domingo, 17 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Las Galaxias! ¡La Entropía! ¡El Universo! ¡La Vida!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Cómo es realmente la Vía Láctea?

Vía Láctea (como otras galaxias espirales) es una zona de reducción de entropía…,  así se deduce de varios estudios realizados  y  se puede argumentar que,  las galaxias deben ser consideradas, por su dinámica muy especial, como sistemas vivos. En planteamiento más prudente se señala que el test de Lovelock constituye lo que se llama una condición “necesaria, pero no suficiente” para la existencia de vida. Si un sistema se encuentra en equilibrio termodinámico -si no supera el test de Lovelock-, podemos tener la seguridad de que está muerto. Si está vivo, debe producir una reducción de la entropía y superar dicho test.

 

que es ENTROPIA?

Pero un sistema podría producir entrropía negativa sin estar vivo, como en el caso de contracción por efecto de la gravedad que hemos comentado a lo largo de estos trabajos. Desde este punto de vista, no hay frontera claramente definida entre los objetos vivos y la materia “inerte”. Yo, por mi parte creo que, la materia nunca es inerte y, en cada momento, simplemente ocupa la fase que le ha tocado representar en ese punto del espacio y del tiempo.

 

http://www.ecolo.org/lovelock/photos/Gaia.JimSandy.Lovelock1.jpg

                                       James y Sandy Lovelock  ¿Qué haríamos sin ellas?

El mero hecho de que la frontera entre la vida y la ausencia de vida sea difuso, y que el lugar en el que haya que trazar la línea sea un tema de discusión, es, sin embargo, un descubrimiento importante. Contribuye a dejar claro que en relación con la vida no hay nada insólito en el contexto del modo en que funciona el Universo.

Como ya hemos visto en las explicaciones de otros trabajos expuestos aquí, es natural que los sistemas simples se organicen en redes al borde del caos y, una vez que lo hacen, es natural que la vida surja allí donde hay  “una pequeña charca caliente” que sea adecuada para ello. Esto es parte de un proceso más o menos continuo, sin que haya un salto repentino en el que comience la vida. Desde ese punto de vista,  lo más importante que la ciencia podría lograr sería el descubrimiento de, al menos, otro planeta en el que haya surgido la vida.

 

http://universodoppler.files.wordpress.com/2011/05/ig272_kees_saturn_titan_02.jpg
¡La vida! podría estar presente… ¡ en tantos lugares…!

Gracias a la teoría de Lovelock sobre la naturaleza de la vida estamos a punto de poder conseguirlo, y es posible que antes de los próximos 50 años se lance al espacio un telescopio capaz de encontrar planetas con sistemas como el de Gaia, nuestra Tierra.

Hay dos etapas del descubrimiento de estas otras Gaias. En primer lugar debemos ser capaces de detectar otros planetas del tamaño de la Tierra que describan órbitas alrededor de otras estrellas; luego tenemos que analizar la atmósfera de esos planetas para buscar pruebas de que los procesos de reducción de la entropía están en marcha. Los primeros planetas “extrasolares” se detectaron utilizando técnicas Doppler, que ponían de manifiesto unos cambios pequeñísimos en el movimiento de las estrellas alrededor de las cuales orbitaban dichos planetas. Este efecto, que lleva el nombre del físico del siglo XIX Christian Doppler, modifica la posición de las líneas en el espectro de la luz de un objeto, desplazándolas en una cantidad que depende de lo rápido que el objeto se mueva con respecto al observador.

 

http://farm6.static.flickr.com/5010/5348863194_0e954d8a95.jpg

 

Zonas habitables, los astrónomos han ignorado las enanas blancas en su búsqueda de exoplanetas. Esto puede haber sido un error, de acuerdo con un nuevo estudio de zonas habitables en enanas blancas. Aunque los agujeros negrosy las estrellas de neutrones  captan toda la atención como destinos finales de las estrellas, la mayor parte nunca llegarán a ese extremo. Aproximadamente el 97 por ciento de las estrellas de nuestra galaxia no son lo bastante masivas para acabar en ninguna de esas dos opciones.

En lugar de eso, los astrónomos creen que terminarán sus vidas como enanas blancas, densos y calientes trozos de materia inerte en los que las reacciones nucleares terminaron hace mucho. Estas estrellas tienen aproximadamente el tamaño de la Tierra y se mantienen en contra del colapso gravitatorio mediante el Principio de Exclusión de pauli, el cual evita que los electrones ocupen el mismo estado al mismo tiempo. Pero, a todo esto, hay que pensar en el tirón gravitatoria que una de estas estrellas podría incidir sobre cualquier planeta.

Para hacernos una idea de lo que es este tipo de observaciones, pensemos que el tirón gravitatorio que  Júpiter  ejerce sobre el Sol produce en éste un cambio de velocidad de unos 12,5 metros por segundo, y lo desplaza (con respecto al centro de masa del Sisterma solar) a una distancia de 800.000 kilómetros, más de la mitad del diámetro de este astro, cuando el Sol y Júpiter orbitan en torno a sus recíprocos centros de masa. La velocidad de este movimiento es comparable a la de un corredor olímpico de 100 metros lisos y, para un observador situado fuera del Sistema solar, esto, por el efecto Doppler, produce un pequeñísimo desplazamiento de vaiven en la posición exacta de las líneas del espectro de luz emitida por el Sol.

Se trata del tipo de desplazamiento que se ha detectado en la luz a partir de los datos de algunas estrellas de nuestro entorno, y demuestra que en torno a ellas orbitan cuerpos celestes similares a Júpiter. Como ilustración diremos que la Tïerra induce en el Sol, mientras orbita alrededor de él, un cambio de velocidad de tan sólo 1 metro por segundo (la velocidad de un agradable paseo), y desplaza al Sol unicamente 450 kilómetros, con respecto al centro de masa del Sistema solar. No se dispone aún de la tecnología necesaria para medir un efecto tan pequeño a distancias tales como las de nuestras estrellas, y, pensemos que, la más cercana (Alfa Centauri), está situada a 4,3 a.l. de la Tierra, esta es la razón por la cual no se han detectado aún planetas similares a la Tierra.

 

Alfa Centauri. ¿Qué esconde el sistema estelar más cercano a nosotros?

                                                            Sistema Alfa Centauri

Hay otras técnicas que podrían servir para identificar planetas más pequeños. Si el planeta pasa directamente por delante de su estrella (una ocultación o un tránsito), se produce un empalidecimiento regular de la luz procedente de dicha estrella. Según las estadísticas, dado que las órbitas de los planetas extrasolares podrían estar inclinadas en cualquier dirección con respecto a nuestra posición, sólo el 1 por ciento de estos planetas estará en órbitas tales que podríamos ver ocultaciones y, en cualquier caso, cada tránsito dura sólo unas pocas horas (una vez al año para un planeta que tenga una órbita como la de la Tierra; una vez cada once años para uno cuya órbita sea como la de Júpiter.

 

Tamaños y distancias en el universo – Astro Gredos

 

 Cuando los humanos miramos al espacio y pensamos en sus increíbles distancias, es inevitable imaginar que sería posible encontrar algún sitio como nuestra casa. No sería lógico creer que sólo en la Tierra se han dado las condiciones para la vida. En nuestra misma Galaxia, planetas como la Tierra los hay a miles o cientos de miles.

 

Existen, sin embargo, proyectos que mediante el sistema de lanzar satélites al espacio que controlaran el movimiento (cada uno de ellos) de un gran número de estrellas con el fin de buscar esas ocultaciones. Si se estudian 100.000 estrellas, y 1.000 de ellas muestran tránsitos, la estadística resultante implicaría que prácticamente

 

La estrella solar. El Sol | Revista con la A

toda estrella similar al Sol está acompañada por planetas. Sin embargo, aunque todas las búsquedas de este tipo son de un valor inestimable, la técnica Doppler es la que, de momento, se puede aplicar de manera más general a la búsqueda de planetas similares a la Tierra. De cualquier manera, independientemente de los planetas de este tipo que se descubran, lo que está claro es que, de momento, carecemos de la tecnología necesaria para dicha búsqueda.

 

Space Interferometry Mission - Wikipedia

La mejor perspectiva que tenemos en el momento inmediato, es la que nos ofrece el satélite de la NASA llamado SIM (Space Interforometry Mission) que mediante la técnica de interferometría (combinar los datos de varios telescopios pequeños para imitar la capacidad de observación de un telescopio mucho mayor) ver y medir la posición de las estrellas con la exactitud necesaria para descubrir las oscilaciones que delaten la presencvia de planetas como la Tierra que describen orbitas alrededor de cualquiera de las 200 estrellas más cercanas al Sol, así como por cualquiera de los planetas similares a Júpiter hasta una distancia del Sol que podría llegar hasta los 3.000 años luz.

Hacia el final de la década presente (si todo va bien), la Agencia Espacial Europea lanzará un satélite cuyo nombre será GAIA y que tendrá como misión principal, no precisamente buscar otras Gaias, sino trazar un mapa con las posiciones de los mil millones de objetos celestes más brillantes. Dado que GAIA tendrá que observar tantas estrellas, no mirará cada una muchas veces ni durante mucho tiempo, por lo que no podría detectar las oscilaciones ocasionadas por planetas similares a la Tierra; pero si podría detectar planetas del tamaño de Júpiter y, si estos planetas son tan abundantes como parece indicar los datos obtenidos hasta ahora, no es descabellado pensar que, puedan estar acompañados, como en nuestro propio Sistema solar, por otros planetas más pequeños.

 

Observatorio Astronómico Cerro Paranal | Ruta Costera | Portal Todo  Antofagasta

Fotografía cedida del observatorio astronómico de Paranal, cerca del lugar donde se levanta el imponente cerro que en la próxima década albergará el Telescopio Europeo Extremadamente Grande, E-ELT, el mayor ojo que desde la Tierra rastreará el Universo en busca de vida en otros mundos. EFE/Marcelo Hernández/Observatorio Austral Europeo
Fotografía cedida del observatorio astronómico de Paranal, cerca del lugar donde se levanta el imponente cerro que en… medio del árido desierto de Atacama, allí donde la existencia parece una quimera, se levanta el imponente cerro que en la próxima década albergará el Telescopio Europeo Extremadamente Grande, E-ELT, el mayor ojo que desde la Tierra rastreará el Universo en busca de vida en otros mundos.

Dentro de los próximos 10 años, deberíamos tener localizados decenas de miles de sistemas planetarios extrasolares en las zonas de la Vía Láctea próxima a nosotros. Sin embargo, seguiría tratándose de observaciones indirectas y, para captar los espectros de algunos de esos planetas, se necesita dar un salto más en nuestra actual tecnología que, como he dicho, resulta insuficiente para realizar ciertas investigaciones que requieren y exigen mucha más precisión.

Los nuevos proyectos y las nuevas generaciones de sofisticados aparatos de alta precisión y de IA avanzada, nos traerán, en los próximos 50 años, muchas alegrías y sorpresas que ahora, ni podemos imaginar.

Cambiemos de tema: ¿Qué es una partícula virtual?

 

 

Diagrama de Feynmann. No pocas veces hemos dicho que, en una partícula virtual las relaciones que normalmente existen entre las magnitudes físicas de cualquier partícula no tienen por qué cumplirse. En particular, nos interesan dos magnitudes, que seguro que conocéis de sobras: energía y momento.

Por partícula-antipartícula que aparece de la “nada” y luego se aniquila rápidamente sin liberar energía.  Las partículas virtuales pueblan la totalidad del espacio en enormes cantidades, aunque no pueden ser observadas directamente.

En estos procesos no se viola el principio de conservación de la masa y la energía siempre que las partículas virtuales aparezcan y desaparezcan lo suficientemente rápido como para que el cambio de masa o energía no pueda ser detectado.  No obstante, si los miembros de una partícula virtual se alejan demasiado como para volverse a juntar, pueden convertirse en partículas reales, según ocurre en la radiación Hawking de un agujero negro; la energía requerida para hacer a las partículas reales es extraída del agujero negro.

El Gran Colisionador de Hadrones (LHC) del CERN | CPAN - Centro Nacional de  Física de Partículas, Astropartículas y Nuclear

En el Gran Colisionador de Hadrones (LHC) a  las 14:22 del día 23 de Noviembre del 2009, el detector ATLAS registro la primera colisión de protones en el LHC, seguido del detector CMS, y mas tarde los detectores ALICE y LHCb. Estas primeras colisiones solo son para probar la sincronización de las colisiones de haces de protones con cada uno de los detectores, lo cual resultó  con éxito en cada uno de los experimentos y, marca un avance muy alentador hacia la tan esperada etapa (pasada en parte)  de toma de datos donde se pueda buscar la partícula dadora de masas a las demás partículas,  Super Simetría, Dimensiones Extras, y tantas otras cosas mas que surgen de la inmensa imaginación del  intelecto humano.

 

 

Es sin duda un momento para recordar, especialmente para aquellos que han invertido parte de su vida en un proyecto tan grande e importante como este con la esperanza de alcanzar el conocimiento sobre la materia, la Naturaleza y el Universo mismo que, nunca pudimos soñar.

 

Muchas han sido, aparte del coste económico, las ilusiones y noches sin dormir, de muchos científicos empeñados en este magno proyecto que, como todos esperamos, nos podría llevar hasta otra “dimensión” de la física del mundo. Ahí podrían residir muchas de las respuestas no contestadas hasta el momento. Veremos a ver que nos trae el LHC en su nueva etapa cuando de nuevo se ponga en marcha y utilice algo más que los 14 TeV que hicieron falta para buscar el Bosón de Higgs.

Pero, continuémos con la virtualidad de las partículas. La vida media de una partícula virtual aumenta a medida que disminuye la masa o energía involucrada.   Así pues, un electrón y un positrón pueden existir durante unos 4×10-21 s, aunque un par de fotones de radio con longitud de onda de 300.000 km pueden vivir hasta un segundo.

En realidad, lo que llamamos espacio vacío, está rebosante de partículas virtuales que bullen en esa “nada” para surgir y desaparecer continuamente en millonésimas de segundo.  ¡los misterios del Universo!

 

La era de Planck: Un viaje al principio del universo ...

¿Qué es la Era de Planck? La Era de Planck es un período en la historia temprana del universo que se extiende desde el momento del Big Bang hasta aproximadamente 1043 segundos después del evento inicial

Era de Planck

 

En la teoría del Big Bang, fugaz periodo de tiempo entre el propio Big Bang y el llamado Tiempo de Planck, cuando el Universo tenía 10-43 segundo de edad y la temperatura era de 1034 k.

Durante este periodo, se piensa que los efectos de la Gravitación cuántica fueron dominantes.  La comprensión teórica de esta fase es virtualmente inexistente.

Plasma.

 

El plasma forma las estrellas y otros objetos estelares que podemos ver, es la mayor concentración de materia del universos visible. Según algunos el cuarto estado de la materia que consiste en electrones y otras partículas subatómicas sin ninguna estructura de un orden superior a la de los núcleos atómicos.

Se trata de un Gas altamente ionizado en el que el número de electrones libres es aproximadamente igual al número de iones positivos.  Como dije antes, a veces descrito como el cuarto estado de la materia, las plasmas aparecen en el espacio interestelar, en las atmósferas de las estrellas (incluyendo el Sol), en tubos de descarga y en reactores nucleares experimentales.

 

undefined

El plasma está bien presente en todos los remanentes de supernovas

Debido a que las partículas en un plasma están cargadas, su comportamiento difiere en algunos aspectos a un gas.  Los plasmas pueden ser creados en un laboratorio calentando un gas a baja presión hasta que la energía cinética media de las partículas del gas sea comparable al potencial de ionización de los átomos o moléculas de gas.  A muy altas temperaturas, del orden de 50.000 K en adelante, las colisiones entre las partículas del gas causan una ionización en cascada de este.  Sin embargo, en algunos casos, como en lámparas fluorescentes, la temperatura permanece muy baja al estar las partículas del plasma continuamente colisionando con las paredes del recipiente, causando enfriamiento y recombinación.  En esos casos la ionización es solo parcial y requiere un mayor aporte de energía.

En los reactores termonucleares, es posible mantener una enorme temperatura del plasma confinándolo lejos de las paredes del contenedor usando campos electromagnéticos.

El estudio de los plasmas se conoce como física de plasmas y, en el futuro, dará muy buenos beneficios utilizando en nuevas tecnologías como la nanotecnología que se nos viene encima y será el asombro del mundo.

Pluralidad de mundos.

Muchos mundos, como la Tierra, estarán situados en la zona habitable de sus estrellas y, el agua líquida, correra por los riachuelos y océanos.  Si eso es así (que lo será), muchos mundos estarán habitados y, algún día lejano en el futuro, podremos saber de ellos con precisión antes de que se produzca el contacto.

Desde tiempos inmemoriales, grandes pensadores de los siglos pasados, dejaron constancia de sus pensamientos y creencia de que, allá arriba, en los cielos, otras estrellas contenían mundos con diversidad de vida, como en el planeta Tierra.  Tales ideas, han acompañado al hombre que, no en pocas oportunidades, fueron tachados de locos.

Hoy, con los conocimientos que poseemos, lo que sería una locura es precisamente pensar lo contrario.  ¡que estamos solos!

La Vía Lactea (una sola Galaxia de los cientos de miles de millones que pueblan el Universo), tiene más de 100.000 millones de estrellas.  Miles de millones de Sistemas Solares.  Cientos de miles de millones de planetas.  Muchos miles y miles de estrellas como el Sol de tamaño mediano, amarillas de tipo G.

¿Cómo podemos pensar que solo el planeta Tierra alberga vida?

 

                               Protogalaxia.

Galaxia en proceso de formación.  A pesar de la enorme técnica y sofisticación de los aparatos con que contamos para la observación del cosmos, no se ha podido encontrar ninguna proto-galaxia cercana, lo cual indica que todas o la mayoría de las galaxias se formaron hace mucho tiempo. Por otra parte, los cientifícos pensaban que no existía nada mas pequeño que un protón. En 1968 se descubrieron nuevas partículas dentro del protón, las cuales fueron llamadas quarks. Existen tres quarks dentro de cada protón, estos quarks se mantienen unidos entre sí mediante otras partículas llamadas gluones.

                                   ProtProtón: Qué es, Quién lo descubrió y Características (Carga, Masa) -  Enciclopedia Significadosón.

Partícula masiva del Grupo o familia de los Hadrones que se clasifica como Barión.  Esta hecho por dos quarks up y un quark down y es, consecuentemente una partícula masiva con 938,3 MeV, algo menos que la del neutron.  Su carga es positiva y su lugar está en el núcleo de los átomos, por lo que se les llama de manera genérica con los neutrones con la denominación de nucleones.

 

 

Este diagrama esquemático de un púlsar ilustra las líneas de campo magnético en blanco, el eje de rotación en verde y los dos chorros polares de radiación en azul. Un Pulsar es…  Una fuente de radio desde la que se recibe un tren de pulsos altamente regular.  Ha sido catalogado más de 600 púlsares desde que se descubriera el primero en 1.976.  Los púlsares son estrellas de neutrones en rápida rotación, con un diámetro de 20-30 km.  Las estrellas se hallan altamente magnetizadas (alrededor de 108 teslas), con el eje magnético inclinado con respecto, al eje de rotación.  La emisión de radio se cree que surge por la aceleración de partículas cargadas por encima de los polos magnéticos. A medida que rota la estrella, un haz de ondas de radio barre la Tierra, siendo entonces observado el pulso, de forma similar a un faro.

Los periodos de los pulsos son típicamente de 1 s., pero varían desde los 1’56 ms (púlsares de milisegundo) hasta los cuatro con tres s. Estos periodos rotacionales van decreciendo a medida que la estrella pierde energía rotacional, aunque unos pocos púlsares jóvenes son propensos a súbitas perturbaciones conocidas como ráfagas.

 

PSR B1257+12

 

Las medidas precisas de tiempos en los púlsares han revelado la existencia de púlsares binarios, y un púlsar, PSR 1257+12, se ha demostrado que está acompañado de objetos de masa planetaria.  Han sido detectado objetos ópticos (destellos) procedentes de unos pocos púlsares, notablemente los púlsares del Cangrejo y Vela.

Se crean en explosiones de supernovas de estrellas supergigantes y otros a partir de enanas blancas, se piensa que puedan existir cien mil en la Vía Láctea.

 

File:Artist's rendering ULAS J1120+0641.jpg

                                                        Quasars

Objeto con un alto desplazamiento al rojo y con apariencia de estrella, aunque es probablemente el núcleo activo muy luminoso de una galaxia muy distante. El nombre es una contracción del ingles quasi stellar, debido a su apariencia estelar. Los primeros quasars descubiertos eran intensos fuentes de radio. Debido a las grandes distancias indicadas por el desplazamiento al rojo del núcleo debe ser hasta 100 veces más brillante que la totalidad de una galaxia normal.  Además algunos quasars varían en brillo en una escala de tiempo de semanas, indicando que esta inmensa cantidad de energía se origina en un volumen de unas pocas semanas-luz de longitud.  La fuente puede, por tanto, ser un disco de acreción alrededor de un agujero negro de 107 o 108 masas solares.

 

File:Quasar 3C 273.jpg

                      Imagen de 3C273 recogida por el telescopio Hubble

El primer quasar en ser identificado como tal en 1.963 fue la radiofuente 3c 273 con un desplazamiento al rojo de 0,158, siendo todavía el quasar más brillante, óptimamente hablando, observado desde la Tierra, con magnitud 13.  Miles de quasar han sido descubiertos desde entonces.  Algunos tienen desplazamiento al rojo tan grandes como 4,9, implicando que lo vemos tal como eran cuando el Universo tenía sólo una décima parte de la edad actual.

En esta brevísima reseña no puede dejarse constancia de todo lo que se sabe sobre quasars, sin embargo, dejamos los rasgos más sobresalientes para que el lector obtenga un conocimiento básico de estos objetos estelares. Para finalizar la reseña diré que, algunas galaxias aparentemente normales pueden contener remanentes de actividad quasar en sus núcleos, y algunas galaxias Seyfert y galaxias Markarian tienen núcleos que son intrínsecamente tan brillantes como algunos quasars. Existen algunas evidencias de que los quasars aparecen en los núcleos de los espirales, y es esa interacción con una galaxia vecina la que proporciona gas o estrellas al núcleo formado por un agujero negro masivo, alimentando así la emisión del quasar.  Salvo mejor parecer.

 

 

                                  ¿Qué es la radiación cósmica de fondo?
La radiación cósmica de fondo es la luz residual que quedó de ese momento, y actualmente se presenta como un fondo de microondas en todas las direcciones del cielo. La radiación cósmica de fondo fue descubierta, en 1965, por los astrónomos Arno Penzias y Robert Wilson.
                                                       Radiación de fondo de microondas - Wikipedia, la ...
                                                        Radiación cósmica de fondo.

Antes, hemos comentado por alguna parte que, se trata de emisión radio de microondas proveniente de todas las direcciones (isotrópica) y que corresponde a una curva de cuerpo negro. Estas propiedades coinciden con las predichas por la teoría del Big Bang, como habiendo sido generada por fotones liberados del Big Bang cuando el Universo tenía menos de un millón de años (Universo bebé) de antigüedad.

La teoría del Big Bang también supone la existencia de radiaciones de fondo de neutrinos y gravitatoria, aunque aun no tenemos los medios para detectarlas.  Sin embargo, los indicios nos confirman que la teoría puede llevar todas las papeletas para que le toque el premio.

Últimamente se ha detectado que la radiación cósmica de fondo no está repartida por igual por todo el Universo, sino que, al contrario de lo que se podía esperar, su reparto es anisotrópico, el reparto está relacionado con la clase de materia que produjo tal radiación, su densidad.  ¡Ya veremos!

De todas las maneras, ¿No es una maravilla todo el Universo? El que nosotros, estemos aquí para contarlo así lo testifica.

Emilio Silvera V.

Espacio-tiempo curvo y los secretos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

 

La densidad de energía-momentum en la teoría de la relatividad se representa por cuadritensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein. Esta sencilla ecuación es la demostración irrebatible de la grandeza de la mente humana que, con unos pocos signos nos puede decir tánto. De las ecuaciones de campo de Einstein, se pudieron deducir muchas cosas, tales como que el espacio se curva en presencia de grandes masas, como mundos, estrellas y galaxias para configurar la geometría del espacio.

 

 

 

 

Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la misma manera, en presencia de masa se distosiona el esapcio-tiempo. En estos lugares que, como océanos de gas y polvo iniozado por la radiación de las estrellas masivas más jóvenes, existen moléculas complejas que, en algún caso, son esenciales para la existencia de la vida.

 

La teoría cuántica de campos en espacio-tiempo curvo es una extensión de la teoría cuántica de campos estándar en la que se contempla la posibilidad de que el espacio-tiempo por el cual se propaga el campo no sea necesariamente plano (descrito por la métrica de Minkouski).  Una predicción genérica de esta teoría es que pueden generarse partículas debido a campos gravitacionales dependientes del tiempo, o a la presencia de horizontes.

La teoría cuántica de campos en espacio-tiempo curvo puede considerarse como una primera aproximación de gravedad cuántica. El paso siguiente consiste en una gravedad semiclásica, en la que se tendrían en cuenta las correcciones cuánticas, debidas a la presencia de materia, sobre el espacio-tiempo.

File:3D coordinate system.svg

En un espacio euclideo convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundida o altura. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos la gravedad, la teoría de la relatividad  nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes “secciones espaciales” de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimiensional.

En las teorías actuales no existe una razón clara para que el de dimensiones espaciales sean tres. Aunque existen ciertas instuiciónes sobre ello: Ehrenfest (aquel gran físico nunca reconocido) señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo).

Es cierto que en nuestro mundo tridimensional y mental existen cosas misteriosas. A veces me pregunto que importancia puede tener un . (“¿Qué hay en un nombre? Lo que llamamos rosa, / con cualquier otro nombre tendría el mismo dulce aroma”? (-Shakespeare, Romeo y Julieta-) – La rosa da sustento a muchos otros tópicos literarios: se marchita como símbolo de la fugacidad del tiempo y lo efímero de la vida humana; y provoca la prisa de la doncella recogerla mientras pueda. Por otro lado, le advierte de que hay que tener cuidado: no hay rosa sin espinas.

También el mundo de la poesía es un tanto misterioso y dicen, que… “Los poetas hablan consigo mismo y el mundo les oye por casualidad.” Tópicos ascéticos, metafísicos o existenciales: Quiénes somos, de dónde venimos, a dónde vamos, las llamadas preguntas trascendentales, propias de la cosmología, la antropología y la metafísica. Los poetas siempre han buscado un mundo irreal y han idealizado el enaltecido mucho más allá de este mundo.

Como siempre me pasa, me desvío del tema que en este trabajo nos ocupa: El espacio-tiempo.

Estamos inmersos en el espacio-tiempo curvo y tetradimensional de nuestro Universo. Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

La introducción por parte de Minkouski de la idea espaciotemporal resultó tan importante es porque permitió a Einstein utilizar la idea de geometría espaciotemporal para formular su teoría de la relatividad general que describe la Gravedad que se genera en presencia de grandes masas y cómo ésta curva el espacio y distorsiona el tiempo. En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. Hemos llegado a comprender que es la materia, la que determina la geometría del espacio-tiempo.

En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano y Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.

El máximo exponente conocido del espacio-tiempo curvo, se podría decir que se da en la formación de los agujeros negros, donde la masa queda comprimida a tal densidad que se conforma en una singularidad, ese objeto de energía y densidad “infinitsas” en el que, el espacio y el tiempo desaparecen de nuestra vista y parece que entran en “otro mund” para nosotros desconocidos.

http://1.bp.blogspot.com/-TWYy8GMEeBI/TiKZMOfnoQI/AAAAAAAAOgo/HeVDOup_eC0/s1600/deformacion-espacio-tiempo.jpg

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…

Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad– debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.

Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender  que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fín, podremos tener una teoría cuántica de la gravedad.

 

 

Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidad que podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.

 Esta pretende ser la imagen de un extraño objeto masivo, un quásar  que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).

Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.

Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.

 

Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el universo. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.

 

 

30 años desde la explosión de supernova SN 1987A - Naukas

                          Supernova 1987 A

El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.

Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espacio-tiempo y dibujar la geometría del universo.

 

Los telescopios de la NASA han captado la imagen de un agujero negro en el centro de una galaxia golpeando otra vecina hasta el punto de desviarla y de …”robarle su masa” que, finalmente se irá engullendo poco a poco el monstruo estelar.

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.

Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividad general y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo. Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos npo han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negros descubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.

    Imaginar cómo podría escapar una nave que cayera cerca del remolino central… ¡Produce escalofríos!

Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercer aspecto en la distorsi´pon espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrtededor del horizonte del agujero. Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividad general deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.

Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.

 

 

Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta  la extenuación:

“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado”  Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.

 

El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.

 

File:Cassini-science-br.jpg

 

Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debilidad resulta engañosa porque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.

¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recien llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!

En el Universo todo es fruto de dos fuerzas contrapuestas:

 

Por ejemplo, las estrellas son estables por el hecho de que, la energía de fusión tiende a expandir la estrella y, la fuerza de Gravedad generada por su ingente masa, la hace contraerse. De esa manera, las dos fuerzas se contrarrestan y consiguen estabilizar a la estrella que vive miles de años. Cuando se agota el combustible nuclear de fusión, la estrella queda a merced de la Gravedad y se contrae (implosiona) bajo el peso de su propia masa, la gravedad la aplasta más y más hasta convertirla en una estrella de neutrones y un agujero negro si es una estrlla masiva.

 

En el átomo, el equilibrio se alcanza como consecuencia de que, los protones (los nucleones que forman el núcleo), están cargados positivamente, y, los electrones que orbitan a su alrededor, están cargadas eléctricamente con cargas negativas equivalentes, con lo cual, el equilibrio queda servido y se alcanza la estabilidad.

Diagrama de Kruskal-Szekeres para un agujero negro. Las rectas azules son superficies de tiempo constante. Las curvas verdes son superficies de radio constante. -Las regiones I y II (sólo la parte blanca) son el exterior y el interior de un agujero negro. -La región III es una región exterior al agujero negro “paralela”. -La región IV (sólo la parte blanca) es un agujero blanco. Las zonas grises adyacentes a las regiones II y IV son las singularidades.

Agujeros-Blancos-01.jpgEl agujero Blanco, al contrario del Agujero negro, en lugar de engullir materia la expulsaria

El agujero negro de Schwarzschild es descrito como una singularidad en la cual una geodésica puede sólo ingresar, tal tipo de agujero negro incluye dos tipos de horizonte: un horizonte “futuro” (es decir, una región de la cual no se puede salir una vez que se ha ingresado en ella, y en la cual el tiempo -con el espacio- son curvados hacia el futuro), y un horizonte “pasado”, el horizonte pasado tiene por definición la de una región donde es imposible la estancia y de la cual sólo se puede salir; el horizonte futuro entonces ya correspondería a un agujero blanco.

Así, nos encontramos con el hecho cierto de que, en el Universo, todo es equilibrio y estabilidad: el resultado de dos fuerzas contrapuestas.

emilio silvera

¡Causalidad! ¡Ese Principio!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Porque nuestros cerebros están hechos de otra manera. Siempre queremos saber el por qué de las cosas.
En física existe un Principio que llaman !Causalidad! y en virtud del cual el efecto no puede preceder a la causa. Es muy útil cuando se conbina con el principio de que la máxima velocidad del universo es la velocidad de la luz en el vacío. Lo cierto es que, todo lo que ocurre es causa de algo que antes sucedió. Contaremos algunas cosas que tuvieron sus consecuencias.
George Francis FitzGerald.jpg
En 1.893 el físico irlandés George Francis Fitzgerald emitió una hipótesis para explicar los resultados negativos del experimento conocido de Michelson-Morley. Adujo que toda la materia se contrae en la dirección del movimiento, y que esa contracción es directamente proporcional al ritmo (velocidad) del movimiento.

Según tal interpretación, el interferómetro se quedaba corto en la dirección del “verdadero” movimiento terrestre, y lo hacía precisamente en una cantidad que compensaba con toda exactitud la diferencia de distancias que debería recorrer el rayo luminoso. Por añadidura, todos los aparatos medidores imaginables, incluyendo los órganos sensoriales humanos, experimentarían ese mismo fenómeno.

 

 

                       Esquema de un interferómetro de Michelson

Visualización de los anillos de interferencia

Parecía como si la explicación de Fitzgerald insinuara que la naturaleza conspiraba con objeto de impedir que el hombre midiera el movimiento absoluto, para lo cual introducía un efecto que anulaba cualquier diferencia aprovechable para detectar dicho movimiento.

Este asombroso fenómeno recibió el nombre de contracción de Fitzgerald, y su autor formuló una ecuación para el mismo, que referido a la contracción de un cuerpo móvil, fue predicha igualmente y de manera independiente por H. A. Lorentz (1.853 – 1.928) de manera que, finalmente, se quedaron unidos como contracción de Lorentz-Fitzgerald.

 

 

A la contracción, Einstein le dio un marco teórico en la teoría especial de la relatividad. En esta teoría, un objeto de longitud l0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud contraccion_l-f, donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

 

Resultado de imagen de La velocidad de escape de la TierraVelocidad de escape o de liberación — Astronoo

En el uso común, el punto inicial está en la superficie de un planeta o luna. En la superficie de la Tierra, la velocidad de escape es de unos 11,2 km/s, que es aproximadamente 33 veces la velocidad del sonido (Mach 33) y varias veces la velocidad de salida de una bala de fusil (hasta 1,7 km/s).

Un objeto que se moviera a 11,2 Km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 Km/s (la mitad de la velocidad de la luz) sería del 15%; a 262.000 Km/s (7/8 de la velocidad de la luz), del 50%. Es decir, que una regla de 30 cm que pasara ante nuestra vista a 262.000 Km/s nos parecería que mide sólo 15’24 cm, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 Km/s en números redondos, su longitud en la dirección del movimiento sería cero. Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse el universo.

 

Las partículas de los rayos catódicos — Cuaderno de Cultura Científica

Las partículas de los rayos catódicos

 

El físico holandés Henrik Antón Lorentz, como hemos dicho, promovió esta idea pensando en los rayos catódicos (que ocupaban su actividad por aquellas fechas). Se hizo el siguiente razonamiento: si se comprimiera la carga de una partícula para reducir su volumen, aumentaría su masa. Por consiguiente, una partícula voladora, escorzada en la dirección de su desplazamiento por la contracción de Fitzgerald, debería crecer en términos de masa. Lorentz presentó una ecuación sobre el acrecentamiento de la masa, que resultó muy similar a la ecuación de Fitzgerald sobre el acortamiento. A 149.637 Km/s la masa de un electrón aumentaría en un 15%; a 262.000 Km/s, en un 100% (es decir, la masa se duplicaría); y a la velocidad de la luz, su masa sería infinita. Una vez más pareció que no podría haber ninguna velocidad superior a la de la luz, pues, ¿cómo podría ser una masa mayor que infinita?

 

El efecto Fitzgerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las ecuaciones Lorentz-Fitzgerald.

Mientras que la contracción Fitzgerald no podía ser objeto de mediciones, el efecto Lorentz sobre masas sí podía serlo, aunque indirectamente. De hecho, el muón tomó 10 veces su masa original cuando fue lanzado, a velocidades relativistas, en el acelerador de partículas, lo que confirmó la ecuación de Lorentz. Los experimentos posteriores han confirmado las ecuaciones de ambos: a velocidades relativistas, las longitudes se contraen y las masas se incrementan.

 

Por qué la masa aumenta con la velocidad? - Quora

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio. A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad.

 

La relatividad de la masa — Cuaderno de Cultura Científica

Si la nave se acerca a c… ¡Su masa aumentaría hasta…!

Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

La teoría de la relatividad especial nos trajo muchas sorpresas

Como es conocido por todos, Einstein adoptó estos descubrimientos y los incorporó a su teoría de la relatividad especial, que aunque mucho más amplia, recoge la contracción de Fitzgerald y el aumento de la masa de Lorentz cuando se alcanzan grandes velocidades.

Algunas veces pienso que los artistas en general, y los poetas en particular, tendrían que adaptar e incluir en sus esquemas artísticos y poéticos los adelantos científicos, para asimilarlos en las diversas expresiones y sentimientos que serán después puestos al servicio del consumo humano. Estos adelantos científicos serían así coloreados con las pasiones humanas, y transformados, de alguna forma, en la sangre, y por qué no, los sentimientos de la naturaleza humana. Posiblemente, de haberlo hecho, el grado general de conocimiento sería mayor. De todas las maneras, no dejamos de avanzar en el conocimiento de la Naturaleza.

 

En verano y más lejos del Sol, ¿cómo es posible?

Hacemos mil y un inventos para poder llegar a lugares que, hasta hace muy poco tiempo se pensaba que nos estaban vedados. Y, a pesar de ello, la cultura científica, en general es pobre. Sólo uno de cada tres puede definir una molécula o nombrar a un solo científico vivo. De veinticinco licenciados escogidos al azar en la ceremonia de graduación de Harvard, sólo dos pudieron explicar por qué hace más calor en verano que en invierno. La respuesta, dicho sea de paso, no es “porque el Sol está más cerca”; no está más cerca. El eje de rotación de la Tierra está inclinado, así que cuando el hemisferio norte se inclina hacia el Sol, los rayos son más perpendiculares a la superficie, y la mitad del globo disfruta del verano. Al otro hemisferio llegan rayos oblicuos: es invierno. Es triste ver cómo aquellos graduados de Harvard podían ser tan ignorantes. ¡Aquí los tenemos con faltas de ortografía!

 

Siete detenidos tras una reyerta en un vagón de Metro de la línea 6

Por supuesto, hay momentos brillantes en los que la gente se sorprende. Hace años, en una línea de metro de Manhattan, un hombre mayor se las veía y deseaba con un problema de cálculo elemental de su libro de texto de la escuela nocturna; no hacía más que resoplar. Se volvió desesperado hacia el extraño que tenía a su lado, sentado junto a él, y le preguntó si sabía cálculo. El extraño afirmó con la cabeza y se puso a resolverle al hombre el problema. Claro que no todos los días un anciano estudia cálculo en el metro al lado del físico teórico ganador del Nobel de Física, T. D. Lee.

 

 

Leon Lederman cuenta una anécdota parecida a la del tren, pero con final diferente. Salía de Chicago en un tren de cercanías cuando una enfermera subió a él a la cabeza de un grupo de pacientes de un hospital psiquiátrico local. Se colocaron a su alrededor y la enfermera se puso a contarlos: “uno, dos tres…”. Se quedó mirando a Lederman y preguntó “¿quién es usted?”; “soy Leon Lederman” – respondió – “ganador del premio Nobel y director del Fermilab”. Lo señaló y siguió tristemente “sí claro,  cuatro, cinco, seis…”. Son cosas que ocurren a los humanos; ¡tan insignificantes y tan grandes! Somos capaces de lo mejor y de lo peor. Ahí tenemos la historia para ver los ejemplos de ello.

 

Una técnica abandonada hace 20 años se revela ahora como precisa y barata  para el estudio del Cosmos - Biotech Spain

Los jóvenes abandonan las ciencias técnicas tan necesarias

 

Imágenes de Tecnicas Modernas Laboratorio - Descarga gratuita en Freepik

 

Pero ahora más en serio, es necesario preocuparse por la incultura científica reinante, entre otras muchas razones porque la ciencia, la técnica y el bienestar público están cada día más conectados. Y, además, es una verdadera pena perderse la concepción del mundo que, en parte, he plasmado en estas páginas. Aunque aparezca incompleta, se puede vislumbrar que posee grandiosidad y belleza, y va asomándose ya su simplicidad.

“El proceso de la ciencia es el descubrimiento a cada paso de un nuevo orden que de unidad a lo que desde hacía tiempo parecía desunirlo.”

– Es lo que hizo Faraday cuando cerró el vínculo que unió la electricidad y el magnetismo.

– Es lo que hizo Clerk Maxwell cuando unió aquélla y éste con la luz.

Einstein unió el tiempo y el espacio, la masa a la energía y relacionó las grandes masas cosmológicas con la curvatura y la distorsión del tiempo y el espacio para traernos la gravedad en un teoría moderna; y dedicó los últimos años de su vida al intento de añadir a estas similitudes otra manera nueva y más avanzada, que instaurara un orden nuevo e imaginativo entre las ecuaciones de Maxwell y su propia geometría de la gravitación.

 

Clic para ampliarClic para ampliar

Clic para ampliarClic para ampliar

Clic para ampliarClic para ampliar

Algunos momentos de la vida del Maestro

Cuando Coleridge intentaba definir la belleza, volvía siempre a un pensamiento profundo: la belleza, decía, “es la unidad de la variedad”. La ciencia no es otra cosa que la empresa de descubrir la unidad en la variedad  desaforada de la naturaleza, o más exactamente, en la variedad de nuestra experiencia que está limitada por nuestra ignorancia.”

 

Astronomía siglo XXI

Hay muchas cosas que no podemos controlar, sin embargo, algo dentro de nosotros, nos envía mensajes sobre lo que podría ser importante para que nos fijemos mejor y continuemos profundizando.

Para comprender mejor el panorama, hagamos una excursión hasta la astrofísica; hay que explicar por qué la física de partículas y la astrofísica se han fundido no hace muchos años, en un nivel nuevo  de intimidad, al que alguien llamó la conexión espacio interior/espacio exterior.

Mientras los expertos del espacio interior construían aceleradores, microscopios cada vez más potentes para ver qué pasaba en el dominio subnuclear, los colegas del espacio exterior sintetizaban los datos que tomaban unos telescopios cada vez más potentes, equipados con nuevas técnicas cuyo objeto era aumentar su sensibilidad y la capacidad de ver detalles finos. Otro gran avance fueron los observatorios establecidos en el espacio, con sus instrumentos para detectar infrarrojos, ultravioletas, rayos X y rayos gamma; en pocas palabras, toda la extensión del espectro electromagnético, muy buena parte del cual era bloqueado por nuestra atmósfera opaca y distorsionadora.

 

Por qué hay 6 tipos de quarks?

                               ¿Hasta donde llegaremos? ¿Más allá de los Quarks?

La síntesis de la cosmología de los últimos cien años es el modelo cosmológico estándar. Sostiene que el universo empezó en forma de un estado caliente, denso, compacto, hace unos 15.000 millones de años. El universo era entonces infinitamente, o casi infinitamente, denso; infinita, o casi infinitamente, caliente. La descripción “infinito” es incómoda para los físicos; los modificadores son el resultado de la influencia difuminadota de la teoría cuántica. Por razones que quizá no conozcamos nunca, el universo estalló, y desde entonces ha estado expandiéndose y enfriándose.

Ahora bien, ¿cómo se han enterado de eso los cosmólogos? El modelo de la Gran Explosión (Big Bang) nació en los años treinta tras el descubrimiento de que las galaxias (conjuntos de 100.000 millones de estrellas, aproximadamente) se estaban separando entre sí, descubrimiento hecho por Edwin Hubble, que andaba midiendo sus velocidades en 1.929.

 

 

El telescopio James Webb capta la imagen infrarroja más nítida y profunda  del Universo

Hubble tenía que recoger de las galaxias lejanas una cantidad de luz que le permitiera resolver las líneas espectrales y compararlas con las líneas de los mismos elementos de la Tierra. Cayó en la cuenta de que todas las líneas se desplazaban sistemáticamente hacia el rojo. Se sabía que una fuente de luz que se aparta de un observador hace justo eso. El desplazamiento hacia el rojo era, de hecho, una medida de la velocidad relativa de la fuente y del observador.

 

 

Más tarde, Hubble halló que las galaxias se alejaban de él en todas las direcciones; esto era una manifestación de la expansión del espacio. Como el espacio expande las distancias entre todas las galaxias, la astrónoma Hedwina Knubble, que observase desde el planeta Penunbrio en Andrómeda, vería el mismo efecto o fenómeno: las galaxias se apartaría de ella.

Cuanto más distante sea el objeto, más deprisa se mueve. Esta es la esencia de la ley de Hubble. Su consecuencia es que, si se proyecta la película hacia atrás, las galaxias más lejanas, que se mueven más deprisa, se acercarán a los objetos más próximos, y todo el lío acabará juntándose y se acumulará en un volumen muy, muy pequeño, como, según se calcula actualmente, ocurría hace 15.000 millones de años.

La más famosa de las metáforas científicas te pide que imagines que eres una criatura bidimensional, un habitante del Plano. Conoces el este y el oeste, el norte y el sur, pero arriba y abajo no existen; sacaos el arriba y debajo de vuestras mentes. Vivís en la superficie de un globo que se expande. Por toda la superficie hay residencias de observadores, planetas y estrellas que se acumulan en galaxias por toda la esfera; todo bidimensional. Desde cualquier atalaya, todos los objetos se apartan a medida que la superficie se expande sin cesar.

 

 

La distancia entre dos puntos cualesquiera de este universo crece. Eso es lo que pasa, precisamente, en nuestro mundo tridimensional. La otra virtud de esta metáfora es que, en nuestro universo, no hay ningún lugar especial. Todos los sitios o puntos de la superficie sin democráticamente iguales a todos los demás. No hay centro; no hay borde. No hay peligro de caerse del universo. Como nuestra metáfora del universo en expansión (la superficie del globo) es lo único que conocemos, no es que las estrellas se precipiten dentro del espacio. Lo que se expande es que espacio que lleva toda la barahúnda. No es fácil visualizar una expansión que ocurre en todo el universo. No hay un exterior, no hay un interior. Sólo hay este universo que se expande. ¿En qué se expande? Pensad otra vez en vuestra vida como habitante del Plano, de la superficie del globo: en nuestra metáfora no existe nada más que la superficie.

 

        Hemos inventado tecnología que ha posibilitado que no estemos confinados en el planeta

Es mucho lo que podemos imaginar. Sin embargo, lo cierto es que,  como nos decía Popper:
“Cuánto más profundizo en el conocimiento de las cosas más consciente soy de lo poco que se. Mientras que mis conocimientos son finitos, mi ignorancia es ilimitada.”
Dos consecuencias adicionales de gran importancia que tiene la teoría del Big Bang acabaron por acallar la oposición, y ahora reina un considerable consenso. Una es la predicción de que la luz de la incandescencia original (presuponiendo que fue muy caliente) todavía está a nuestro alrededor, en forma de radiación remanente. Recordad que la luz está constituida por fotones, y que la energía de los fotones está en relación inversa con la longitud de onda. Una consecuencia de la expansión del universo es que todas las longitudes se expanden. Se predijo, pues, que las longitudes de onda, originalmente infinitesimales, como correspondía a unos fotones de gran energía, han crecido hasta pertenecer ahora a la región de las microondas, en la que las longitudes son unos pocos milímetros.
Estos científicos dicen haber recreado (accidentalmente) el Big Bang en su  laboratorioLos datos del James Webb que ponen en duda el Big Bang1965. El eco del 'Big Bang' | Ciencia | elmundo.es
En 1.965 se descubrieron los rescoldos del Big Bang, es decir, la radiación de fondo de microondas. Esos fotones bañan el universo entero, y se mueven en todas las direcciones posibles. Los fotones que emprendieron viaje hace miles de millones de años cuando el universo era más pequeño y caliente, fueron descubiertos por una antena de los laboratorios Bell en Nueva Jersey.

File:WMAP Leaving the Earth or Moon toward L2.jpg

Imagen del WMAP de la anisotropía de la temperatura del CMB.

Así que el descubrimiento hizo imprescindible medir la distribución de las longitudes de onda, y se hizo. Por medio de la ecuación de Planck, esta medición de la temperatura media de lo que quiera (el espacio, las estrellas, polvo, un satélite, los pitidos de un satélite que se hubiese colado ocasionalmente) que haya estado bañándose en esos fotones.

Las mediciones últimas efectuadas por la NASA con el satélite COBE dieron un resultado de 2’73 grados sobre el cero absoluto (2’73 ºK). Esta radiación remanente es una prueba muy potente a favor de la teoría del Big Bang caliente.

Los astrofísicos pueden hablar tan categóricamente porque han calculado qué distancias separaban a dos regiones del cielo en el momento en que se emitió la radiación de microondas observadas por el COBE. Ese momento ocurrió 300.000 años después del Big Bang, no tan pronto como sería deseable, pero sí lo más cerca del principio que podemos.

Resulta que temperaturas iguales en regiones separadas del espacio que nunca habían estado en contacto y cuyas separaciones eran tan grandes que ni siquiera a la velocidad de la luz daba tiempo para que las dos regiones se comunicasen, y sin embargo, sí tenían la misma temperatura. La teoría del Big Bang no podía explicarlo; ¿un fallo?, ¿un milagro? Se dio en llamar a eso la crisis de la causalidad, o de la isotropía.

 

                         

     Considerado a grandes escalas, el Universo es isotrópico. Es un principio cosmológico.

De la causalidad porque parecía que había una conexión causal entre distintas regiones del cielo que nunca debieran haber estado en contacto; de la isotropía porque donde quiera que mires a gran escala verás prácticamente el mismo patrón de estrellas, galaxias, cúmulos y polvo estelar. Se podría sobrellevar esto en un modelo del Big Bang diciendo que la similitud de las miles de millones de piezas del universo que nunca estuvieron en contacto es puro accidente. Pero no nos gustan los “accidentes”: los milagros están estupendamente si jugamos a la lotería, pero no en la ciencia. Cuando se ve uno, los científicos sospechan que algo más importante se nos mueve entre bastidores. Me parece que mi inclinación científica me hace poco receptivo a los milagros. Si algo pasa habrá que buscar la causa.

 

 

El segundo éxito de gran importancia del modelo del Big Bang tiene que ver con la composición de nuestro universo. Puede parecer que el mundo está hecho de aire, tierra, agua y fuego, pero si echamos un vistazo arriba y medimos con nuestros telescopios espectroscópicos, apenas sí encontramos algo más que hidrógeno, y luego helio. Entre ambos suman el 98% del universo que podemos ver. El resto se compone de los otros noventa elementos. Sabemos gracias a nuestros telescopios espectroscópicos las cantidades relativas de los elementos ligero, y hete aquí que los teóricos del Big Bang dicen que esas abundancias son precisamente las que cabría esperar. Lo sabemos así.

 

Lo cierto es que las cosas se cuentan de distintas maneras, según la perspectiva de quien la cuente

El universo prenatal tenía en sí toda la materia del universo que hoy observamos, es decir, unos cien mil millones de galaxias, cada una con cien mil millones de soles. Todo lo que hoy podemos ver estaba comprimido en un volumen muchísimos menos que la cabeza de un alfiler(eso es lo que nos dicen los cosmólogos). La temperatura era alta, unos 1032 grados Kelvin, mucho más caliente que nuestros 273 ºK actuales. Y en consecuencia la materia estaba descompuesta en sus componentes primordiales.

Una imagen aceptable de aquello es la de una “sopa caliente”, o plasma, de quarks y leptones (o lo que haya dentro, si es que hay algo) en la que chocan unos contra otros con energías del orden de 1018 GeV, o un billón de veces la energía del mayor colisionador que cualquier físico pueda imaginarse construir. La gravedad era rugiente, con su poderoso (pero aún mal conocido) influjo en esta escala microscópica.

Tras este comienzo fantástico, vinieron la expansión y el enfriamiento. A medida que el universo se enfriaba, las colisiones eran menos violentas. Los quarks, en contacto íntimo los unos con los otros como partes del denso grumo que era el universo infantil, empezaron a coagularse en protones, neutrones y los demás hadrones. Antes, esas uniones se habrían descompuesto en las inmediatas y violentas colisiones, pero el enfriamiento no cesaba; aumentaba con la expansión y las colisiones eran cada vez más suaves.

 

Qué había antes del Big Bang? Esto dicen los científicos

                         La máquina del Big Bang reveló que, en aquellos primeros momentos…

A los tres minutos de edad, las temperaturas habían caído lo bastante como para que pudiesen combinarse los protones y los neutrones, y se formaran núcleos estables. Este fue el periodo de nucleosíntesis, y como se sabe lo suficiente de física nuclear se pueden calcular las abundancias relativas de los elementos químicos que se formaron. Son los núcleos de elementos muy ligeros; los más pesados requieren de una “cocción” lenta en las estrellas.

Claro que, los átomos (núcleos más electrones) no se formaron hasta que la temperatura no cayó lo suficiente como para que los electrones se organizaran alrededor de los núcleos, lo que ocurrió 300.000 años después, más o menos. Así que, en cuanto se formaron los átomos neutros, los fotones pudieron moverse libremente, y ésta es la razón de que tengamos una información de fotones de microondas todavía.

La nucleosíntesis fue un éxito: las abundancias calculadas y las medidas coincidían. Como los cálculos son una mezcla íntima de física nuclear, reacciones de interacción débil y condiciones del universo primitivo, esa coincidencia es un apoyo muy fuerte para la teoría del Big Bang.

 

 

En realidad, el universo primitivo no era más que un laboratorio de acelerador con un presupuesto ilimitado. Nuestros astrofísicos tenían que saberlo todo acerca de los quarks y los leptones y las fuerzas para construir un modelo de evolución del universo. Los físicos de partículas reciben datos de su experimento grande y único. Por supuesto, para los tiempos anteriores a los 10-13 segundos, están mucho menos seguros de las leyes de la física. Así que, los astrofísicos azuzan a los teóricos de partículas para que se remanguen y contribuyan al torrente de artículos que los físicos teóricos lanzan al mundo con sus ideas: Higgs, unificación de cuerdas vibrantes, compuestos (qué hay dentro de los quarks) y un enjambre de teorías especulativas que se aventuran más allá del modelo estándar para construir un puente que nos lleve a la descripción perfecta del universo, de la Naturaleza. ¿Será posible algún día?

Esperemos a ver qué pasa con la historia que comenzaron Grabielle Veneziano, John Schwartz, André Neveu, Pierre Ramond, Jeff Harvey, Joel Sheik, Michael Green, David Gross y un dotado flautista de Hamelin que responde al nombre de Edward Witten.

La teoría de cuerdas es una teoría que nos habla de un lugar muy distante. Dice León Lederman que casi tan distante como Oz o la Atlántida; hablamos del dominio de Planck. No ha forma de que podamos imaginar datos experimentales en ese tiempo tan lejano; las energías necesarias (las de la masa de Planck) no están a nuestro alcance, lo que significa que no debemos perseverar.

 

Es tan grande el Universo! No, no estamos solos : Blog de Emilio Silvera V.

No creo que estemos solos en esta inmensidad, las leyes fundamentales y las constantes lo contradicen

Pensar que estamos solos en el Universo “infinito”, es demasiado pretencioso y no creo que seamos “la especie elegida” ni nada parecido. En cientos de miles de mundos como el nuestro y parecidos, estarán presentes las más diversas criaturas que, en algunos casos tendrán entendimiento y en otros, como pasa en la Tierra, simplemente serán seres vivos vegetativos sin ninguna clase de conciencia, o, con una conciencia limitada.

            Por lejos que esté… Siempre querremos llegar. ¿Qué habrá allí dónde nuestra vista no alcanza? ¿Cómo será aquel universo?

¿Por qué no podemos encontrar una teoría matemáticamente coherente (sin infinitos) que describa de alguna manera Oz? ¡Dejar de soñar, como de reír, no es bueno!

Pero en verdad, al final de todo esto, el problema es que siempre estarmos haciendo preguntas: Que si la masa crítica, que si el universo abierto, plano o cerrado… Que si la materia y energía del universo es más de la que se ve. Pasa lo contrario que con nuestra sabiduría (queremos hacer ver que hay más… ¡de la que hay!), que parece mucha y en realidad es tan poca que ni podemos contestar preguntas sencillas como, por ejemplo: ¿Quiénes somos?

 

10 Consejos Imprescindibles para Decir Adiós a las Fotos Movidas

   Ahí, ante esa pregunta “sencilla” nos sale una imagen movida que no deja ver con claridad

Sin embargo, hemos sabido imaginar para poder desvelar algunos otros secretos del universo, de la Naturaleza, del Mundo que nos acoge y, sabemos cómo nacen, viven y mueren las estrellas y lo que es una galaxia. Podemos dar cuenta de muchas cuestiones científicas mediante modelos que hemos ideado para explicar las cosas. No podemos físicamente llegar a otras galaxias y nos hemos inventado telescopios de inmensa capacidad para llegar hasta las galaxias situadas a 12.000 millones de años luz de la Tierra. También, hemos sabido descifrar el ADN y, si ninguna catástrofe lo remedia… ¡Viajaremos por las estrellas!

 

Un indicio de desacuerdo con el modelo estándar en un tipo de  desintegración del bosón de

Modelo Estándar de la Física de Partículas e interacciones

 

El estado actual de la teoría M - La Ciencia de la Mula Francis

Teoría M de Cuerdas

 

Un modelo físico describe las estructuras que pueden adquirir las cápsides  de los virus

Un modelo físico describe las estructuras que pueden adquirir las cápsides de los virus

Construimos Modelos y Teorías para todo. Sin embargo, algunas de esas Teorías no pueden ser verificadas

Claro que, sabemos representar los Modelos de Universo que imaginamos, y, aún no hemos llegado a saber lo que el Universo es. ¡Nuestra imaginación! que siempre irá por delante de la realidad que nos rodea y que no siempre sabemos ver. Todo es, como dijo aquel, la belleza que se nos regala: “La unidad de la variedad”. Además, no debemos olvidar que, todo lo grande está hecho de cosas pequeñas.

Emilio Silvera.V.

¿En qué Universo estamos? ¿Habrá otros más allá del nuestro?

Autor por Emilio Silvera    ~    Archivo Clasificado en Universos paralelos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

“A pesar de la frecuencia con la que aparecen en novelas y películas de ciencia ficción, los universos paralelos no eran, hasta ahora, más que una especulación científica. Sin embargo, matemáticos de la Universidad de Oxford han “demostrado” que existen en realidad. Los universos paralelos existen. Así de contundentes son los resultados del último estudio efectuado por científicos de la Universidad de Oxford, en el que demuestran matemáticamente que el concepto de estructura de árbol de nuestro universo es real. Esta propiedad del universo es la que sirve de base para crear nuestra realidad.

 

Imagen relacionada

 

La teoría de los universos paralelos fue propuesta por primera vez en 1950 por el físico estadounidense Hugh Everett, en la que intentaba explicar los misterios de la mecánica cuántica que resultaban completamente desconcertantes para los científicos. Expresado de una manera muy simplificada, lo que propuso Everett fue que cada vez que se explora una nueva posibilidad física, el universo se divide. Para cada alternativa posible se “crea” un universo propio.”

 

Resultado de imagen de Universos paralelos

 

No creo que sea fácil asomarnos a una ventana y ver a esos otros universos que postulamos

 

Es posible la vida en universos paralelos?

Si existen… ¿Estaremos conectados por los hilos invisibles de la Gravedad?

Los Matemáticos afirman que los Universos múltiples existen, y, si eso es así, coincide con algunas observaciones que han sido realizadas y que, de manera sorprendente, respaldan el resultado de la existencia de otros universos a partir del “borde” mismo del nuestro, y, además, es posible que, las grandes estructuras de estos universos (del más cercano), esté influenciando en el comportamiento del  nuestro que, se comporta como si existiera más materia de la que realmente hay debido a que, la fuerza de gravedad de esos “universos” vecinos, incide de manera real en este Universo nuestro. Como podréis comprobar, los distintos estudios sobre el tema, nos dan también, diferentes resultados y, confirmar la Inflacción, las ondas gravitatorias y la existencia del multiverso… ¡Nos queda lejos aún! Sin embargo, algunos se dejan llevar por el entusiasmo.

 

300

 

Los estudios del MAPW han derivado en deducciones que nos dicen: “El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.

Ωbh= 0,002267 + o,000558/  0,000059

Ωch2 = 0,1131 ± 0.0034

ΩΛ      = 0,726± 0.015

n= 0,960 ± 0,013

τ          = 0,084 ± 0.016

σ= 0,812 ± 0.026

 

                     

                           Los tres ingenios que estudian el problema planteado

Estos son los valores de los parámetros cosmológicos obtenidos a partir de los datos combinados de 5 años de observación de WMAP, medidas de distancia de supernovas tipo I y la distribución de galaxias Omega b, c, lambda que son las densidades de materia bariónica, materia oscura y energía oscura respecto a la densidad crítica (la correspondiente a un espacio euclideo) h = 0,71 es el parámetro de Hubble que mide la razón de expansión del universo, τ es la profundidad óptica, y ns y σson el índice espectral y la amplitud del espectro de las fluctuaciones de la materia, respectivamente.

 

Resultado de imagen de la anisotropía del universo

 

“Definición. El principio cosmológico asegura que el universo, cuando se observa a escalas del orden de cientos de megapársecs, es isotrópico y homogéneo. La isotropía significa que sin importar en qué dirección se esté observando, veremos las mismas propiedades en el Universo.”

 

Cuantifican la isotropía de la expansión cósmica - La Ciencia de la Mula  Francis

Además de los parámetros cosmológicos, el estudio de la distribución estadística de las anisotropías en la intensidad de la polarización de la radiación también nos proporciona una información muy valiosa sobre la historia remota del Universo. El Modelo estándar de inflación predice que las fluctuaciones en la densidad de energía se distribuye siguiendo, muy aproximadamente, un campo aleatorio gaussiano. Sin embargo el modelo estándar se basa en el caso ideal de existencia de un solo campo cuántico, el inflatón, que evoluciona lentamente hasta el mínimo de potencial.

En el artículo nos dicen:

 

         

En los numerosos análisis realizados a los datos de WMAP se han encontrado una serie de “anomalías” cuyo origen está aún por determinar. En el artículo se nos dice:

“El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.”

mapa_flujo_oscuro

 

Es decir, que de lo que en realidad se trata es, de saber cuanto vale Omega (Ω), o, lo que es lo mismo, la cantidad de materia que contiene el Universo metiendo en ese “saco” tanto a la materia bariónica como a la oscura.

 

 

Las anomalías observadas no son debidas ni al ruido ni a residuos contaminantes, lo más probable es que sea debida a defectos topológicos en forma de textura. Seguramente la misión Planck de la ESA nos proporcionará la mejor medida de la anisotropía en la intensidad del Fondo Cósmico de Microondas en todo el cielo con una sensibilidad, resolución y cubrimiento frecuencial sin precedentes.

 

 

Las fronteras del conocimiento sobre el Universo se amplían día a día y, a no tardar mucho podremos saber sobre:

  • Las características de la época inflacionaria así como de las fluctuaciones primordiales en la densidad que allí se generaron.

 

  • La existencia de ondas gravitatorias primordiales.
  • La naturaleza de la materia oscura y la energía oscura y su contribución al contenido material/energético total del Universo.
  • La distribución de cúmulos de galaxias seleccionados mediante el efecto Sunyaev-Zeldovich.
  • La época de re-ionización”.

 

Persona contemplando la inmensidad del universo | Foto Premium
Para nosotros infinito
La inmensidad del Universo es notable y, nosotros, aunque hablemos de ello cada día, lo cierto es que, en nuestras mentes no se tiene una imagen real de tan inconmensurable escenario.

Y, muchas cosas más que de momento ignoramos y que, como nos van desvelando las observaciones y estudios realizados, cada día quedan más cerca de nuestro entendimiento gracias al trabajo de muchos y, sobre todo, al ingenio de los seres humanos que, con su inagotable imaginación y, por fin, unificando los conocimientos adquiridos durante largos años, ahora van aprendiendo a dirigir sus esfuerzos en la debida dirección, que nos llevará, a desvelar cosas que no comprendemos para saber, cada vez más profundamente, como funciona el Universo en el que vivimos y por qué de sus comportamientos.

La naturaleza a temperaturas muy bajas tiene una gran cantidad de sorpresas bajo la manga”, comenta Meyer. “No quiero especular sobre cuál resultará ser la explicación de la emisión criogénica, pero no me sorprendería si la estructura de banda de los semiconductores desempeña un papel importante”.

         Estructuras desconocidas arrastran las galaxias de nuestro universo

¡Hay tantas cosas que desconocemos! Pudiera incluso ser posible que, esa fuerza misteriosa que tira de nuestras galaxias y, cuya responsabilidad se la adjudicamos a “la materia oscura”, sea, enrealidad, la fuerza de Gravedad que generan cientos de miles de Galaxias situadas en otro universo que, vecino del nuestro, incide de manera directa en el comportamiento de los objetos que el nuestro contiene.

 

Resultado de imagen de Nuestro universo no está sólo

 

Porque, ¿quién puede asegurar que nuestro Universo es el único universo? Nosotros decimos, en relación a “nuestro” Universo, que comprende “todo” lo que existe, incluyendo el espacio, el tiempo y la materia. Claro que, al decir “todo lo que existe” nos estamos refiriendo al ámbito del propio Universo, sin pensar en que, más allá de éste nuestro, puedan existir otros iguales o diferentes que, como el nuestro, tenga también espacio, tiempo y materia, y, si es así, ¿Por qué esa materia vecina no puede incidir, con la fuerza de Gravedad que su materia genera, en éste Universo nuestro? Si recordamos bien, se dice que, tanto el alcance de la fuerza electromagnética como el de la Gravitatoria, son infinitos. De esa manera, esa materia que conforma otros universos, podría estar “tirando” de nuestras galaxias y, haciendo que corran a más velocidad de la que tendrían de no concurrir en escena, alguna otra fuerza externa. Claro que, nosotros, creyendo que la idea de otros universos es algo atrevida, hemos preferido adoptar a la “Materia Oscura” para que explique, o, más bien justifique, las anomalías observadas.

 

enero 2023 – Página 2 – Madrid Deep Space Communications Complex

 

Una cosa sí que está clara, el Universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Tal separación gradual, a medida que el tiempo pasa, hace que el Universo sea, cada vez más frío.

 

 

 

¿No pasará con los universos como ocurre con las galaxias? Sabemos que Andrómeda se nos echa encima a 100 Km/s, y, de la misma manera, son múltiples las galaxias que se han fundido en una sola galaxia mayor. Si eso es así (que lo es), si las leyes del Universo son las que son, ¿Quién puede negar que al igual que las galaxias, también los universos se funden en otro mayor?

Yo, la verdad es que no acabo de estar de acuerdo con la dichosa “materia oscura”, algo me dice que hay algo más que no sabemos ver y, posiblemente, la fuerza de Gravedad tenga alguna propiedad o extensión desconocida. Por otra parte,  la idea, no de universos paralelos que serían intangibles para nosotros al estar situados en otro plano dimensional, sino la idea de universos conexos que, de alguna manera, se relacionan entre sí a una escala tan enorme que aún no hemos podido captar.

 

El universo es cerrado, abierto o... - Ciencias de bolsillo+ | Facebook

En función de la materia del Universo, este será plano, abierto o cerrado. Parece que está cerca de la Densidad Crítica Ω.

Creo firmemente que, eso debe ser así según los indicios que, cada vez son más fuertes apuntando en dicha dirección, y, esos modelos que nos hemos inventado del Universo Plano, Abierto o Cerrado, no son más que palos de ciego tratando de explicar lo que no comprendemos.

La materia que conforma nuestro Universo es la que podemos ver y detectar, la que conforman todos los objetos existentes nosotros incluidos, y, sin importar la forma que esté adoptando en este momento, la materia, materia es: es decir, Quarks y Leptones. Es posible que, seguramente, esté acompañada de esa otra escondida en eso que llamamos “fluctuaciones de vacío” donde, que sepamos, puede haber oculto mucho más de lo que hemos podido localizar, ya que, su dominio, el dominio de los llamados “océanos de Higgs” nos quedan muy, pero que muy lejos, y, ahora, con el LHC, posiblemente podamos obtener algunas de las respuestas tan deseadas y necesarias para rellenar muchos de los espacios “vacíos” que están presentes en nuestros conocimientos limitados.

 

Screenshot of CERN's new blog

 

Pensemos en el Universo y que con el Hubble y otros magníficos aparatos tecnológicos de complejo diseño, hemos podido acceder a un conocimiento más profundo de lo que puede ser la materia y las partículas de que está conformada. Por otra parte y pensando en el enorme costo que nos suponen esos inmensos aceleradores de partículas que nos llevan (durante una fracción de segundo) al instante mismo de la creación para que, allí, podamos “ver” lo que fue y entender, de esa manera, lo que es, a costa de una inemnsa energía. Precisamente por ello, sería deseable busca otros caminos más dinámicos y menos costosos (la Química) que nos llevaran hasta el mismo lugar sin tanta estructura y con menos esfuerzo económico que se podría destinar a otros proyectos del espacio.

Imagen relacionadaSabemos de su magnificencia y de su “infinitud”. Lleva 13.700 millones de años creciendo, y, hemos logrado la proeza de captar galaxias situadas a unos 13.ooo millones de años-luz de nosotros, es decir, de cuando el Universo era muy joven.

 

James Webb: qué nos revela la primera imagen del telescopio espacial más  poderoso (y cómo cambia lo que sabemos sobre el universo) - BBC News Mundo

 

Con las nuevas generaciones de aparatos, con las nuevas y más avanzadas tecnologías, seguramente, alcanzaremos a poder ver, incluso el momento mismo de “la gran explosión”.

Sin embargo, tales hallazgos no serán suficientes para explicar todo lo que en verdad existe y está ahí, “junto” a nosotros, haciéndonos señales que no podemos captar, y, seguramente, enviándonos mensajes que no podemos recibir.

¡Algún día, muy lejos en el futuro, podremos, al fin saber, en qué Universo estamos y si, éste Universo nuestro, tiene otros hermanos!

 

 

“Kashlinsky y su equipo afirman que su observación representa la primera pista de lo que hay más allá del horizonte cósmico. Al averiguarlo, podremos saber cómo se veía el universo inmediatamente después del Big Bang, o si nuestro universo es uno de muchos. Otros no están tan seguros. Una interpretación diferente dice que no tiene nada que ver con universos extraños sino el resultado de un defecto en una de las piedras angulares de la cosmología, la idea de que el universo debe verse igual en todas direcciones. O sea, si las observaciones resisten un escrutinio preciso.”

 

Resultado de imagen de Los bordes del Universo, su final

 

“Las estructuras más allá del “borde” del Universo observable, el cual están esencialmente confinados a una región con un radio de 14 mil millones de años luz, dado que sólo la luz dentro de esta distancia ha tenido tiempo de llegar hasta nosotros desde el Big Bang.

En el escenario de inflación, la expansión está dirigida por un campo de energía de un origen misterioso. Erickcek y sus colegas argumentan que la asimetría podría ser el remanente de las fluctuaciones en un campo de energía adicional, el cual empezó siendo diminuto, pero estalló por la inflación hasta que se hizo mayor que el universo observable.

Como resultado, el valor de este campo de energía varió desde un lado del universo al otro en los inicios, aumentando las variaciones de temperatura – y densidad de materia – en un lado del cielo con respecto a otro.

Resultado de imagen de La inflación del Universo

 

La conclusión, si es correcta, haría añicos una apreciada suposición sobre el universo. “Uno de los sustentos básicos de la cosmología es que el universo es el mismo en todas las direcciones, y el modelo estándar de la inflación se construye sobre estos cimientos”, dijo Erickcek a New Scientist. “Si la asimetría es real, entonces nos dice que un lado del universo es de algún modo distinto al otro lado”.

 

Viajar entre universos

El sueño de poder viajar entre universos… ¡Ilusos!

“El universo, tan vasto para la mayoría de nosotros, a veces les resulta pequeño a los cosmólogos. Observando a enormes distancias de la Tierra han encontrado una “ventana” que podría mostrarnos que existe algo más allá de los 45.000 millones de años luz, el “borde final” observable de esta burbuja cósmica que nos aloja. ¿Constituye esto una evidencia de la existencia otros universos?”

 

Resultado de imagen de Más allá del borde del Universo

Pregunta que seguiremos planteando junto a la que desea una respuesta de qué había antes del Universo

He buscado diversas opiniones y estudios que arriba están para su lectura, y, también he plasmado aquí mis propias opiniones sobre todo este complejo tema. Leyendo a unos y otros sabemos que, a nada se ha llegado de manera definitiva pero, la idea de que más allá del horizonte de nuestro Universo, hay algo más, toma fuerza y amplia nuestra visión en relación a dónde podemos estar y lo que, verdaderamente pueda ser todo esto.

Para más abundamiento, se incluyen hoy dos entrevistas que el Pais publicó sobre el tema y, con ellas, oyendo lo que los científicos opinan del tema, podéis sacar vuestras propias conclusiones. La mías es: ¡Que todo es posible! Sin embargo, necesitamos Tiempo para demostrarlo.

Emilio Silvera V.

Personajes inolvidables

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Si la neurociencia fuera poesía, tendría a Emily Dickinson como su referente

Si la neurociencia fuera poesía, tendría a Emily Dickinson como su referente.

La célebre poeta de Massachusetts no solo forma parte de ese panteón de figuras clave de la poesía estadounidense, como lo fue a Edgar Allan Poe, Ralph Waldo Emerson y Walt Whitman. Ella es la personalidad favorita de muchos premios Nobel que han estudiado los misterios del cerebro humano.

 

https://www.youtube.com/watch?v=Wxkw-0ZETN0
Emily Dickinson 

Biólogos, como Gerald Edelman, o neurocientíficos cognitivos, como Stanislas Dehaene, usaron uno de sus poemas como introducción para sus publicaciones. Dickinson escribió en 1862 que el cerebro es más ancho que el cielo, más profundo que el mar y que es solo el peso de Dios. Lo que hizo en realidad fue describir ese producto del cerebro que es la mente y su poder a la hora de vivenciar y crear la realidad.

 

 

¡Confirmado Taylor Swift y Emily Dickinson estn emparentadas

¡Confirmado! Taylor Swift y Emily Dickinson están emparentadas

En cuanto a la retórica particular dickinsoniana, los poemas de Dickinson tienen una vocación aforística y apotegmática que nos recuerda la mejor tradición epigramática clásica. Con frecuencia, una estrofa no tiene nada que ver con la siguiente y se puede leer como unidad independiente.

 

 

Su poema representa para los neurocientíficos una experiencia de lo sublime y de la capacidad cerebral para construir las percepciones. El cerebro es parte de la naturaleza humana, pero lo trasciende gracias a sus pensamientos e https://lamenteesmaravillosa.com/la-imaginacion-activa-el-interesante-metodo-de-jung/”}}”>imaginación, pudiendo ir más allá del cielo, ser más profundo que el propio océano…

 

Cerebro y universo: ¿dos estructuras con la misma naturaleza?

“El cerebro es más ancho que el cielo;
ponlos juntos
y uno contendrá al otro
con facilidad, y a ti, además.

El cerebro es más profundo que el mar;
al contenerlos, azul con azul,
y el uno al otro absorberá,
como una esponja.

El cerebro es el solo peso de Dios;
levántalos, libra por libra,
y diferirán, si lo hacen,
como la sílaba difiere del sonido.

-Emily Dickinson, El cerebro (1862)-

herbario de Emily Dickinson flores prensadas
Herbario de Emily Dickinson | Emily Dickinson’s herbarium (Houghton Library, Harvard University) ca. 1839-
Cuando solo tenía 14 años, la poeta estadounidense Emily Dickinson comenzó a explorar bosques y prados cercanos para recolectar flores que después prensaba, llegando a crear un herbario donde reunió y clasificó más de 400 especímenes. De este modo, accedió a la ciencia de forma sinuosa, como tenían que hacerlo las mujeres de la época, poniendo el arte al servicio de la botánica para salvar los obstáculos de la moral victoriana.

Se habla de sus temas recurrentes, como la naturaleza, el amor, la muerte, la inmortalidad, la conciencia, el cielo y las estrellas…Sentir las palabras para despertar la conciencia

La literatura enriquece a las personas de una manera innegable. Nos aporta conocimientos, despierta en nosotros nuevas perspectivas y a menudo se configura como un ejercicio catártico para el cambio y el https://lamenteesmaravillosa.com/variables-influyen-bienestar-laboral/”}}”>bienestar. Sin embargo, si la neurociencia fuera poesía, entendería que su poder va más allá de la narrativa y despierta en nosotros en mayor grado la autoconciencia emocional.

Los versos, las metáforas y todo recurso poético hace de la palabra un detonante psicológico. Nos permite sentir, ver y comprender el mundo de una manera más rica y compleja. El uso de simbolismos incrementa la https://lamenteesmaravillosa.com/un-viaje-hacia-la-introspeccion/”}}”>introspección, el sentido crítico y la mentalidad reflexiva. Además, favorece que conectemos con nosotros mismos y lo que nos envuelve a otro nivel.

Estimula la imaginación, porque jugar con las palabras nos invita también a jugar con la realidad y reinventarla, a verla desde múltiples prismas. La neurociencia sabe que la poesía no solo embellece el lenguaje, sino que activa un resorte atávico en el cerebro para volverlo más rico y aumentar sus conexiones sinápticas. Así que no lo dudemos, naveguemos en esos mares de letras para sentirnos, si cabe, mucho más vivos.

 

Casa del Lector - "Para fugarnos de la tierra un libro es el mejor bajel; y se viaja mejor en el poema que en el más brioso y rápido corcel. Aun el

 

“Para fugarnos de la tierra
un libro es el mejor bajel;
y se viaja mejor en el poema
que en el más brioso y rápido corcel

 

El Arte de Encontrar Silencio en el Caos Cotidiano

 

Aun el más pobre puede hacerlo, 
nada por ello ha de pagar: 
el alma en el transporte de su sueño 
se nutre solo de silencio y paz”.

-Emily Dickinson, Ensueño-