hemos querido saber, siempre hemos imaginado sobre lo que habrá más allá, en ese “universo” de lo inmaterial de la metafísica que nuestras mentes han ideado para explicar lo que no tiene explicación.

  Más allá de nosotros… ¡están las estrellas!

La naturaleza humana y el orden universal, el primero unido a un alto concepto cuasi divino, el Alma, el segundo regido por la energía cósmica de las fuerzas naturales creadoras de la materia y, todo esto, desarrollado de una u otra manera por los grandes pensadores de todos los tiempos  que hicieron posible la evolución del saber tomar posesión de profundos conocimiento que, en un futuro, nos podrán permitir alcanzar metas, que aún hoy, serían negadas por muchos.

Para mí, el mirar los hechos pasados y estudiar los logros alcanzados en todos los campos del saber, es una auténtica aventura que profundiza  y lleva al conocimiento del ser humano que, según la historia, es capaz de lo mejor y de lo , sin embargo, nadie podrá negarle grandeza ni imaginación.

emilio silvera

¡Qué historias! ¡Qué personajes! ¡Qué tiempos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

¿Qué no será capaz de inventar el hombre para descubrir los misterios de la naturaleza?

 

Ha pasado mucho tiempo desde que Rutherford identificara la primera partícula nuclear (la partícula alfa). El camino ha sido largo y muy duro, con muchos intentos fallidos antes de ir consiguiendo los triunfos (los únicos que suenan), y muchos han sido los nombres que contribuyeron para conseguir llegar al conocimiento del átomo y del núcleo actual; los electrones circulando alrededor del núcleo, en sus diferentes niveles, con un núcleo compuesto de protones y neutrones que, a su vez, son constituidos por los quarks allí confinados por los gluones, las partículas mediadoras de la fuerza nuclear fuerte. Pero, ¿qué habrá más allá de los quarks?, ¿las supercuerdas vibrantes? Algún día se sabrá.

 

 

 

“No es que tengamos poco tiempo, sino que perdemos mucho” Eso nos decía Séneca en De la brevedad de la vida

 

En física, el tiempo es la cuarta coordenada espacial en el continuo espacio-tiempo. En gramática es la categoría que indica el momento relativo en que se realiza o sucede la acción del verbo: pretérito, lo que ha sucedido; presente, lo que sucede en ese momento y futuro, lo que aún no ha sucedido. Nos referimos al tiempo meteorológico para explicar el del clima (hace mal tiempo; qué tiempo más bueno hace hoy, etc). En mecánica, el tiempo puede estar referido a las fases de un motor. También están los tiempos referidos a cada una de las partes de igual duración en que se divide el compás musical. En astronomía nos referimos al tiempo de aberración en relación al recorrido de un planeta hasta llegar a un observador terrestre. El tiempo está también en la forma de cálculo horario que empleamos en nuestra vida cotidiana para controlar nuestros actos y evitar el caos (¿qué haríamos sin horario de trenes, de comercio, bancos, oficinas, etc?).

Pasado, Presente y Futuro: ¡Una Ilusión llamada Tiempo!

 

 

 

 

 

 

 

“Así fue como ví el péndulo

La esfera, colgando de un largo cable fino al techo del

coro, oscilaba de un lado a otro con una majestád isócrona.

Yo sabía -pero cualquiera podía haberlo sentido en la

magia de ese sereno aliento- que el período estaba gobernado

por la raíz cuadrada de la longitud del cable y por π,

ese número que, por irracional que sea para las mentes sublunares,

liga la circunferencia y el diámetro de todos los cículos posibles a

través de una racionalidad superior. El tiempo que necesitaba la

esfera para oscilar de un extremo a otro estaba determinado por una

conspiración arcana entre la más intemporal de las medidas: la singularidad

del punto de suspensión, la dualidad de las dimensiones del plano, el

comienzo triádico de π, la secreta Naturaleza cuadrática de la raíz y la

innumerada perfección del propio círculo.”

Uberto Eco

 

 

http://img.robotikka.com/wp-content/uploads/2011/05/avances-inteligencia-artificial.jpg

Habiendo sido un curioso de todo lo relacionado con la vida, siempre me llamó la atención los comienzos y la evolución que en la misma se produce en los distintos seres vivos que hemos llegado a “conocer”, y, me ha picado la curiosidad que, en nosotros, los humanos, cuando llegamos a una cierta edad, nuestra mente rememora más los hechos del pasado que aquellos que se podrían producir en el futuro, y, tal hecho cierto, nos habla de una especie de decadencia en la que, el ser humano (no siempre consciente), ve como se acerca su final y, de forma intuitiva, regresa a su pasado para repasar su vida, ya que, de alguna manera sabe que, lo que le queda por vivir no será mucho y, el futuro, será el futuro de otros y no el suyo, de ahí su falta de interés por él.

Tengo que ser, en ese aspecto, un raro personaje, ya que, sólo miro atrás para buscar lo que la Historia me cuenta, y, estoy más en lo que pudiera ser el futuro que en lo que ya pasó. El pasado es inamovible, y, perder el Tiempo en reparar los errores no sirve de nada. Sin embargo, tratar de que el futuro sea placentero y nos traiga (les traiga) algo bueno a los que en él estén presentes… Parece más positivo que estar quejándose de lo que pudo ser y no fue.

¡Qué historias! ¡Qué personajes! ¡Qué Tiempos!

Los navegantes, tal como narraba Shakespeare, gustaban de exagerar sus experiencias y hablaban de hombres  cuyas cabezas nacían abajo de los hombros, o que no tenían cabeza, o de aquellos que, como los patagones, sólo tenían un pie muy grande, o los de Labrador, que tenían cola. Todo esto originó un “renacimiento de la superstición”. Aquellos viajeros crearon en sus mentes escenarios fantásticos, que los situaban más allá del tiempo y del espacio, en mundos ignotos donde nuevos órdenes de razas monstruosas de animales fantásticos existían. Dado que es casi tan difícil inventarse un animal como descubrirlo, a las criaturas míticas y folkloricas conocidas se les añadieron otros rasgos imaginarios.

Así, la era del descubrimiento trajo consigo un renacimiento de la fábula. Las serpientes marinas de ciento cincuenta metros de largo se multiplicaron como nunca, y, era raro el marinero que habiendo viajado a lejanos horizontes de nuevas tierras, no contaba, a su regreso, fantásticas historias de animales que sobrepasaban la fantasía de la imaginación más creadora: Sirenas y Tritones, Unicornios y bellas mujeres de larga cabellera que andaban suavemente por encima del agua de maravillosos lagos de cascadas de increíble belleza.

Las leyendas dudosas eran confirmadas por jesuítas misioneros, por adinerados plantadores de azúcar y por sobrios capitanes de barcos. A las quimeras de la fantasía medieval se añadían ahora criaturas reales cuyas noticias llegaban con cada viaje procedente de las Américas, de China y de otros lejanos horizontes.  Los que no leían latín podían disfrutar de las numerosas ilustraciones que acompañaban a los textos que abundaban para deleite de los más soñadores.

Imágenes como esas de arriba,  eran las que adornaban aquellas pioneras publicaciones en las que se contaban las historias de marineros-aventureros que, viniendo de lugares lejanos, siempre traían consigo narrativas de leyendas que dejaban boquiabiertos a los lectores u oyentes de las mismas.

Todo aquello inspiró el surgir de una nueva generación de enciclopedistas de la Naturaleza. El más destacado de todos ellos, Konrad Gesner (1516-1565), tenía habilidad para combinar lo con lo antiguo. Gesner, que conocía extraordinariamente bien varias lenguas, se debatía entre lo que había leído y lo que veía.

A los 20 años escribió un diccionario Griego-Latin. Durante los treinta años que siguieron produjo treinta violúmes sobre todos los temas imaginables. Su monumental Biblioteca Universal en cuatro volúmes (1545-1555) pretendía ser un catálogo de todos los escritos producidos en griego, latin y hebreo a lo largo de la historia.

Gesner clasificó mil ochocientos autores y los tiítulos de us obras manuscritas e impresas, acompañadas de un resumen de su contenido. De este modo ganó el título de “padre de la bibliografía”. La bibliografía sería para las Bibliotecas lo que la cartografía para los exploradores de la tierra y de los mares.

En la Biblioteca de los Fugger, Gesner encontró un manuscrito griego enciclopédico del siglo  II que le inspiró para convertirse en un Plinio moderno. Por fin, su Historia Animalium, que seguía la disposición de Aristóteles, recogíam todo lo que se conocía, especulaba, imaginaba o contaba de cada uno de los animales conocidos. Como Plinio, Gesner produjo una miscelánea, pero añadió los que se habían acumulado en el milenio y medio transcurrido desde entonces. Sin bien era algo más crítico que Plinio, él tampoco desmintió las leyendas increíbles, y mostró una serpiente marina de noventa metros de largo. Pero describió la caza de ballenas e incorporó la primera ilustración de una ballena que estaba siendo despellejada para obtener la grasa.

    Unicornios montados por bellas y misteriosas amazonas y otras fantásticas criaturas llenaban las mentes con la única linbertad que se nos ha dado ¡El Pensamiento! ¿Quién no ha pensado alguna vez en fantásticos mundos poblados por criaturas de inimaginable belleza, o, también, de fealdad indescriptible.

La duradera influencia de la obra de Gesner emanaba de su sentido del folklore y de su capacidad para presentar la fantasía y la realidad con la misma convincente veracidad. Cuando alguien escribe con pasión y plasma en el papel lo que siente, de alguna manera, es más fácil que pueda llegar al lector que, presiente, el mensaje que el autor le quiere hacer llegar.

Al cabo de un siglo, el lector inglés ya tenía acceso a la popular enciclopedia de Gesner gracias a la traducción de Edward Topsell, que éste tituló Historias de las bestias de cuatro patas, de las serpientes y de los insectos, 1658. Allí podemos saber con respecto a la gorgona que…

La gorgona, flanqueada por leonas y mostrando su cinturón de serpientes, tal como aparece en el pedimento del templo del siglo VII a. C. expuesto en el Museo arqueológico de Corfú. Todos estos mitos y leyendas han llegado a nuestro tiempo de las maneras más diversas cuando, aquellos personajes del pasado querían escenificar todas aquellas “historias” y las plasmaban en dibujos y relieves o quedaban escritas hasta en las piedras.

“En la mitología griega, una gorgona era un despiadado monstruo femenino a la vez que una deidad  protectora procedente de los conceptos religiosos más antiguos. Su poder era tan grande que cualquiera que intentase mirarla quedaba petrificado, por lo que su imagen se ubicaba en todo tipo de lugares, desde templos a cráteras de vino, para propiciar su protección. La gorgona llevaba un cinturón de serpientes entrelazadas como una hebilla y confrontadas entre sí”.

 

 

 

 

Górgonas y Medusas

 

…se planteó la cuestión de si el veneno que había emitido procedía de su aliento o de los ojos. Es más probable que, como el basilisco, matara con la mirada y también lo hiciera con el aliento de su boca, lo cual no es comparable con ninguna otra bestia del mundo… Al considerar esa bestia, se demostró de modo evidente la divina sabiduria y providencia del Creador, que había vuelto los ojos de criatura hacia la tierra, como si así enterrara su veneno y evitara que dañara al hombre, y los había ensombrecido con un cabello fuerte, largo y áspero, para que los rayos envenenados no pudieran dirigirse hacia arriba, hasta que la bestia se viera azuzada por el miedo o la ira…

Tras recurrir al indiscutible testimonio del salmo nonagésimo segundo, Gesner declara que los Unicornios son sagrados porque “reverencian a las vírgenes y a las jóvenes doncellas” y muchas veces al verlas se vuelven mansos y se acercan a dormir a su lado… ocasión que los cazadores indios y etíopes aprovechan para apoderarse de la bestia. Toman a un hombre joven, fuerte y hermoso, lo visten de mujer y lo adornan con diversas flores y especias olorosas”.

de la obra de Gesner

Pese a la fantasía de su texto, el millar de grabados de Gesner contribuyó a que la biología tomara un rumbo distinto. Al igual que los padres alemanes de la botánica, Gesner colaboró con los artistas y presentó los dibujos más realistas hechos hasta el momento de todos los tipos de criaturas, el “vulgar ratoncillo” al sátiro, la esfinge, el gato, el topo y el elefante. Durero fue el autor de su ilustración del rinoceronte, “la segunda maravilla de la naturaleza…como el elefante era la primera”. Estos incunables de la ilustración biológica empezaron a liberar a los lectores de los herbarios y los bestiarios.

La obra de Gesner, reimpresa, traducida y resumida, dominó la zoología postaristotélica hasta los innovadores estudios modernos de Ray y Linneo, que no estaban ilustrados. Sus notas inéditas fueron la base, el el siglo siguiente, del primer tratado completo que se escribió sobre los insectos. Para su Opera Botánica recogió cerca de un millar de dibujos, algunos realizados por él mismo, pero no llegó a terminar su gran sobre las plantas, que habían sido su primer amor.

Gesner nunca se liberó completamente de su obsesión filológica. En su libro de 158 páginas Mitrídates, u observaciones sobre las diferencias existentes entre las lenguas que han o están en uso en las diversas naciones del mundo entero (1555), intentó hacer con las lenguas lo que ya estaba haciendo con los animales y las plantas. Tomando como base su traducción del padrenuestro, Gesner describió y comparó “la totalidad” de las ciento treinta lenguas del mundo. Por vez primera,  incluyó un vocabulario del lenguaje de los gitanos.

    Nadie nunca se hubiera atrevido a querer visitar las misteriosas cumbres de las montañas

Al revelar públicamente su intención de explorar las altas montañas, que hasta entonces habían inspirado pasmo y terror, Gesner halló un modo típicamente suizo de la naturaleza. La Europa renacentista había presenciado un breve y prematuro surgir de la fascinación por la aventuira de las montañas. Petrarca (1304-1374) había sido el precursor, con su ascensión al monte Ventoux, cerca de Avignon, en 1336. En la cumbre leyó en un ejemplar de las confesiones de san Agustín que se sacó del bolsillo una advertencia dirigida a los hombres que “van a admirar las altas mopntañas y la inmensidad del océano y el curso de los astros… y se olvidan de sí mismos”. Leonardo da Vinci exploró el monte Bo en 1511 con ojos de artista y naturalista. El reformista y humanista suizo Joachim Vadian (1484-1551), amigo de Lutero y defensor de Zwinglio, llegó a la cumbre de Gnepfstein, cerca de Lucerna, en 1555, escribió su pequeña obra clásica.

“Si deseais ampliar vuestro campo de visión, dirigid la mirada a vuestro alrededor y contemplad todas las cosas que hay a lo largo y a llo ancho. No faltan atalayas y riscos, donde os parecerá que teneis la cabeza en la nubes. Si, por otra parte, preferís reducir la visión, podeis mirar los prados y los verdes bosques, o adentraros en ellos; y si la quereis reducir todavía más, podeis observar los oscuros valles, las sombrías rocas y las oscuras cavernas… En verdad, en ningún otro lugar se encuentran tal variedad en tan reducido espacio con en las montañas, en las cuales… en un solo día se puede contemplar y sentir las cuatro estaciones del año, verano, otoño, primavera e invierno. Además, desde los picos más altos de las montañas, la cúpula entera de nuestro cielo se tenderá audazmente abierta ante nuestra mirada, y podreis presenciar la salida y la puesta de las constelaciones sin ningún estorbo, y comprobareis que el Sol se pone mucho después y sale mucho antes.”

 

 

 

 

 

Pero resultaba tan difícil vencer los temores primitivos que tendrían que transcurrir dos siglos entre las excursiones de Gesner y los verdaderos comienzos del montañismo moderno. El Mont Blanc (4.810 m), el pico más alto de Europa aparte del Cáucaso, no fue escalado hasta 1786 por un montañero que se proponía cobrar la recompensa que había ofrecido un geólogo suizo, Horace-Bénedict de Saussure (1740-1779), veinticinco años antes.

En tanto los naturalistas dispusieran las plantas y los animales por orden alfabético, el estudio de la naturaleza estaba condenado a seguir siendo teórico…Pero, ¡esa es otra historia que no toca hoy!

Lo cierto es que, leyendo estas historias del pasado nos podemos situar en aquel tiempo y llegar a comprender cómo la gente tenían aquellos pensamientos, el desconocimiento del mundo y de las cosas y los seres que lo pueblan hacen que la imaginación desbocada vague por caminos que, en la mayoría de los casos, están aconsejados por la ignorancia. Pero, el tiempo pasa y las sociedades y sus gentes evolucionan, los descubrimientos no cesan y la ciencia avanza. Ahora, todo aquello ¡nos queda tan lejano!

emilio silvera

Historias como estas son contadas por Daniel J. Boorstin en sus libros titulados Los Descubridores…La Naturaleza. Los podeis encontrar en la Biblioteca de Divulgación Científica (1986 Editorial Crítica, S.A.) ISBN (Obra completa): 84-873-0174-5. Cuatro Caminos s/n. Sant Vicentç dels Hirts (Barcelona).