sábado, 19 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nuestro lugar en el Universo…¿Cuál será?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 
[proyeccion_estereografica.GIF]
Las coincidencias deben ser vigiladas y, cuando se dan, buscar el origen de las mismas nos puede llevar a desvelar secretos profundamente escondidos en la Naturaleza. Ya hemos hablado aquí alguna vez de la coincidencia de Grandes Números entre Constantes de la Naturaleza y lo que de ello opinaba aquel personaje extraño que, lo mismo se sentía cómodo como matemático, como físico experimental, como destilador de datos astronómicos complicados o como diseñador de sofisticados instrumentos de medida.

Martín Monteiro @fisicamartin: Robert Dicke y la expansión del universo

Robert Dicke era su nombre y tenía los intereses científicos más amplios y diversos que imaginarse pueda, el decía que al final del camino todos los conocimientos convergen en un solo punto, el saber. No nos damos cuenta de ello pero, al final del camino, todos los conocimientos convergen y están relacionados de alguna extraña manera.

 

Como pregona la filosofía, nada es como se ve a primera vista, todo depende del punto de vista desde el que miremos las cosas, o,  de la perspectiva que podamos tener de ellas conforme a las herramientas que tengamos a nuestra disposición, incluida la intelectual. Nosotros, que estudiamos el Universo y no lo sabemos todo de él, ya pensamos en la posible existencia de otros universos.

Si es que existen, ¿Cómo serían esos otros universos? ¿dejarían un margen para alguna forma de vida? y, de ser así, ¿Tendrían las mismas leyes fundamentales y las mismas Constantes universales?

 

Mario Hamuy: "No hay ninguna evidencia de que existan universos paralelos"  - BBC News Mundo

“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es importante comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que ha comprendido hasta ese momento no es verdadero.”

Douglas Adams

El físico inglés Paul Dirac fue uno de los más decisivos del siglo pasado, con aportaciones determinantes para el desarrollo de la mecánica cuántica, la teoría que nos ilustra sobre la naturaleza de los átomos. En cuanto al tema que nos ocupa, Dirac concluyó que la aparición del “10 elevado a 40” en distintos sitios no podía ser fortuita, tenía que haber algo que conectara de manera profunda los diversos cálculos que lo originaban.

Antes en la entrada que más arriba tenéis (“Observar la Naturaleza… da resultados”), comentaba sobre los grandes números de Dirac y lo que el personaje llamado Dicke pensaba de todo ello y, cómo dedujo que para que pudiera aparecer la biología de la vida en el Universo, había sido necesario que el tiempo de vida de las estrellas fuese el que hemos podido comprobar que es y que, el Universo, también tiene que tener, no ya las condiciones que posee, sino también, la edad que le hemos estimado.

 

En 1866, Wallace se casó con Anna Mitten, con la que tuvo tres hijos, de los que solo dos, Violet y William, llegaron a edad adulta. En la imagen, Wallace con su mujer y su hija Violet hacia 1905. / A. R. Wallace Memorial Fund & G. W. Beccaloni.

Para terminar de repasar la forma de tratar las coincidencias de los Grandes Números por parte de Dicke, sería interesante ojear retrospectivamente un tipo de argumento muy similar propuesto por otro personaje, Alfred Wallace en 1903. Wallace era un gran científico que, como les ha pasado a muchos, hoy recibe menos reconocimiento del que se merece.

 

Resultado de imagen de Alfred Wallace

Al principio compartieron la gloria pero, más tarde, Wallace fue olvidado injustamente.

Fue él, antes que Charles Darwin, quien primero tuvo la idea de que los organismos vivos evolucionan por un proceso de selección natural. Afortunadamente para Darwin, quien, independientemente de Wallace, había estado reflexionando profundamente y reuniendo pruebas en apoyo de esta idea durante mucho tiempo, Wallace le escribió para contarle sus ideas en lugar de publicarlas directamente en la literatura científica. Pese a todo, hoy “la biología evolucionista” se centra casi por completo en las contribuciones de Darwin.

Teoría Darwin-Wallace | Portal Académico del CCH

Esta teoría propone que todas las especies presentes actualmente, se han originado de otra especie ahora extinta, es decir, estas especies son los descendientes de ancestros primordiales, en la mayoría de los casos, más sencillos y extintos.

Wallace tenía intereses muchos más amplios que Darwin y estaba interesado en muchas áreas de la física, la astronomía y las ciencias de la Tierra. En 1903 publicó un amplio estudio de los factores que hace de la Tierra un lugar habitable y pasó a explorar las conclusiones filosóficas que podrían extraerse del estado del Universo. Su libro llevaba el altisonante título de El lugar del hombre en el Universo.

 

Wallace, Alfred Russell (1823-1913), naturalista británico conocido por el desarrollo de una teoría de la evolución basada en la selección natural. Nació en la ciudad de Monmouth (hoy Gwent) y fue contemporáneo del naturalista Charles Darwin. En 1848 realizó una expedición al río Amazonas con el también naturalista de origen británico Henry Walter Bates y, desde 1854 hasta 1862, dirigió la investigación en las islas de Malasia. Durante esta última expedición observó las diferencias zoológicas fundamentales entre las especies de animales de Asia y las de Australia y estableció la línea divisoria zoológica -conocida como línea de Wallace- entre las islas malayas de Borneo y Célebes. Durante la investigación Wallace formuló su teoría de la selección natural. Cuando en 1858 comunicó sus ideas a Darwin, se dio la sorprendente coincidencia de que este último tenía manuscrita su propia teoría de la evolución, similar a la del primero. En julio de ese mismo año se divulgaron unos extractos de los manuscritos de ambos científicos en una publicación conjunta, en la que la contribución de Wallace se titulaba: “Sobre la tendencia de las diversidades a alejarse indefinidamente del tipo original”. Su obra incluye El archipiélago Malayo (1869), Contribuciones a la teoría de la selección natural (1870), La distribución geográfica de los animales (1876) y El lugar del hombre en el Universo (1903).

 

Pero sigamos con nuestro trabajo de hoy. Todo esto era antes del descubrimiento de las teorías de la relatividad, la energía nuclear y el Universo en expansión.  La mayoría de los astrónomos del siglo XIX concebían el Universo como una única isla de materia, que ahora llamaríamos nuestra Vía Láctea. No se había establecido que existieran otras galaxias o cuál era la escala global del Universo. Sólo estaba claro que era grande.

Wallace estaba impresionado por el sencillo modelo cosmológico que lord Kelvin había desarrollado utilizando la ley de gravitación de Newton. Mostraba que si tomábamos una bola muy grande de materia, la acción de la gravedad haría que todo se precipitara hacia su centro. La única manera de evitar ser atraído hacia el centro era describir una órbita alrededor. El universo de Kelvin contenía unos mil millones de estrellas como el Sol para que sus fuerzas gravitatorias contrapesaran los movimientos a las velocidades observadas.

 

William Thomson (Lord Kelvin)

En el año 1901, Lord Kelvin solucionó cualitativa y cuantitativamente de manera correcta el enigma de la oscuridad de la noche en el caso de un universo transparente, uniforme y estático. Postulando un universo lleno uniformemente de estrellas similares al Sol y suponiendo su extensión finita (Universo estoico), mostró que, aun si las estrellas no se ocultan mutuamente, su contribución a la luminosidad total era finita y muy débil frente a la luminosidad del Sol. El demostró también que la edad finita de las estrellas prohibió la visibilidad de las estrellas lejanas en el caso de un espacio epicúreo infinito o estoico de gran extensión, lo que contestó correctamente al enigma de la oscuridad.

Ahora sabemos que estrellas como el Sol y planetas como la Tierra, sólo en nuestra Galaxia, los hay a decenas de miles de millones. Y, si eso es así… ¡No somos nada especial ni el centro de nada! Por otra parte, somos conscientes de que la extinción de las especies también es algo natural en la dinámica del Universo.

Lo intrigante de la discusión de Wallace sobre este modelo del Universo es que adopta una actitud no copernicana porque ve cómo algunos lugares del Universo son más propicios a la presencia de vida que otros. Como resultado, sólo cabe esperar que nosotros estemos cerca, pero no en el centro de las cosas.

Wallace da un argumento parecido al de Dicke para explicar la gran edad de cualquier universo observado por seres humanos. Por supuesto, en la época de Wallace, mucho antes del descubrimiento de las fuentes de energía nuclear, nadie sabía como se alimentaba el Sol, Kelvin había argumentando a favor de la energía gravitatoria, pero ésta no podía cumplir la tarea.

Tiene algún sentido nuestra presencia en el Universo? : Blog de Emilio  Silvera V.

En la cosmología de Kelvin la Gravedad atraía material hacia las regiones centrales donde estaba situada la Vía Láctea y este material caería en las estrellas que ya estaban allí, generando calor y manteniendo su potencia luminosa durante enormes períodos de tiempo. Aquí Wallace ve una sencilla razón para explicar el vasto tamaño del Universo.

“Entonces, pienso yo que aquí hemos encontrado una explicación adecuada de la capacidad de emisión continuada de calor y luz por parte de nuestro Sol, y probablemente por muchos otros aproximadamente en la misma posición dentro del cúmulo solar. Esto haría que al principio se agregasen poco a poco masas considerables a partir de la materia difusa  en lentos movimientos en las porciones centrales del universo original; pero en un período posterior serían reforzadas por una caída de materia constante y continua desde sus regiones exteriores a velocidades tan altas como para producir y mantener la temperatura requerida de un sol como el nuestro, durante los largos períodos exigidos para el continuo desarrollo de la vida.”

Vallace ve claramente la conexión entre estas inusuales características globales del Universo y las consiciones necesarias para que la vida evolucione y prospere en un planeta como el nuestro alumbrado por una estrella como nuestro Sol. Wallace completaba su visión y análisis de las condiciones cósmicas necesarias para la evolución de la vida dirigiendo su atención a la geología  y la historia de la Tierra. Aquó ve una situación mucho más complicada que la que existe en astronomía. Aprecia el cúmulo de accidentes históricos marcados por la vía evolutiva que ha llegado hasta nosotros, y cree “improbable en grado máximo” que el conjunto completo de características propicias para la evolución de la vida se encuentre en otros lugares. Esto le lleva a especular que el enorme tamaño del Universo podría ser necesario para dar a la vida una oportunidad razonable de desarrollarse en sólo un planeta, como el nuestro, independientemente de cuan propicio pudiera ser su entorno local:

“Un Universo tan vasto y complejo como el que sabemos que existe a nuestro alrededor, quizá haya sido absolutamente necesario … para producir un mundo que se adaptase de forma precisa en todo detalle al desarrollo ordenado de la vida que culmina en el hombre.”

cluster-galaxias

Hoy podríamos hacernos eco de ese sentimiento de Wallace. El gran tamaño del Universo observable, con sus 1080 átomos, permite un enorme número de lugares donde puedan tener lugar las variaciones estadísticas de combinaciones químicas que posibilitan la presencia de vida. Wallace dejaba volar su imaginación que unía a la lógica y, en su tiempo, no se conocían las leyes fundamentales del Universo, que exceptuando la Gravedad de Newton, eran totalmente desconocidas. Así, hoy jugamos con la ventaja de saber que, otros muchos mundos, al igual que la Tierra, pueden albergar la vida gracias a una dinámica igual que es la que, el ritmo del Universo, hace regir en todas sus regiones. No existen lugares privilegiados.

Emilio Silvera Vázquez

¡La Hiperdimensionalidad! ¡Qué cosas nos cuentan!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Cuáles son los secretos que esconde nuestro cerebro?

El cerebro tiene secretos que… ¡Nunca nos contará! Es parte de nosotros pero…

¡Un gran desconocido!

 

                    Vimana, un pozo de tiempo en Afganistán

El 21 de diciembre de 2010 científicos estadounidenses descubrieron “un vimana atrapado en un pozo del tiempo“ (un campo gravitatorio electromagnético, que sólo puede ocurrir en una dimensión invisible del espacio) en la ciudad de Balkh, Afganistán, lugar que alguna vez Marco Polo catalogó como “una de las ciudades más nobles y grandiosas” del mundo”.

 

Los intentos por retirar el misterioso Vimana de la cueva donde había estado oculto durante por lo menos 5.000 años, causaron la “desaparición” de por lo menos 8 soldados norteamericanos, atrapados por el vórtex temporal ( nuestros cuerpos no pueden desplazarse como si nada del presente al futuro y del futuro al pasado sin cargarse el peso destructivo de las leyes de la física, salvo si se logra bloquear el campo magnético, algo que aparentemente los científicos norteamericanos tardaron ocho cadáveres en descubrir y solucionar, probablemente con jaulas de Faraday ).

 

La existencia de este tipo de fenómenos no está demostrado por los científicos (caso contrario estaríamos hablando de leyes), pero los físicos teóricos coinciden en general que podrían ser posibles si se acepta la teoría del Multiuniverso (un universo de por lo menos 11 dimensiones espaciotemporales) como estructura lógica y matemática. Atravesando esa especie de plasma líquido, nos podríamos trasladar a otros mundos, a otras galaxias.

 

Teoría de Kaluza-Klein - Wikipedia, la enciclopedia libre

Theodor Kaluza, ya en 1921 conjeturaba que si ampliáramos nuestra visión del universo a 5 dimensiones, entonces no habría más que un solo campo de fuerza: la gravedad, y lo que llamamos electromagnetismo sería tan sólo la parte del campo gravitatorio que opera en la quinta dimensión, una realidad espacial que jamás reconoceríamos si persistiéramos en nuestros conceptos de realidad lineal, similar a un holograma.

Bueno, independientemente de que todo esto pueda ser una realidad, lo cierto es que, nosotros, ahora en nuestro tiempo, hablamos de un universo con más dimensiones y, la carrera de las más altas dimensiones la inicio (como más arriba se menciona) en el año 1919 (no el 1921) por Theodor Kaluza, un oscuro y desconocido matemático,  cuando le presentó a Einstein mediante un escrito una teoría unificada que podía unificar, las dos grandes teorías del momento, la Relatividad General con el Magnetismo y podía realizarse si elaboraba sus ecuaciones  en un espacio-tiempo de cinco dimensiones.

 

Kaluza y la quinta dimensión |

                  Kaluza y la quinta dimensión

Así estaban las cosas cuando en 1.919 recibió Einstein un trabajo de Theodor Kaluza, un privatdozent en la Universidad de Königsberg, en el que extendía la Relatividad General a cinco dimensiones. Kaluza consideraba un espacio con cuatro dimensiones, más la correspondiente dimensión temporal y suponía que la métrica del espacio-tiempo se podía escribir como:

 

metrica_de_kaluza

                                  Oskar Klein - Wikipedia, la enciclopedia libre

Así que, como hemos dicho, ese mismo año, Oskar Klein publicaba un trabajo sobre la relación entre la teoría cuántica y la relatividad en cinco dimensiones. Uno de los principales defectos del modelo de Kaluza era la interpretación física de la quinta dimensión. La condición cilíndrica impuesta ad hoc hacía que ningún campo dependiera de la dimensión extra, pero no se justificaba de manera alguna.

Klein propuso que los campos podrían depender de ella, pero que ésta tendría la topología de un círculo con un radio muy pequeño, lo cual garantizaría la cuantización de la carga eléctrica. Su diminuto tamaño, R5 ≈ 8×10-31 cm, cercano a la longitud de Planck, explicaría el hecho de que la dimensión extra no se observe en los experimentos ordinarios, y en particular, que la ley del inverso del cuadrado se cumpla para distancias r » R5. Pero además, la condición de periodicidad implica que existe una isometría de la métrica bajo traslaciones en la quinta dimensión, cuyo grupo U(1), coincide con el grupo de simetría gauge del electromagnetismo.

 

Einstein al principio se burló de aquella disparatada idea pero, más tarde, habiendo leido y pensado con más atenci`´on en lo que aquello podía significar, ayudó a Kaluza a publicar su idea de un mundo con cinco dimensiones (allí quedó abierta la puerta que más tarde, traspasarían los teóricos de las teorías de más altas dimensiones). Algunos años más tarde, , el físico sueco Oskar Klein publicó una versión cuántica del artículo de Kaluza. La Teoría Kaluza-Klein que resultó parecía interesante, pero, en realidad, nadie sabía que hacer con ella hasta que, en los años setenta; cuando pareció beneficioso trabajar en la supersimetría, la sacaron del baúl de los recuerdos, la desempolvaron y la tomaron como modelo.

Pronto, Kaluza y Klein estuvieron en los labios de todo el mundo  (con Murray Gell-Mann, en su papel de centinela lingüístico, regañando a sus colegas que no lo sabían pronunciar “Ka-wu-sah-Klein”.

 

Pero, ¿Existen en nuestro Universo dimensiones ocultas?

Aunque la teoría de cuerdas en particular y la supersimetría en general apelaban a mayores dimensiones, las cuerdas tenian un modo de seleccionar su dimensionalidad requerida. Pronto se hizo evidente que la Teoría de cuerdas sólo sería eficaz, en dos, diez y veintiseis dimensiones, y sólo invocaba dos posibles grupos de simetría: SO(32) o E8 x E8. Cuando una teoría apunta hacia algo tan tajante, los científicos prestan atención, y a finales de los años ochenta había decenas de ellos que trabajaban en las cuerdas. Por aquel entonces, quedaba mucho trabajo duro por hacer, pero las perspectivas era brillantes. “Es posible que las décadas futuras -escribieron Schwarz y sus colaboradores en supercuerdas Green y Edward Witten- sea un excepcional período de aventura intelectual.” Desde luego, la aventura comenzó y, ¡qué aventura!

 

Cómo nuestra comprensión actual del universo es en verdad "una admisión de nuestra ignorancia" - BBC News MundoConstantes universales : Blog de Emilio Silvera V.

 El mundo está definido por las Constantes adimensionales de la Naturaleza que hace el Universo que conocemos. Sin las Constantes sería otro Universo y la vida no estaría presente: El Ajuste Fino del Universo para que la vida esté en ´él.

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

 

{\displaystyle M_{p}={\sqrt {\frac {\hbar c}{G}}}=2,18\times 10^{-8}\,{\mbox{kg}}}

Puesto que el radio de  compactificación es tan pequeño, el valor típico de las masas será muy elevado, cercano a la masa de Planck Mp = k-12 = 1’2 × 1019 GeV*, y por tanto, a las energías accesibles hoy día (y previsiblemente, tampoco en un futuro cercano – qué más quisieran E. Witten y los perseguidores de las supercuerdas -), únicamente el modo cero n = 0 será relevante. Esto plantea un serio problema para la teoría, pues no contendría partículas ligeras cargadas como las que conocemos.

¿Y si llevamos a Kaluza-Klein a dimensiones superiores para unificar todas las interacciones?

 

Desintegración beta - Wikipedia, la enciclopedia libre

En este proceso llamado desintegración beta y debido a la interacción débil, un neutrón se transforma en un protón, un electrón y un (anti)neutrino electrónico cuando uno de los quarks del neutrón emite una partícula W–. Aquí queda claro que el término “interacción” es más general que “fuerza”; esta interacción que hace cambiar la identidad de las partículas no podría llamarse fuerza (todo representado en uno de los famosos diagramas de Feyman).

La descripción de las interacciones débiles y fuertes a través de teorías gauge no abelianas mostró las limitaciones de los modelos en cincodimensiones, pues éstas requerirían grupos de simetría mayores que el del electromagnetismo. En 1964 Bryce de UIT presentó el primer modelo de tipo Kaluza-KleinYang-Mills en el que el espacio extra contenía más de una dimensión.

 

Resultado de imagen de Teoría de cinco dimensiones

 

El siguiente paso sería construir un modelo cuyo grupo de isometría contuviese el del Modelo Estándar SU(3)c × SU(2)l × U(1)y, y que unificara por tanto la gravitación con el resto de las interacciones.

Edward Witten demostró en 1981 que el número total de dimensiones que se necesitarían sería al menos de once. Sin embargo, se pudo comprobar que la extensión de la teoría a once dimensiones no podía contener fermiones quirales, y por tanto sería incapaz de describir los campos de leptones y quarks.

Por otra parte, la supersimetría implica que por cada bosón existe un fermión con las mismas propiedades. La extensión supersimétrica de la Relatividad General es lo que se conoce como supergravedad (supersimetría local).

 

 

Joël Scherk (1946-1980) (a menudo citado como Joel Scherk) fue un francés teórico físico que estudió la teoría de cuerdas ysupergravedad [1] . Junto con John H. Schwarz , pensaba que la teoría de cuerdas es una teoría de la gravedad cuántica en 1974. En 1978, junto con Eugène Cremmer y Julia Bernard , Scherk construyó el lagrangiano y supersimetría transformaciones parasupergravedad en once dimensiones, que es uno de los fundamentos de la teoría-M .

 

Teoria M

Unos años antes, en 1978, Cremmer, Julia y Scherk habían encontrado que la super-gravedad, precisamente en once dimensiones, tenía propiedades de unicidad que no se encontraban en otras dimensiones. A pesar de ello, la teoría no contenía fermiones quirales, como los que conocemos, cuando se compactaba en cuatro dimensiones. Estos problemas llevaron a gran parte de los teóricos al estudio de otro programa de unificación a través de dimensiones extra aún más ambicioso, la teoría de cuerdas.

No por haberme referido a ella en otros trabajos anteriores estará de más dar un breve repaso a las supercuerdas. Siempre surge algún matiz nuevo que enriquece lo que ya sabemos.

El origen de la teoría de supercuerdas data de 1968, cuando Gabriela Veneziano introdujo los modelos duales en un intento de describir las amplitudes de interacción hadrónicas, que en aquellos tiempos no parecía provenir de ninguna teoría cuántica de campos del tipo de la electrodinámica cuántica. Posteriormente, en 1979, Yaichiro Nambu, Leonard Susskind y Holger Nielsen demostraron de forma independiente que las amplitudes duales podían obtenerse como resultado de la dinámica de objetos unidimensionales cuánticos y relativistas dando comienzo la teoría de cuerdas.

En 1971, Pierre Ramona, André Neveu y otros desarrollaron una teoría de cuerdas con fermiones y bosones que resultó ser super-simétrica, inaugurando de esta forma la era de las supercuerdas.

 

               David Jonathan Gross

Sin embargo, en 1973 David Gross, David Politzer y Frank Wilczek descubrieron que la Cromodinámica Cuántica, que es una teoría de campos gauge no abeliana basada en el grupo de color SU(3)c, que describe las interacciones fuertes en términos de quarks y gluones, poseía la propiedad de la libertad asintótica. Esto significaba que a grandes energías los quarks eran esencialmente libres, mientras que a bajas energías se encontraban confinados dentro de los hadrones en una región con radio R de valor R ≈ hc/Λ ≈ 10-13 cm.

Dicho descubrimiento, que fue recompensado con la concesión del Premio Nobel de Física a sus autores en 2.004, desvió el interés de la comunidad científica hacia la Cromodinámica Cuántica como teoría de las interacciones fuertes, relegando casi al olvido a la teoría de supercuerdas.

 

TEORIAS FISICAS ACTUALESBrana - WikiwandEn un lugar del cosmos - En física teórica, las D-branas son una clase especial de P-branas, nombradas en honor del matemático Johann Dirichlet por el físico Joseph Polchinski. Las condiciones de

Se habla de cuerdas abiertas, cerradas o de lazos, de p branas donde p denota su dimensionalidad (así, 1 brana podría ser una cuerda y 2.Brana una membrana) o D-Branas (si son cuerdas abiertas) Y, se habla de objetos mayores y diversos que van incorporados en esa teoría de cuerdas de diversas familias o modelos que quieren sondear en las profundidades del Universo físico para saber, como es.

En la década de los noventa se creó una versión de mucho éxito de la teoría de cuerdas. Sus autores, los físicos de Princeton David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohn, a quienes se dio en llamar el cuarteto de cuerdas de Princeton.

El de más edad de los cuatro, David Gross, hombre de temperamento imperativo, es temible en los seminarios cuando al final de la charla, en el tiempo de preguntas, con su inconfundible vozarrón dispara certeros e inquisidoras preguntas al ponente. Lo que resulta sorprendente es el hecho de que sus preguntas dan normalmente en el clavo.

Gross y sus colegas propusieron lo que se denomina la cuerda heterótica. Hoy día, de todas las variedades de teorías tipo Kaluza-Klein que se propusieron en el pasado, es precisamente la cuerda heterótica la que tiene mayor potencial para unificar todas las leyes de la naturaleza en una teoría. Gross cree que la teoría de cuerdas resuelve el problema de construir la propia materia a partir de la geometría de la que emergen las partículas de materia y también la gravedad en presencia de las otras fuerzas de la naturaleza.

 

Einstein contra las cuerdas: el extraordinario descubrimiento que pone en jaque una de sus principales teorías - El Cronista

Cuando los Físicos de cuerdas trabajan con las ecuaciones de campo de esta teoría, sin que nadie las llame, como por arte de magia… ¡Allí aparecen las ecuaciones de campo de la Relatividad General!

El caso curioso es que, la Relatividad de Einstein, subyace en la Teoría de cuerdas, y, si eliminamos de esta a aquella y su geometría de la Gravedad…todo resulta inútil. El gran Einstein está presente en muchos lugares y quizás, más de los que nos podamos imaginar.

Es curioso constatar que si abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. Esta, de hecho, es la razón por la que Witten se sintió atraído inicialmente hacia la teoría de cuerdas. En 1.982 leyó un artículo de revisión de John Schwarz y quedó sorprendido al darse cuenta de que la gravedad emerge de la teoría de supercuerdas a partir solamente de los requisitos de auto consistencia. Recuerda que fue la mayor excitación intelectual de mi vida”.

Gross se siente satisfecho pensando que Einstein, si viviera, disfrutaría con la teoría de supercuerdas que sólo es válida si incluye su propia teoría de la relatividad general, y amaría el hecho de que la belleza y la simplicidad de esa teoría proceden en última instancia de un principio geométrico, cuya naturaleza exacta es aún desconocida.atividad general de Einstein. Nos ayuda a estudiar las partes más grandes del Universo, como las estrellas y las galaxias. Pero los elementos diminutos o los átomos y las partículas subatómicas se rigen por unas leyes diferentes denominadas mecánica cuántica.

 

El problema de la energía oscura en la teoría de cuerdas - La Ciencia de la Mula Francis

               Einstein se aventuró a la búsqueda de la Teoría del Todo

Claro que, como todos sabemos, Einstein se pasó los últimos treinta años de su vida tratando de buscar esa teoría unificada que nunca pudo encontrar. No era consciente de que, en su tiempo, ni las matemáticas necesarias existían aún. En la historia de la física del siglo XX muchos son los huesos descoloridos de teorías que antes se consideraban cercanas a esa respuesta final que incansables buscamos.

Hasta el gran Wolfgang Pauli había colaborado con Heisenberg en la búsqueda de una teoría unificada durante algún tiempo, pero se alarmó al oir en una emisión radiofónica como Heisenberg decía: “Está a punto de ser terminada una Teoría unificada de Pauli-Heisenserg, en la que sólo nos queda por elaborar unos pocos detalles técnicos.”

 

Wolfgang Pauli ETH-Bib Portr 01042.jpg

          Wolfgang Pauli

Enfadado por lo que consideraba una hipérbole de Heisenberg que se extralimitó con aquellas declaraciones en las que lo inviolucraba sin su consentimiento,  Pauli envió a Gamow y otros colegas una simple hija de papel en blanco en la que había dibujado una caja vacía. Al pie del dibujo puso estas pablabras: “Esto es para demostrar al mundo que yo puedo pintar con Tiziano. Sólo faltan algunos detalles técnicos.”

Los críticos del concepto de supercuerdas señalaron que las afirmaciones sobre sus posibilidades se basaban casi enteramente en su belleza interna. La teoría aún  no había repetido siquiera los logros del Modelo Estándar, ni había hecho una sola predicción que pudiera someterse a prueba mediante el experimento. La Supersimetría ordenaba que el Universo debería estar repleto de familias de partículas nuevas, entre ellas los selectrones (equivalente al electrón supersimétrico) o el fotino (equivalente al fotón).

Lo cierto es que, nada de lo predicho ha podido ser comprobado “todavía” pero, sin embargo, la belleza que conlleva la teoría de cuerdas es tal que nos induce a creer en ella y, sólo podemos pensar que no tenemos los medios necesarios para comprobar sus predicciones, con razón nos dice E. Witten que se trata de una teoría fuera de nuestro tiempo, las supercuerdas pertenecen al futuro y aparecieron antes por Azar.

Y, a todo esto, ¿Dónde están esas otras dimensiones?

¿Compactadas en el límite de Planck?

Emilio Silvera Vázquez

Unidades Adimensionales

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

George Johnstone Stoney - Wikipedia

 

George Johnstone Stoney (º825-1911) nació el 15 de febrero del año 1826 en Londres. Es un físico y matemático irlandés. Estudió la estructura de la materia, y se dedicó a realizar una primera evaluación del número de Avogadro. En 1874 estableció la hipótesis según la cual la electricidad era creada por unos corpúsculos elementales que llamó electrones, cuya carga intentó calcular.

 

George Johnstone Stoney - Wikipedia, la enciclopedia libreHistorias del electrón; Stoney. | A hombros de gigantes. Ciencia y  tecnología

Su trabajo científico más importante fue el cálculo de la magnitud del «átomo de electricidad». En 1891 propuso el término electrón para describir la unidad fundamental de carga eléctrica, el electrón mismo fue descubierto por JJ Thomson en 1897.

En 1891, Stoney sugirió un nombre para la unidad fundamental de electricidad, fuese o no una partícula. Sugirió el nombre de electrón (nombre griego del ámbar, resina fósil que adquiere una carga eléctrica negativa al ser frotada con un paño), al analizar fenómenos electrolíticos y que se refería a las unidades de electricidad que un átomo perdía al transformarse en un ión. Stoney identificó las unidades naturales de las cantidades físicas.

 

Thompson y el electrón: “el corpúsculo” | Instituto Nacional ...

En 1897 el físico británico Joseph John Thomson descubrió el electrón, cuya existencia había predicho ya en 1891 su compatriota George Johnstone Stoney.

Stoney falleció el 5 de julio del año 1911.

Sus fórmulas fueron:

 

George Johnstone Stoney - EcuRedUnidades Adimensionales : Blog de Emilio Silvera V.

Stoney, podemos decir con seguridad, fue el primer que señaló el camino para encontrar lo que más tarde conoceríamos como constantes fundamentales, esos parámetros de la física que son invariantes, aunque su entorno se transforme, ellas, las constantes, continúan inalterables, como sucede, por ejemplo, con la velocidad de la luz c, que sea medida en la manera que sea, esté en reposo o esté en movimiento quien la mide o la fuente de donde parte, su velocidad será siempre la misma, 299.792.458 m/s. Algo análogo ocurre con la Gravedad, G, que en todas partes mide el mismo parámetro o valor: G = 6,67259 × 10-11 m3 s-2 Kg-1. Es la fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de la masa de los cuerpos y de la distancia entre ellos; la fuerza gravitacional disminuye con el cuadrado de la distancia de acuerdo a la ley de la inversa del cuadrado.

 

Interesting Facts - University of Galway

 

 

Profesor de filosofía natural (así llamaban antes a la Física) en el Queen’s Collegue Galway en 1860, tras su retiro se trasladó a Hornsey, al norte de Londres, y continuó publicando un flujo de artículos en la revista científica de la Royal Dublín Society, siendo difícil encontrar alguna cuestión sobre la que no haya un artículo firmado por él.

 

Photos

 Stoney recibió el encargo de hacer una exposición científica del tema que el mismo eligiera para algún fenómeno físico que él mismo eligiera para el programa de la reunión de Belfast de la Asociación Británica. Pensando en que tema elegir, se dio cuenta de que existían medidas y patrones e incluso explicaciones diferentes para unidades que median cosas distancias o fómeno: Se preguntaba la manera de cómo definirlos mejor y como interrelacionarlos. Vio una oportunidad para tratar de simplificar esta vasta confusión de patrones humanos de medida de una manera tal que diese más peso a su hipótesis del electrón.

 

En tal situación, Stoney centró su trabajo en unidades naturales que transcienden los patrones humanos, así que trabajó en la unidad de carga electrónica (según su concepto), inspirado en los trabajos de Faraday como hemos dicho en otras ocasiones.

En su charla de la Reunión de Belfast, Stoney se refirió al electrón como el “electrino” como hemos comentado antes. También, como unidades naturales escogió G y C que responde, como se ha explicado, a la Gravedad Universal y la velocidad de la luz en el vacío.

Leer más

¡La Flecha del Tiempo! Camina hacia el futuro incierto

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y... ¿nosotros?    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

File:NGC 6302 HST new.jpg

http://francisthemulenews.files.wordpress.com/2010/08/dibujo20100822_hoag_object_a1515_2146_hubble_space_telescope1.png

¿Cuál será la última criatura viva sobre la Tierra?

Dentro de algunos miles de millones de años, el Sol se convertirá en una gigante roja

La Tierra que tiene un destino anunciado, toda vez que sabemos que un día lejano en el futuro nuestro Sol se convertirá en una gigante roja primero y en una enana blanca después y, en el proceso, calcinará nuestro planeta. Claro que para que eso llegue, parece que faltan algunos miles de millones de años.

 

Colisión Andrómeda - Vía Láctea

 

Será todo un espectáculo el ver a las dos galaxias más grandes del grupo local fusionarse en una gigante

Por otra parte, también tenemos sobre nosotros, la amenaza de la Galaxia Andrómeda que se nos acerca a una velocidad escalofriante que, también, en unos pocos miles de millones de años colisionará con la Vía Láctea y, ¿Quién sabe? como sufrirá nuestro planeta tal fusión de galaxias. Claro que, por otra parte, hay estudios que nos dicen que dentro de 1.700 millones de años, la Tierra saldrá de la Zona Habitable del Sol y, entonces… Por otra parte, no debemos descartar la caída en nuestro planeta de un gran meteorito. Como veréis la situación no es precisamente para aburrirse.

 

NUESTRO SOL COMO GIGANTE ROJA ** Si te has preguntado como se verá el Sol  cuando se hinche y evapore la Tierra al convertirse en una Gigante roja,  pues esta imagenEl Sol : estrella gigante roja. Enana blanca. Nebulosa planetaria. ¿Se  acabará el Sistema Solar?

 

La atmósfera se disipará y los océanos se evaporarán

 

Lo que le pueda ocurrir a nuestra civilización, además de estar supeditada al destino de nuestro planeta, de nuestro Sol y de nuestro Sistema Solar y la Galaxia, en parte,  también está en manos de los propios individuos que la forman y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual de ese parcial “libre albedrío” del que podemos disponer. Nuestro planeta dispone de condiciones especiales que hizo posible el surgir de las distintas Civilizaciones que lo han habitado desde tiempos inmemoriales.

 

 

Muchos son los planetas que, por una u otra razón, no reúnen esas condiciones y, algunos, están en las cercanías de su estrella haciendo imposible que en ellos, pueda surgir la vida. Bueno, al menos las formas de vida que aquí conocemos. ¿Será como el de arriba nuestro mundo, cuando el Sol se convierta en una gigante roja?. ¿Habremos sido capaces de escapar hacia otros mundos, antes de que eso pase?

 

Estimados visitantes : Blog de Emilio Silvera V.El Universo se expande, la Mente también : Blog de Emilio Silvera V.

 

El Tiempo es como una escalera que, a medida que la subimos, sus peldaños se va destruyendo a nuestras espaldas. Nunca podremos regresar al pasado. La flecha del tiempo, sólo sabe correr hacia el futuro incierto. El Universo sólo marcha en una dirección: ¡El Futuro!Y, como el sabio nos dijo: “Todo estado presente de una sustancia simple es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro.” Nos dice que lo que pasó ayer es lo que tenemos hoy, y, lo que hoy pase será determinante para el mañana.

Estimados visitantes : Blog de Emilio Silvera V.

 

Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser si… Lo que la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero también es cierto que son más numerosas las que no sabemos, y, debemos aprovechar al máximo lo poco que sabemos para determinar, dentro de lo posible, el devenir del mundo, de ese futuro incierto que la Humanidad desconoce.

 

Cuando el futuro es incierto: ¿Cómo pensar que todo estará bien si no tengo  el control?54.800+ Futuro Incierto Fotografías de stock, fotos e imágenes libres de  derechos - iStock

Nunca podremos saber lo que será mañana

Por mucho que sondeemos en nuestras mentes, nunca podremos saber lo que mañana pasará, el futuro no existe, es algo que está por llegar y, aunque podemos formular teorías de lo que será…, nunca tendremos la capacidad de predecir el mañana. Hasta donde podemos saber, la Naturaleza pueda cambiar, de un momento a otro, el futuro de nuestro mundo y, como consecuencia el nuestro también. ¿Quién puede predecir que antes de que finalice esta década,  no caerá un meteorito sobre nosotros?

 

Retrospectiva sobre "El extraño mundo de Jack" | Rock y Arte - Divulgación  Cultural

                                       Será por imaginar

Lo que tenga que pasar…, ¡pasará! Y ese destino está escrito por la propia Naturaleza que nosotros, no conocemos. Cuandose formó el Universo, quedaron escritas las leyes que lo rigen y las fuerzas que lo gobiernan, su dinámica, el ritmo al que transcurre el tiempo y crece el espacio, y todo ello, sometido a principios y energías que, en la mayoría de los casos se escapan a nuestro actual conocimiento.

 

Resultado de imagen de El UNiverso se expande y las galaxias se alejan - Imagen Gips

 

Las galaxias se alejan las unas de las otras de manera que al final, estaremos sólos y el frío será el principal factor para que la vida, no pueda estar presente en un Universo que, según todos los indicios, será asolado por una congelación general, el cero absoluto de los -273 ºC impedirá que los átomos tengan actividad y, cuando eso ocurra… ¿Podremos solucionarlo de alguna manera… ? Bueno, al menos tengamos la esperanza de que podamos, si existen, huir a otros universos.

 

http://4.bp.blogspot.com/_Fu_Yym_Znbg/TTx0v6fodHI/AAAAAAAAAHY/3HiSooefiN0/s1600/COSMOS.jpg

        Nuca podremos tener la Galaxia en nuestras manos

Como he dicho tantas veces, creo firmemente que, de alguna manera, nuestras mentes, están conectadas con el Cosmos del que formamos parte. Estamos aquí y nos parece de lo más natural, nunca nos paramos a pensar en cómo fue eso posible, en cómo surgió aquella “chispa” que encendió la lumbre para la llegada de aquella primera célula replicante que, a partir de la materia “inerte”, evolucionada, hizo posible el salto descomunal hacia seres conscientes.  ¿cómo fue posible tal maravilla? Sabemos que pensar que el material del que estamos hecho (Nitrógeno, Carbono, etc.), se fabricó en las estrellas a partir del elemento más simple, el Hidrógeno que, evolucionado a materiales más complejos llegaron hasta nuestra región en el Espacio en forma de Nebulosa después de una explosión supernova y, con el tiempo, se formó el Sistema Solar primitivo para constituirse, en una pequeña parte en el Planeta Tierra en el que, bajo ciertas condiciones atmosféricas, presencia de agua y de radiación cósmica…, y un sin fin de parámetros más, dio lugar al nacimiento de aquella primera célula capaz de reproducirse que evolucionó hasta nosotros.

 

Una nueva técnica mejora el diagnóstico de la epilepsia

 

En tanto que objeto y sistema, el cerebro humano es muy especial: su conectividad, su dinámica, su forma de funcionamiento, su relación con el cuerpo y con el mundo, no se parece a nada que la conciencia conozca. Su carácter “único” hace que el ofrecer una imagen del cerebro se convierta en un reto extraordinario. Aunque todavía estamos lejos de ofrecer una imagen completa del cerebro, si podemos ofrecer retazos y datos parciales de algunos de sus complicados mecanismos. Sin embargo, carecemos de información para generar una teoría satisfactoria de la conciencia.

 

 

Racismo: cómo la ciencia desmontó la teoría de que existen distintas razas  humanas - BBC News Mundo

        Sí, parece que todos somos iguales pero… ¡diferentes!

A lo largo del tiempo, han sido muchas mentes las que han recibido destellos que la llevaron a intuir primero y desvelar después, secretos bien escondidos de la Naturaleza. Y, debemos aprovechar esos destellos que, periódicamente, les llegan a algunos de nosotros para tratar, dentro de lo que se pueda, de preservar a la Humanidad de ese futuro incierto.

 

Imagen relacionada

                                         Llegan ideas luminosas que no podemos retener

Esos destellos que los ojos de las Mentes no ven y que, las conexiones no pueden sujetarlos,  lo mismo que llegan se van hacia el infinito… de un limbo desconocido donde yacen los pensamientos perdidos que, más tarde, algún otro cerebro recuperará y, la Humanidad, dará un nuevo salto en el saber del mundo.

En algún momento breve, ¿quién no ha tenido esa sensación de tener la solución a un problema científico que le preocupa y quisiera resolver?. La sensación de ese saber, de tener esa respuesta deseada, es fugaz, pasa con la misma rapidez que llegó. Nos deja inquietos y decepcionados, estaba a nuestro alcance y no se dejó atrapar. A mí me ocurre con cierta frecuencia con distintos temas que me rondan por la cabeza. Sin embargo, esa luz fugaz del saber aparece y se va sin dejar un rastro en mi mente que me permita, a partir de esa simple huella, llegar al fondo de la cuestión origen del fenómeno.

 

Millones de conexiones transportan los pensamientos que más tarde, son convertidos en realidad. El cerebro se cuentaentre los objetos más complicados del universo y es sin duda una de las estructuras más notables que haya producido la evolución. Hace mucho tiempo, cuando aún no se conocía la neurociencia, se sabía ya que el cerebro es necesario para la percepción, los sentimientos y los pensamientos.

En tanto que es objeto y sistema, el cerebro humano es muy especial: su conectividad, su dinámica, su forma de funcionamiento, su relación con el cuerpo y con el mundo… no se parece a nada que la conciencia conozca. Su carácter único hace que el ofrecer una imagen del cerebro se convierta en un reto extraordinario. Aunque todavía estamos lejos de ofrecer una imagen completa del cerebro, sí podemos ofrecer retazos y datos parciales de algunos de sus complicados mecanismos. Sin embargo, carecemos de información para generar una teoría satisfactoria de la conciencia. Estamos tratando de algo que pesa poco más de 1 kg –aproximadamente- y que contiene unos cien mil millones de células nerviosas o neuronas, generando continuamente emociones, ideas y pensamientos… y, también sentimientos que no siempre podemos explicar.  ¡Increíble! ¡grandioso! Pero, ¿sabemos encausarlo? Bueno, en eso estamos.

 

 Resultado de imagen de ¿El cerebro? Un revoltijo de conexiones sin sin fin

     No será fácil llegar a comprender lo que aquí vemos

Los circuitos y conexiones cerebrales generan números que sobrepasan el número de estrellas en las galaxias. Estamos tratando de algo que pesa poco más de 1 Kg – aproximadamente – y que contiene unos cien mil millones de células nerviosas o neuronas, generando continuamente emociones y pensamientos.

La consecuencia más importante de todo esto es que se ha abierto la puerta a un alentador y enorme (aunque complejo) paisaje biológico nuevo.Su exploración necesitará de pensamientos creativos y nuevas ideas. Hace 40 años, todo esto era un sueño, nadie se atrevía a pensar siquiera con que este logro sería posible algún día ¡secuenciar 3000 millones de grafos de A D N! Sin embargo, aquí viene la contradicción o paradoja, el cerebro ¡que aún no conocemos!, lo ha hecho posible. La genómica es una auténtica promesa para nuestra salud, pero necesitaremos algunos saltos cuánticos en la velocidad y la eficacia de la secuenciación del A D N.

 

Sí, finalmente veremos que todo, sin excepción, está relacionado. Algo de razón yace en el “Efecto Mariposa”. al final del recorrido podemos ser conscientes de que existen hilos invisibles que lo relacionan todo.

Está claro sin embargo que, dadas todas las dimensiones del ser humano, que incluyen aspectos tanto materiales como espirituales, será necesario mucho, mucho, mucho tiempo, para llegar a conocer por completo todos los aspectos complejos encerrados en nuestro interior que, si no me equivoco viene a ser como un extracto del Universo mismo, de la Naturaleza que, en nosotros, se elevó a su máxima expresión. ¿De qué estamos hechos? ¡De polvo de estrellas!

 

 Resultado de imagen de Somos polvo de estrellas

                 Si, en el polvo de las estrellas se esconde el secreto de la Vida

El adelanto que se producirá en las próximas décadas será muy visible en el aspecto biológico, la vida media de las personas dará un gran salto y, cumplir un siglo, será entonces lo cotidiano. La Astronomía estará tan adelantada que, ni los agujeros negros, ni “la materia oscura”, serán problemas por resolver. Se habrá llegado más lejos que nunca y, nuestras bases marcianas serán el lugar de salida para misiones más lejanas y ambiciosas. La Física, que habrá hecho posible muchas de esas cuestiones, tendrá Modelos que nos dirán muchas de las cosas que ahora desconocemos, sabremos, por fín, lo que es la materia y, también por fín, habremos podido profundizar más en la compleja y extraña mecánica cuántica.

 

Resultado de imagen de El matrimonio con su primer hijo

     La felicidad del primer hijo, el fruto de un gran Amor, lo que nos hace “inmortales”

Salvando las distancias, esta misma escena se podría estar dando ahora mismo, en miles y cientos de miles de mundos que, como el nuestro, haya podido estar situado en la zona habitable de una estrella que le proporcione los elementos necesarios para la vida, sobre todo, su luz y su calor.

Debemos procurar adquirir un conocimiento más completo de lo que realmente somos, tal conocimiento nos proporcionaría luz sobre lo que convirtió en únicos a los seres humanos (al menos en éste planeta), y, al decir únicos me refiero a la supremacía que sobre los demás seres vivos del planeta tenemos y que, nos da ventajas y responsabilidades. Al decir únicos me refiero al hecho diferenciador de la conciencia y, desde luego, lo circunscribo al planeta Tierra, ya que, referido a todo el Universo…,  seguro que somos menos “únicos” de lo que aquí nos pueda parecer.
¡Tener mente abierta! Podrá evitar posibles sorpresas.

Emilio Silvera Vázquez

Todo evoluciona, nada permanece

Autor por Emilio Silvera    ~    Archivo Clasificado en a otros mundos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La vida en los exoplanetas vecinos es posible pese a la alta radiación. La radiación que había en la Tierra hace 3.900 millones de años era superior a la que hay ahora en mundos vecinos y, sin embargo, no fue un obstáculo para que se desarrollaran organismos. Como se ha podido comprobar por los fósiles hallados en las rocas más antiguas de la Tierra.

 

 

Con más 5.000 mundos descubiertos fuera del Sistema Solar -5.944 exactamente, según la NASA– los astrofísicos se centran ahora en determinar cuáles son más interesantes para estudiar sus características en general y, en particular, determinar cuáles podrían albergar algún tipo de vida o llegar a tenerla.

 

Próxima Centauri b - Wikipedia, la enciclopedia libre

Próxima Centauri b, Próxima b o Alfa Centauri Cb​​ es un exoplaneta que orbita dentro de la zona habitable de la estrella enana roja Próxima Centauri, la estrella más cercana al Sol. Está situado aproximadamente a 4,23 años luz (1,3 pársecs o 4,014 × 1013 km) de la Tierra en la constelación de Centaurus.

El foco está puesto especialmente en los exoplanetas más próximos a la Tierra. El hallazgo en 2016 de un mundo (llamado Proxima-b) en la estrella más cercana, Próxima Centauri, fue recibido con entusiasmo por la comunidad científica pues se encuentra a sólo 4,2 años luz de nosotros y la distancia que le separa de su astro (lo que llaman la zona habitable) le permitiría, teóricamente, albergar agua líquida.

Un entusiasmo que se enfrió cuando se comprobó que era bombardeado por dosis muy altas de radiación: Próxima-b recibe 250 veces más radiación X de Próxima Centauri que la Tierra del Sol , y a su superficie llegan dosis de radiación ultravioleta que serían mortales actualmente en la Tierra. ¿Qué tipo de organismos podrían sobrevivir en un ambiente tan hostil?

 

Una nueva investigación defiende, sin embargo, que el hecho de que un planeta esté sometido a muy altos niveles de radiación procedentes de su astro no es un obstáculo para que la vida llegue a desarrollarse.

El estudio, publicado en la revista Monthly Notices of the Royal Astronomical Society, se ha centrado en analizar las condiciones ambientales que se cree que hay en los cuatro planetas rocosos más cercanos a la Tierra: el mencionado Próxima-b, Trappist-1e, Ross-128b y LHS-1140b (abajo por el mismo orden).

 

Próxima Centauri b - Wikipedia, la enciclopedia libreTRAPPIST-1 e - NASA ScienceRoss 128 b, un mundo potencialmente habitable a 'sólo' once años luz -  INVDESLHS 1140b - Wikipedia, la enciclopedia libre

 

«Estos cuatro son los planetas más cercanos que podrían albergar vida fuera de nuestro sistema solar. No sabemos si la hay, pero nuestros modelos muestran que la radiación ultravioleta en su superficie por la que muchos estudios científicos han mostrado preocupación no es un factor que limite su existencia», explica a este diario Lisa Kaltenegger, autora del estudio junto a Jack O’Malley-James, ambos de la Universidad de Cornell (EEUU).

 

Esos cuatro mundos orbitan un tipo de estrella denominada enana roja que, a diferencia de nuestro sol, emite frecuentemente llamaradas de radiación que bañan a sus planetas con radiación ultravioleta. Estas pequeñas estrellas -llamadas también de tipo M- son las más abundantes en nuestra galaxia, pues se cree que representan el 75% de todos los astros.

Aunque se desconoce cómo esta radiación impacta en la superficie de estos planetas en concreto, se sabe que esos niveles pueden hacer que moléculas biológicas como los ácidos nucleicos muten o se apaguen.

 

Origen del Agua en la Tierra | Biblioteca de Investigaciones

 

Según argumentan Lisa Kaltenegger y JackO’Malley-James, toda la vida que existe actualmente en la Tierra evolucionó a partir de criaturas que tuvieron que hacer frente a niveles de radiación ultravioleta mayores que los que hay ahora en Próxima-b y en otros exoplanetas cercanos. Hace 4.000 millones de años, nuestro planeta era un mundo caótico y bañado por la radiación y pese a ello, la vida emergió. Lo mismo podría estar ocurriendo ahora en esos planetas vecinos, donde según los resultados de sus modelos, el nivel actual de radiación es inferior al que había en la Tierra hace 3.900 millones de años.

Para llegar a esa conclusión, hicieron modelos con distintas composiciones de la atmósfera, algunas similares a las de la Tierra actual y otras con atmósferas muy delgadas que no filtran bien la radiación ultravioleta o que no protegen frente al ozono.

 

La también directora del Instituto Carl Sagan de Cornell asegura que hasta ahora, sus colegas «se han mostrado emocionados con estos resultados porque a todos nos encantaría que los planetas más cercanos fueran habitables».

Kaltenegger es también coautora de la lista en la que se han identificado las 1.822 estrellas más interesantes para que sean escrutadas por el satélite de la NASA Tess -lanzado hace un año- en busca de planetas con tamaños parecidos al nuestro. De esos 1.822 astros, asegura que tiene 408 favoritas.

«Todos estos modelos, incluidos otros que predicen que no puede haber vida, contienen muchas hipótesis. Éstas son necesarias porque sabemos muy poco de los exoplanetas, aparte de que están ahí», admite Guillem Anglada-Escudé, astrofísico de la Queen Mary University, en Londres y descubridor de Proxima-b».

Según explica este especialista en mundos fuera del Sistema Solar, en la actualidad los astrónomos están inmersos «en una fase de exploración teórica para poder formular predicciones observacionales y valorar qué experimentos van a ser realmente útiles para distinguir escenarios (planetas con oxígeno pero sin vida; planetas con atmósferas de CO2 como la Tierra en sus primeras etapas, mundos acuáticos, etc.).

 

 

Sobre la investigación liderada por Kaltenegger, con la que no tiene vinculación, considera muy interesante la conclusión de «que pese a que la Tierra tuvo un entorno tan intenso en rayos ultravioleta, aquí estamos».

«Si hiciéramos modelos parecidos sobre habitabilidad de la Tierra, más de un teórico nos habría extinguido a todos una docena de veces empezando por los UV, pasando por el impacto gigante para la formación de la Luna, o el hecho de que la cantidad de agua en nuestro planeta es en realidad muy pequeña comparada con la masa total», apunta el investigador. «Dentro de pocos años vamos a empezar a tener medidas sobre los objetos y ahí empezará la diversión».

¿UNA ‘SUPERTIERRA’ EN NUESTRA ESTRELLA VECINA?

 

Resultado de imagen de Una supertierra

 

El anuncio se hizo con gran cautela durante el encuentro organizado la pasada semana por Breakthrough, la iniciativa para buscar vida fuera de la Tierra financiada por el multimillonario Yuri Milner: los científicos creen haber localizado un segundo planeta planeta en Proxima Centauri, la estrella más cercana a nosotros. «Es sólo un candidato, es importante subrayarlo», recalcaron los astrónomos Mario Damasso, del Observatorio de Astrofísica de Turín, y Fabio Del Sordo, de la Universidad de Creta, durante la presentación. Creen que Proxima c, como lo han bautizado provisionalmente hasta que confirmen que es un planeta, es una ‘supertierra’, con una masa seis veces mayor que la de la Tierra.

 

Proxima Centauri c

Próxima c

Los primeros cálculos realizados han revelado también que está lejos de su estrella, pues tardaría 1.900 días en orbitarla, por lo que creen que sería un mundo inhóspito. Este objeto fue detectado en primer lugar con el instrumento HARPS del Observatorio Europeo Austral (ESO), una herramienta que será utilizada también para confirmar su naturaleza planetaria, junto a otras naves espaciales como Gaia, de la Agencia Espacial Europea (ESA).

 Noticias ESA