lunes, 27 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Viajar a Marte hoy… ¡Sólo es un sueño!

Autor por Emilio Silvera    ~    Archivo Clasificado en Viajar al Espacio    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Por qué es difícil ir a Marte? I

 

 

                    Fotograma de la película ‘The martian’. AIDAN MONAGHAN

El estreno de la película ‘Marte’ (The Martian) ha despertado cierta curiosidad acerca de posibles futuros viajes humanos al planeta rojo. Después de haber ido a la Luna en varias ocasiones hace ya casi cinco décadas, y estando acostumbrados a ver astronautas viajar al espacio casi de forma rutinaria, es tentador pensar que enviar seres humanos a Marte pueda ser algo perfectamente plausible a día de hoy, o tal vez un tanto más complicado que lo hecho hasta ahora. Sin embargo, la realidad es que enviar seres humanos a Marte constituye un desafío de una dificultad y complejidad absolutamente descomunales que se aleja mucho de todo lo que se ha hecho hasta ahora en la historia de la exploración humana del espacio.

En esta y en la siguiente entrada hablaré de las razones por las que esta empresa constituye un desafío inmenso y sobre cómo se plantea en la actualidad una misión tripulada a Marte. Con objeto de ofrecer una perspectiva inicial para entender la dimensión del problema de una forma intuitiva, en esta entrada trataré de la razón principal que hace extremadamente difícil una misión a Marte, la razón de la que prácticamente se derivan casi todas las demás: la distancia.

                      Matt Damon in “The Martian.” Credit Aidan Monaghan/Twentieth Century Fox

Vemos astronautas viajar con frecuencia al espacio, a la Estación Espacial Internacional (ISS), antes a la estación Mir, a bordo de naves Soyuz, o antes a bordo del Transbordador Espacial, etc., y se suele tener la impresión de que el lugar al que se viaja en estas misiones es muy lejano; sin embargo, las altitudes típicas a las que estas estaciones y vehículos espaciales orbitan alrededor de la Tierra son de unos pocos cientos de kilómetros. La ISS, por ejemplo, orbita alrededor de la Tierra a una altitud que es equivalente a la distancia que hay en línea recta entre Madrid y Almería: unos 400 km. Esta región espacial a la que viajan los humanos de forma rutinaria está dentro de la conocida como ‘región de las órbitas bajas de la Tierra’, y técnicamente la llamamos LEO (del inglés Low Earth Orbit).

Comparativa entre orbitas bajas de la Tierra (arriba) y la distancia a escala entre la Tierra y la Luna (abajo).

Resultado de imagen de la distancia a escala entre la Tierra y la Luna

Los viajes tripulados lunares implicaron viajar más allá de las órbitas LEO ya que la Luna orbita nuestro planeta a una distancia media de unos 380.000 km, lo que viene a ser unas 1.000 veces más lejos que las altitudes de estas órbitas bajas. Una tripulación y su nave se ponen en órbita alrededor de la Tierra poco después de su lanzamiento, mientras que la distancia a la Luna se cubría en las misiones Apolo en prácticamente 3 días.

En el caso de Marte la situación es muy diferente. Ir a Marte implica pasar de una misión geocéntrica a una centrada en el Sol, o heliocéntrica, lo que supone un salto enorme en las distancias involucradas. Aunque las distancias máxima y mínima entre la Tierra y Marte varían dentro de un cierto rango, la mínima distancia posible es de unos 55 millones de km y la máxima posible es de unos 400 millones de km.

Estas son distancias enormes en comparación a todo lo que se ha volado en misiones tripuladas al espacio hasta ahora. La distancia máxima a Marte viene a ser 1.000 veces mayor que la que hay entre la Tierra y la Luna, lo que viene a ser 1.000.000 de veces mayor que la distancia que separa la superficie terrestre de las órbitas LEO a las que se viaja normalmente.

Distancias aproximadas mínima y máxima posibles entre la Tierra y Marte. Como referencia, la distancia media de la Tierra a la Luna es de 380.000 km.

Sin necesidad de conocer nada más, los datos acerca de la distancia a Marte ya constituyen una buena pista para empezarnos a asomar a la magnitud del problema. Para apreciarlo mejor, y sin entrar en detalles relativos a métodos de propulsión o dinámica orbital, vamos a comparar en números redondos dos misiones tripuladas, una orbital alrededor de la Tierra para un solo tripulante y otra lunar de tres tripulantes, para hacernos una idea de la progresión en la masa necesaria de los cohetes involucrados para llevar a cabo estas misiones y entender el contexto de lo que supondrá una misión a Marte.

Empezamos con la primera misión orbital del Programa Mercury de principios de los ’60: la Mercury 6 de John Glenn. Aquí se precisó de un cohete Atlas de 120 toneladas y 29 metros de altura para poner en una órbita de 200 km de altitud media alrededor de la Tierra una masa útil de 1,2 toneladas formada por una cápsula Mercury con su único tripulante, el cual permaneció en el espacio 5 horas.

Veamos ahora lo que cambia la situación al tener a la Luna como destino unas 1.000 veces más lejos. En el caso del Apolo 17 -la última misión de exploración lunar-, su módulo de mando y servicio más su módulo lunar, sumando todo cerca de 50 toneladas, hubieron de ser lanzados a la Luna por el poderoso cohete Saturno V de unas 3.000 toneladas y de 110 metros de altura para una misión de una duración total de unos 12 días y medio en la que 2 de sus tripulantes permanecieron sobre la superficie lunar algo más de 3 días.

Cohete lunar Saturno V junto al cohete Atlas del Programa Mercury para un tripulante (Transbordador Espacial incluido como referencia). Fuente: http://historicspacecraft.com/.

Vemos así el salto cuantitativo necesario cuando queremos ir a otro mundo que está 1.000 veces más allá de las órbitas bajas de la Tierra tanto en la masa útil a lanzar (de 1,2 a 50 toneladas) como en el tamaño del cohete lanzador requerido (de 120 a 3.000 toneladas). Comparemos todo esto con una misión a Marte. Aquí la tripulación constará de 6 astronautas y su duración, tomando como ejemplo la oportunidad en 2037, sería de 174 días para la ida y 201 días para la vuelta, con una estancia de 539 días en Marte. Una estancia tan larga en Marte sería necesaria a la espera de que la posición relativa entre este planeta y la Tierra fuera óptima para el regreso con un mínimo gasto de combustible, lo que ahorra el envío de centenares de toneladas de combustible. Todo esto supone un total de 914 días, o 2 años y medio.

Como vemos, el salto entre la Luna y Marte es descomunal, ya que doblar la tripulación y extender la duración a cerca de 73 veces la de la misión lunar más larga, supone la necesidad de proveer y transportar cerca de 150 veces más suministros. Por otra parte, una mayor duración de viaje interplanetario supone la necesidad de proveer a la tripulación de mayor protección contra las radiaciones, lo que se consigue en parte añadiendo aún más masa, aunque este problema no está aún resuelto.

Otro problema de la larga duración es que las cosas se rompen a lo largo de tanto tiempo. O bien se tendrá que mejorar sustancialmente la durabilidad de los equipos o estos habrán de poder ser repuestos por recambios que también habrá que transportar, lo que implica una mayor masa. Las naves de carga que visitan la ISS pueden abastecerla de repuestos cuando algo se estropea a bordo pero esta opción no será posible en una misión a Marte.

+

Una vez dicho todo esto, al igual que cuesta más acelerar y frenar un camión que un turismo por tener el primero más masa, tengamos en cuenta que enviar más masa a Marte implica transportar también más combustible para acelerar toda esa carga hacia Marte, para frenarla a la llegada a ese planeta, y para volver a la Tierra desde allí; y pensemos que todo ese combustible (centenares de toneladas) también hay que lanzarlo al espacio inicialmente.

En total, para una misión a Marte se requerirá lanzar al espacio entre 850 y 1.250 toneladas. Esta es una cantidad enorme si tenemos en cuenta que la Ia ISS tiene una masa de unas 420 toneladas y que una nave con la que estamos familiarizados como el Transbordador Espacial solo podía enviar al espacio entre 15 y 25 toneladas aproximadamente, dependiendo de la altitud de la órbita final. El Ariane 5 es capaz de poner unas 20 toneladas en órbita baja alrededor de la Tierra, al igual que el cohete ruso Protón, por ejemplo.

Así pues, a partir de todo esto, y sin saber mucho más, ya podemos anticipar de forma intuitiva que no se podrá utilizar un único cohete para ir a Marte, sino que se precisarán varios lanzamientos de cohetes -tanto o más poderosos que el Saturno V de los años ’60- para ensamblar en el espacio distintos elementos de propulsión, módulos de combustible, hábitats y naves, que habrán de enviarse a Marte por separado y por anticipado, además de la nave con la tripulación, que sería enviada en último lugar. Entraremos en estos detalles en la siguiente entrada.

Aunque depende de diversos factores, se requerirán, de hecho, del orden de 10 lanzamientos de cohetes con la capacidad del Saturno V o similar; pero recordemos que el número total de cohetes Saturno V que se enviaron a la Luna en todo el Programa Apolo fue de 9. El Saturno V fue retirado de servicio después del Porgrama Apolo pero ostenta el récord, aún a día de hoy, como el cohete operativo más poderoso que haya habido nunca, capaz de poner algo más de 120 toneladas en órbita baja alrededor de la Tierra y de enviar 50 toneladas a la Luna. Tuvo que ser específicamente diseñado y construido en su día para poder alcanzar la Luna, y no existe un lanzador de tanta capacidad en la actualidad. El cohete que se encargaría de la mayor parte de los lanzamientos en una futura misión a Marte se está desarrollando en la actualidad y se llama SLS (Space Launch System), el cual tendrá prestaciones parecidas o acaso un tanto mayores que el Saturno V.

Resultado de imagen de Modernas naves para viajar a Marte

Habría que viajar en naves provistas de Gravedad artificial

Por otra parte, un tiempo de 174 días de ida en condición de ingravidez afecta profundamente a la fisiología humana, algo especialmente preocupante al llegar a un planeta donde no hay nadie para asistirte. Las naves que se pueden ver en las películas (incluida la película ‘Marte’), con un amplio y confortable habitáculo en forma de donut girando para simular la aceleración de la gravedad, no son realistas en la actualidad.

                    La Tierra vista desde Marte (izda.) y desde la Luna (dcha.). Fuente: NASA.

Dos años y medio es un tiempo muy largo también por razones psicológicas. La Tierra será vista por la tripulación como un punto de luz semejante a una estrella durante la mayor parte del viaje y será apenas imperceptible en la noche marciana cuando fuera visible. La tripulación tendrá que convivir en una condición de confinamiento permanente en un espacio reducido en una situación de gran estrés, y con la imposibilidad de mantener conversaciones fluidas con los seres queridos en la Tierra debido al tiempo de viaje de la señal.

Después de todo esto, y aunque no se han mencionado todas las dificultades técnicas, tecnológicas y operativas, creo que ahora puede apreciarse un poco mejor a lo que nos enfrentamos en una misión a Marte. A partir de aquí, y una vez expuesta esta perspectiva para contextualizar el problema y entrar en materia, en la siguiente entrada explicaré cómo se plantea en la actualidad una misión humana a Marte y cómo se relaciona con lo que se ve en la película ‘Marte’ (The Martian).

sigue en la II parte

Fuente: NASA

¿Por qué es difícil viajar a Marte? II (Desde la NASA)

Autor por Emilio Silvera    ~    Archivo Clasificado en Viajar al Espacio    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                     Fotograma de la película ‘Marte’ (‘The Martian’). EM

¿Por qué es difícil ir a Marte? (II)

 

 

En la pasada entrada contextualizamos el problema de una misión humana a Marte para apreciar la dimensión del desafío que supone. Como vimos, la principal razón que la hace difícil es la enorme distancia que nos separa de ese planeta, lo que implica que la misión tendría una duración total de aproximadamente 2 años y medio. En esta entrada vamos a concretar cómo se plantea hoy en día esta misión, tomando como ejemplo la oportunidad para el año 2037.

 

 

Resultado de imagen de Modernas naves para viajar a Marte

 

Cuando ese momento llegue las naves que podrán llegar hasta el planeta vecino serán muy avanzadas

 

Según está propuesto en la actualidad, para completar una misión humana a Marte serán necesarias 3 naves: dos de carga y una para la tripulación. Una de las naves de carga transportará a Marte el hábitat que albergará a la tripulación durante su estancia de 539 días en la superficie marciana. Este hábitat se denomina SHAB (Surface Habitat), y es ahí donde Mark Watney, el protagonista de ‘Marte’ The Martian, trata de sobrevivir en solitario.

 

 

Resultado de imagen de Modernas naves para viajar a Marte

 

 

 

La otra nave de carga es el denominado ‘vehículo de descenso y ascenso’, o DAV (Descent and Ascent Vehicle). El DAV es la nave a bordo de la que la tripulación, una vez acabada su estancia en Marte, abandonará este planeta, y es, por tanto, la nave que utiliza la tripulación al principio de la película para abortar su estancia en la superficie marciana en medio de una feroz tormenta de arena.

La nave con la tripulación es conocida como ‘vehículo de transferencia para Marte’, o MTV (Mars Transfer Vehicle), y es la que se encargará de transportar a la tripulación en sus dos trayectos interplanetarios: el de ida a Marte y el de regreso a la Tierra (las naves de carga solo tienen tiques de ida).

 

 

 

Concepto de vehículo de transferencia de tripulación para Marte. Fuente: NASA.

 

Estas tres naves habrán de ensamblarse en una órbita baja alrededor de la Tierra antes de ser enviadas por separado a Marte, pero estos ensamblajes y envíos se harán en tiempos distintos. Las naves de carga (SHAB y DAV) serán las primeras en ser ensambladas, y serán lanzadas al planeta rojo dos años antes que el MTV con la tripulación. ¿Por qué dos años? Porque es aproximadamente cada dos años que se da la posición relativa precisa entre Marte y la Tierra que permite que entre ambos planetas se pueda volar una trayectoria por la que se minimiza la cantidad de combustible a utilizar. Esto es de gran importancia porque son muchas las toneladas de combustible que se necesitan para hacer posible una misión así, como veremos luego.

 

 

 

Concepto de nave de carga para Marte. Fuente: NASA.

 

Una vez ensamblada cualquiera de estas tres naves en órbita alrededor de la Tierra, cada una de ellas es lanzada desde ahí hacia Marte a través del encendido de sus motores durante un corto espacio de tiempo. La nave es así acelerada hasta adquirir la velocidad necesaria para abandonar la influencia gravitatoria terrestre y dirigirse hacia Marte a lo largo de una trayectoria interplanetaria que es, en realidad, una órbita elíptica alrededor del Sol y cuyo punto más lejano intersectará con el paso de Marte por ese punto en el momento preciso. Cuando la velocidad deseada ha sido alcanzada, los motores se apagan y permanecen así durante toda la travesía (se encenderán en algún momento para hacer alguna corrección en la trayectoria). A pesar de encender los motores durante un corto espacio de tiempo, del orden de pocos minutos o decenas de minutos, la cantidad de combustible que se utiliza es enorme (decenas de toneladas).

Este lanzamiento hacia Marte desde una órbita baja alrededor de la Tierra se denomina ‘inyección transmarciana’, y nos referimos a él como TMI (Trans-Mars Injection). Nótese que al regreso de la tripulación desde Marte, el mismo proceso ocurrirá desde allí en sentido inverso: desde una órbita alrededor de Marte, la nave encenderá sus motores por un corto espacio de tiempo en lo que se denomina ‘inyección transterrestre’, o TEI (Trans-Earth Injection).

 

 

 

 

Una vez llegada una nave a las proximidades de Marte, esta debe frenarse para quedar capturada en una órbita alrededor de ese planeta desde donde acometer las siguientes operaciones. Esta maniobra de frenado se denomina ‘inserción en órbita marciana’, o MOI (Mars Orbit Insertion). El MOI puede hacerse de forma propulsada, encendiendo los motores otro corto espacio de tiempo, o de forma aeroasistida, utilizando la atmósfera marciana para frenar la nave en una maniobra llamada ‘aerocaptura’. Esta última opción se ha propuesto solo para las naves de carga de forma que sería mucho el combustible que se ahorraría en la misión. El problema es que nunca se ha volado una aerocaptura hasta la fecha, con lo que esta capacidad habría de ser demostrada antes. El SHAB (la nave portando el hábitat) permanecerá en órbita alrededor de Marte a la espera de la tripulación, pero el DAV (vehículo de descenso y ascenso) descenderá a la superficie marciana de forma autónoma.

El DAV será la nave de ascenso que utilizará la tripulación en su día para despegar de la superficie al acabar su estancia en el planeta rojo. Con objeto de ahorrar el combustible necesario para ese lanzamiento, se propone que el DAV no porte el combustible con él, sino que lo produzca en Marte, in situ. Y es que sería prohibitiva la masa de una nave que descendiera a la superficie de Marte con el combustible para el lanzamiento posterior de 6 personas al finalizar su estancia allí. De hecho, se propone que el DAV no solo produzca in situ el combustible, siendo el metano/oxígeno la opción preferida, sino que también produzca el oxígeno, nitrógeno y el agua necesarios para la tripulación. Esta es otra área que precisa investigación y desarrollo tecnológico.

Dos años después de haber enviado las dos naves de carga, y después de comprobar que los consumibles (combustible, aire, agua) hayan sido producidos en Marte y de que todo allí funcione correctamente, la tripulación será lanzada finalmente al planeta rojo desde la Tierra. Una vez en órbita alrededor de Marte, el MTV (la nave en la que viaja la tripulación) se encontrará con el SHAB, que lo espera en órbita alrededor de Marte. Los astronautas pasarán al SHAB y procederán a bordo de esta nave al descenso a la superficie, donde aterrizarán a una corta distancia del DAV.

 

                Ejemplo de misión a Marte propuesta para la oportunidad de 2037. Fuente: NASA.

El descenso a Marte de naves de tanta masa es a día de hoy un problema no resuelto. Hasta la fecha se han enviado a Marte vehículos exploradores y aterrizadores de muy poca masa. El principal problema reside en que la atmósfera marciana es muy tenue y no consigue frenar una nave de reentrada lo suficiente sin necesidad de emplear retropropulsión supersónica o enormes superficies de frenado si la nave es lo suficientemente masiva. La tecnología a día de hoy permite como máximo aterrizar en Marte masas de alrededor de una tonelada, un valor muy lejano de las naves de varias decenas de toneladas que habrá que poder aterrizar en una misión humana, por lo que nuevas técnicas y tecnologías deberán también ser desarrolladas para este propósito, un área de investigación en el que personalmente trabajo parcialmente en la actualidad.

Después de los 539 días de estancia en Marte, la tripulación será lanzada en la etapa de ascenso del DAV al encuentro del MTV, que habrá permanecido en órbita alrededor de Marte todo ese tiempo. Una estancia tan larga en Marte sería necesaria a la espera de que la posición relativa entre este planeta y la Tierra fuera óptima para el regreso con un mínimo gasto de combustible, lo que ahorra el envío de ingentes cantidades de combustible. Una vez transferidos al MTV, se procederá a la inyección transterrestre por la que los astronautas regresarán a casa unos 200 días después, para acabar haciendo una reentrada en la atmósfera de la Tierra a bordo de una cápsula Orion, la cual está siendo desarrollada en la actualidad.

Imagen relacionada

                                  Para que esta imagen sea una realidad… ¡falta mucho!

Muchas personas me preguntan si sería posible reducir la estancia en Marte. Efectivamente, la estancia podría reducirse a tiempos de entre 30 y 90 días; pero, en ese caso, los tránsitos interplanetarios habrían de ser muy largos, de mas de 200 días de ida y de unos 400 días de vuelta; requiriendo, además, maniobras de asistencia gravitatoria en el camino; de otra manera, el coste sería prohibitivo. Se favorece la opción de viajes cortos y estancias largas para reducir la exposición de la tripulación a la radiación. Estando en Marte, el mismo planeta bloquea el 50% de la radiación a la que estarían expuestos los astronautas, ademas de que ciertas medidas de protección serian mas fáciles de implantar.

Como se ha dicho constantemente, las masas involucradas en una misión humana a Marte son enormes. Un elemento que contribuye significativamente a esto es el combustible, y es por esta razón que se ha propuesto la opción de utilizar propulsión nuclear-térmica en lugar de propulsión química, tal y como ha sido el caso en todas las misiones tripuladas hasta la fecha. Esta no es una decisión baladí ya que el ahorro en combustible entre una opción y otra es de unas 400 toneladas; esto es, aproximadamente la masa de una Estación Espacial Internacional (ISS). Para poner esto en perspectiva, apuntemos que se precisaron 10 años para ensamblar la ISS y algo más de una treintena de lanzamientos (aunque de menor capacidad que el Saturno V).

Según se estima en la actualidad, para llevar a cabo una única misión a Marte habrá que lanzar al espacio desde la Tierra un total de 850 toneladas en caso de que se utilice propulsión nuclear-térmica, o 1.250 toneladas en caso de utilizar propulsión química. Esto son 2 o 3 Estaciones Espaciales Internacionales. Asumiendo que un cohete lanzador de prestaciones similares al Saturno V de las misiones lunares puede emplazar 120 toneladas en una órbita baja alrededor de la Tierra, el número de lanzamientos requeridos en una sola misión humana a Marte sería aproximadamente de 7 u 11, dependiendo del tipo de combustible, y asumiendo que todos los elementos necesarios puedan ponerse en órbita con un lanzador así. El envió de la tripulación precisaría de un lanzamiento especifico a bordo de un cohete de menor capacidad, por ejemplo, y es posible que ciertas tareas de ensamblaje puedan requerir asistencia humana también.

Resultado de imagen de Modernas naves para viajar a Marte

Existen muchas variaciones en las arquitecturas propuestas para misiones tripuladas a Marte pero lo expuesto aquí refleja lo que viene a ser la arquitectura de referencia que se considera hoy en día. En cualquier caso, la envergadura de una misión humana a Marte es sobrecogedora. Espero que estas dos ultimas entradas hayan ayudado a entender un poco mejor la magnitud de una empresa tan ambiciosa y compleja. Las dificultades técnicas, operativas y tecnológicas que encierra no son para nada triviales, y resulta imposible siquiera mencionarlas todas en una entrada de un blog. Se requiere aún el desarrollo de tecnologías inexistentes en la actualidad para llevar a cabo una misión así, y muchas de las cuestiones planteadas no están aún resueltas. Aún estamos lejos de poder enviar seres humanos a Marte, pero también hace un siglo se estuvo muy lejos de alcanzar el espacio y la Luna. Estoy seguro de que el ser humano llegará a Marte algún día si así lo desea, pero creo, y esta es una opinión estrictamente personal, que ese día está más lejos de lo que muchos puedan pensar.

Fuente: NASA

Una cosa es mandar Sondas y, otra muy distintas… ¡Seres humanos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Viajar al Espacio    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El cerebro puede verse afectado por la exposición continua a los rayos cósmicos y quizás ni siquiera recordar el viaje

Recreación artística de una futura colonia en Marte

                            Recreación artística de una futura colonia en Marte – Archivo

 

Viajar a Marte, un reto que la NASA se prepara para conseguir a partir de 2030 y que también persiguen algunas empresas privadas, se convertirá en la hazaña del milenio, pero la gran aventura está plagada de peligros, entre ellos los que supone estar sometido a las altísimas dosis de radiación de partículas provenientes del espacio durante el trayecto. Un estudio publicado en la revista Science en 2013 decía que la exposición acumulada, para un astronauta con billete de ida y vuelta, sin contar la estancia más o menos prolongada en el Planeta rojo, equivale a hacerse 33.000 radiografías. Ahora, investigadores de la Universidad de California Irvine (UCI) se han interesado por lo que supondría esa radiación para el cerebro humano y sus conclusiones elevan aún más la alarma. Los astronautas que viajen a Martepodrían sufrir demencia crónica. Quizás, a su regreso, ni se acordarían del viaje.

Según describe en Scientic Reports Charles Limoli, profesor de oncología radiactiva en la Escuela de Medicina de la UCI, la exposición a las partículas cargadas de alta energía -al igual que las que se encuentran en los rayos cósmicos que bombardean a los astronautas durante los vuelos espaciales prolongados- causan importantes daños cerebrales a largo plazo en roedores, lo que resulta en alteraciones cognitivas y demencia. Limoli ya dio a conocer sus resultados en 2015, pero ahora ha ampliado su estudio, comprobando los efectos con el paso del tiempo.

«Esta no es una noticia positiva para los astronautas que hagan un viaje de dos o tres años a Marte», admite el especialista. «El entorno espacial plantea peligros específicos a los astronautas. La exposición a estas partículas puede conducir a una serie de posibles complicaciones del sistema nervioso central que pueden ocurrir durante el trayecto por el espacio y persistir mucho tiempo después, como una disminución del rendimiento, déficit de memoria, ansiedad, depresión y problemas para la toma de decisiones. Muchas de estas consecuencias adversas a la cognición pueden continuar y progresar durante toda la vida».

Resultado de imagen de rOEDORES SOMETIDOS A RADIACIÓN

                           La radiación no le sienta bien a ningún metabilismo celular

En el experimento, los roedores fueron sometidos a una irradiación de partículas cargadas (oxígeno totalmente ionizado y titanio) en el Laboratorio de Radiación Espacial de la NASA en el Laboratorio Nacional de Brookhaven en Nueva York, y luego se enviaron al de Limoli en la UCI.

Seis meses después de la exposición (el primer estudio contemplaba los resultados seis semanas después), los investigadores todavía encontraron niveles significativos de inflamación del cerebro y daño en las neuronas de los ratones. La red neural del cerebro se veía afectada por la reducción de las dendritas y espinas de las neuronas, lo cual interrumpe la transmisión de señales entre las células del cerebro. Estas deficiencias fueron paralelas a los malos resultados de las cobayas en las tareas de comportamiento diseñadas para probar el aprendizaje y la memoria.

Miedo y ansiedad

Resultado de imagen de No digamos de la radiación en nosotros, y, la sensación de soledad, el miedo, la Ansiedad Espacial

        No digamos de la radiación en nosotros, y, la sensación de soledad, el miedo, la Ansiedad

Además, el equipo de Limoli descubrió que la radiación afecta a la «extinción del miedo», un proceso activo por el cual el cerebro suprime asociaciones desagradables y estresantes anteriores, como cuando alguien que casi se ahoga aprende a disfrutar del agua de nuevo. Estos déficits pueden hacer a los sujetos «más propensos a la ansiedad», dice Limoli, lo que podría convertirse en un grave problema en el transcurso de un viaje lleno de dificultades, ya tan estresante de por sí.

Tipos similares más graves de disfunción cognitiva son comunes en pacientes con cáncer cerebral que han recibido altas dosis en tratamientos de radiación a base de fotones.

Los efectos en el cerebro de vivir en el espacio

VIAJAR AL ESPACIO PUEDE TENER EFECTOS FATALES EN EL CEREBRO

Hace bastante tiempo, aparecí­a en los medios una oferta de trabajo de la NASA un tanto curiosa. Se buscaban personas dispuestas a pasar 90 dí­as en la cama. Lo que perseguí­an los cientí­ficos, en este caso Roberts, era estudiar los efectos de la microgravedad en el cerebro humano.

Las cabezas de los participantes se inclinaron ligeramente hacia abajo. Cuanto más tiempo estuvieron en esa posición, más presión se acumuló en la parte superior del cerebro. Además, el espacio entre la parte superior del cráneo y el cerebro disminuyó. Para saber si a los astronautas también les pasaba lo mismo, Roberts comparó las imágenes de distintos astronautas, participantes en vuelos de duraciones variadas: desde un par de semanas a algunos meses.

Al 94% de los astronautas que habí­an participado en vuelos de larga duración habí­an sufrido este mismo efecto. El mismo que hace que se estreche el surco central, el área de la parte superior del cerebro que separa los lóbulos frontal y parietal. Los que se encargan de controlar la función ejecutiva y el cuerpo. De ahí­ que sea tan preocupante que se produzca esta deformación.

Resultado de imagen de Sufrir demencia espacial

Si bien los déficits parecidos a la demencia en los astronautas tardan meses en manifestarse, el tiempo necesario para una misión a Marte es suficiente para su desarrollo. Las personas que trabajan durante largos períodos en la Estación Espacial Internacional (ISS), sin embargo, no se enfrentan al mismo nivel de bombardeo de rayos cósmicos galácticos porque todavía están en la magnetosfera que protege la Tierra.

El trabajo de Limoli forma parte del Programa de Investigación Humana de la NASA. Investigar cómo afecta la radiación espacial a los astronautas y las maneras de mitigar esos efectos es crítico para los planes de futuras misiones a Marte y más allá.

Resultado de imagen de Misiones tripuladas a Marte y más allá

Las soluciones parciales se están explorando. La nave espacial podría ser diseñada para incluir áreas de aumento de blindaje, tales como las utilizadas para el descanso y el sueño. Sin embargo, estas partículas cargadas de alta energía atravesarán la nave, «y realmente no hay escapatoria».

Los tratamientos preventivos ofrecen alguna esperanza. El grupo de Limoli está trabajando en estrategias farmacológicas que implican compuestos que eliminan los radicales libres y protegen la neurotransmisión.

A vueltas con los viajes interestelares

Autor por Emilio Silvera    ~    Archivo Clasificado en Viajar al Espacio    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La NASA ya planea el primer viaje interestelar de la Historia

 

El periodista José Manuel Nieves habla sobre los planes que se barajan para recorrer una distancia de 4,6 años luz hasta las estrellas más cercanas al Sol

 

 

 

El primer viaje interestelar de la Historia podría ser una realidad en 2069. Esa es, en efecto, la fecha apuntada por un equipo de investigadores del Jet Propulsion Laboratory para el lanzamiento de la primera misión de la Humanidad a Alpha Centauri, la estrella más próxima al Sol.

Resultado de imagen de Las naves actuales tardarían 30.000 años en llegar a Alpha Centauri

Por supuesto, se trata por ahora de un simple esbozo, que enumera los objetivos y, sobre todo, las tecnologías que habrá que desarrollar en las próximas décadas para llevar la misión del papel a la realidad. Tecnologías de propulsión, por ejemplo, que sean capaces de recorrer los 4,6 años luz (41 billones de kilómetros) que nos separan del objetivo en un tiempo razonable. Hoy, y con los motores actuales, tardaríamos cerca de 30.000 años en cubrir esa distancia.

Resultado de imagen de Las naves actuales tardarían 30.000 años en llegar a Alpha Centauri

Motores nucleares, de antimateria… los investigadores proponen varias opciones, aunque la más prometedora parece ser la de velas solares impulsadas por un haz láser desde la Tierra, que permitirían a una nave acelerar hasta el 10 por ciento de la velocidad de La Luz. O lo que es lo mismo, llegar a Alpha Centauri después de «solo» unos 40 años de viaje.

Una vez allí, la sonda exploraría otro sistema solar, con especial atención al planeta Próxima b, del mismo tamaño que la Tierra y situado a la distancia precisa de su estrella para que las temperaturas de su superficie permitan la existencia de agua líquida. La sonda, incluso, llevaría sistemas para detectar la posible presencia de actividad industrial o iluminación artificial…

Aún es pronto para saber si la misión pasará de la simple teoría, pero de lo que no cabe duda es que sería una forma perfecta para celebrar los primeros cien años de la llegada del hombre a la Luna…

Nuestro Destino: Salir de la Tierra

Autor por Emilio Silvera    ~    Archivo Clasificado en Viajar al Espacio    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ilustración de la estrella enana ultrafría TRAPPIST-1 y de sus tres planetas. (ESO)

 

Ilustración de la estrella enana ultrafría TRAPPIST-1 y de sus tres planetas. (ESO)

 

En la actualidad nos parece cosa cotidiana el anuncio de las Agencias Espaciales de EE. UU. y de Europa cuando anuncian el descubrimiento de nuevos planetas que, alumbrados por alguna estrella y situados a la distancia adecuada, podría tener las condiciones para la Vida. NO hace mucho podíamos leer en las noticias:

 

“Tres planetas potencialmente habitables que orbitan alrededor de una estrella enana ultrafría (TRAPPIST-1) a tan sólo 40 años luz de la Tierra, fueron descubiertos por un un equipo internacional de astrónomos desde el Observatorio La Silla, 470 kilómetros al norte de Santiago de Chile.

voyager 1

Claro que todos esos descubrimientos sólo nos podrán ser válidos para dentro de muchas décadas o siglos, ya que, nuestras tecnologías están en pañales para poder realizar viajes del calibre requerido en expediciones a otros mundos situados fuera del Sistema solar.

Acordémonos de que la NASA tardó un año en averiguar que la Voyager 1 había salido del Sistema solar, y, lo anunció hace relativamente poco tiempo, cuando el lanzamiento del Ingenio espacial data del año 1977 y ha tardado cerca de 40 años en sumergirse en la región exterior a la que no llegan las partículas del Sol.

Cuando pasen unos 5.000 millones de años, nuestro Sol, agotado el combustible nuclear de fusión, se convertirá en una Gigante roja (proceso que durará unos 600 millones de años) que engullirá a los planetas interiores, y, entonces, la vida, dejará de existir tal como la conocemos. Cuando  alcance su tamaño máximo, que se estima será casi 260 veces mayor y su luminosidad que llegará a 2 700 veces más de la que tiene hoy.

Nuestro Sol, cada segundo, fusiona 4.654.000 Toneladas de Hidrógeno, en 4.650.000 Toneladas de Helio y, las 4.000 Toneladas que en la transmutación se “pierden”, son lanzadas al Espacio Interestelar en forma de luz y de calor. Una pequeña fracción de esa luz y de ese calor, llega a nuestro planeta para que la Vida sea posible y se produzca el ciclo de la fotosíntesis entre otros beneficiosos fenómenos naturales.

Descubren el planeta habitable más cercano a la Tierra

Simulación de Proxima b en la órbita de su estrella, la enana roja Proxima Centauri (ESO/M. Kornmesser)

El empeño que tenemos de seguir oteando el Espacio Exterior y vigilando estrellas que, parecidas a nuestro Sol, puedan contener planetas en órbita que sean idóneos para la Vida, no es gratuito, ya que, aunque aún falta mucho tiempo, si conseguimos continuar por aquí, el suceso llegará y necesitaremos otros lugares en los que asentar colonias humanas.

Claro que, por muchos motivos, las cosas no serán nada fáciles y, no todos los mundos tienen las condiciones de la Tierra. Aunque puedan ser habitables sus variables pueden ser inmensas, y, habrá que adaptarse a nuevas condiciones naturales distintas de las de la Tierra.

Resultado de imagen de Planetas habitables en estrellas cercanasImagen relacionadaImagen relacionada

Plantas con dos soles y con varias “lunas”, con unas condiciones climáticas distintas a las de la Tierra, con estrella que al no ser de la misma clase que nuestro Sol (G2V amarillo), nos enviarán una luz distinta que cambiará el color de las plantas y los paisajes…

Claro que, llegado ese momento, no tendremos otra salida, habrá que adaptarse a lo que podamos encontrar y que sirva para sustentar nuestras vidas. De los muchos planetas que para entonces tendremos a nuestra disposión, unos serán más idóneos que otros pero… ¡Nos olvidamos de lo más importante! CÓMO LLEGAR HASTA ELLOS.

     Recreación del planeta Próxima b. Al fondo, la estrella Próxima Centauri y en medio, Alfa Centauri.

El rumor era cierto. Próxima Centauri, la estrella más cercana al Sol, alberga un planeta. Un mundo que además, se parece a la Tierra y está situado a una distancia de su estrella que en teoría, le permitiría tener agua líquida, un requisito necesario aunque no suficiente para que pudiera albergar algún tipo de vida.

Próxima b, como ha sido bautizado, se convierte por tanto en el planeta más cercano a la Tierra encontrado fuera del Sistema Solar. En el catálogo de exoplanetas (como se denominan los planetas fuera de nuestro sistema) hay más de 2.000 mundos de características y tamaños muy diversos, pero hasta ahora no se había encontrado ninguno tan cercano.

 

Imagen de Próxima Centauri, tomada por el telescopio espacial Hubble (NASA)

                   Imagen de Próxima Centauri, tomada por el telescopio espacial Hubble (NASA

Esta es la estrella que orbita ese posible planeta habitable y, se encuentra fuera del Sistema solar a 4,2 años luz de nosotros y una distancia de 4,2 años-luz es equivalente a casi 40 billones de kilómetros, un 4 seguido de 13 ceros. Comparemos esto con cifras asociadas a la actividad humana en el espacio hasta la fecha. La máxima distancia de la Tierra a la que los humanos han volado se alcanzó en abril de 1970 cuando la tripulación del Apolo 13 pasó por detrás de la Luna a una altitud de 254 km sobre su superficie, lo que la situó a 400.171 km de la Tierra. Esto es apenas 1,33 segundos-luz de distancia, la máxima a la que ha estado el ser humano hasta el día de hoy. Los ingernios no tripulados, sí alcanzaron distancias más largas pero, eso no nos valdría. Además, fijáos que el Voyager-1 ha tardado 40 años en salir del Sistema solar. ¿Qué nave se necesitaría para hacer un viaje con garantías a Próxima CEntauri.

                      Estrellas más cercanas al Sol con distancias expresadas en años-luz

Con estos datos en la mano nos podemos desilucionar un poco, ya que, llegamos a comprender que, en ese ámbito de los Viajes Espaciales, estamos aún muy lejos de poder decir que dominamos la técnica de ir a otros planetas, ya que, no podríamos garantizar la seguridad física de los viajeros. Ahora estamos comenzando a vislumbrar ese futuro (aún muy lejos) en el que nuestros descendientes puedan visitar los planetas más cercanos de manera habitual.

Capturafff

Cuando hablamos acerca de por qué es tan difícil ir a Marte, tal vez el ambicioso próximo objetivo a conquistar en nuestro sistema solar, vemos que las dificultades para posar allí seres humanos derivaban principalmente de la distancia a ese planeta. Y, sin embargo, cuando trasladamos a unidades de tiempo-luz los 55 millones de km de distancia más cercana o los 400 millones de km de distancia más lejana a la que la Tierra puede estar del planeta en su recorrido orbital alrededor del Sol, estas distancias resultan ser equivalentes a 3 minutos-luz y a 22 minutos-luz respectivamente, comparables a los 8,3 minutos-luz que nos separan de nuestra propia estrella. Ciertamente, estas distancias palidecen ante la de Próxima b a pesar de ser el exoplaneta más cercano a nosotros.

Sonda Voyager 1. Fuente: NASA/JPL-Caltech.

A día de hoy, la sonda Voyager 1, lanzada al espacio en 1977, es el artefacto humano que más se ha alejado de nuestro sistema solar. La Voyager 1 entró en el espacio interestelar en agosto del 2012 y en la actualidad se encuentra mucho más lejos que Plutón, a algo más de 20 mil millones de kilómetros del Sol, una distancia absolutamente increíble, pero que es de tan solo casi 19 horas-luz, una distancia que sigue siendo imperceptible frente a los 4,2 años-luz que nos separan de nuestra estrella más cercana fuera del Sistema Solar y de su planeta.

https://ambientech.org/blog/wp-content/uploads/2014/02/620029main_Clouds-Astrospheres_946-710.jpg

Alpha Centauri situada a 4,3 años luz de nosotros nos obligaría a recorrer 41,3 billones de kilómetros de distancia para poder llegar hasta ella. Y, si tenemos en cuenta las velocidades máximas que pueden alcanzar nuestras navez actuales… ¿Cuándo llegaríamos hasta el planeta más cercano que orbita Próxima Centauri y que, posiblemente, sea habitable?

https://genesisnanotech.files.wordpress.com/2014/11/star_trek_space_station.jpg

Inmensas Naves surcarán los Espacios Siderales en ese futuro que nunca podremos conocer. Tan grandes como ciudades y en las que, dotadas de toda clase de adelantos: Hospitales, Escuelas, lugares de cultivo hidrophonico, Laboratorios de todo tipo y, en definitiva, irán dotadas de todo aquello que los “habitantes aventureros” pudieran necesitar. No digamos de las tecnologías de a bordo que, como los materiales inteligentes capaces de repararse así mismo en caso de una colisión con micrometeoritos, la gravedad simulada terrestre… ¡Y un sin fin de adelantos que ahora, ni podemos imaginar! Esas serán las navez que podrán llevar a nuestros descendientes a otros planetas antes de que el Sol, agotado, nos diga adios para siempre antes de convertirse en una Gigante roja primero y en una enana blanca después que se situará en el centro de una bonita Nebulosa Planetaria.

emilio silvera