Sep
11
¿Qué es el Tiempo?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Todos ellos trataron de explicar lo que el Tiempo es, y, con más o menos acierto, dejaron sus ideas (incompletas), de lo que era el inexorable transcurrir de algo que no comprendían. Ellos lo único que sabían es que, a medida que el “Tiempo” pasaba, las cosas cambiaban y que nada permanecía.
Creo que (como siempre hemos hecho), cuando no comprendemos algo, de inmediato, conjeturamos, teorizamos, inventamos algo que pueda suplir aquello que no sabemos discernir, y, con el Tiempo que está en la Naturaleza, eso es lo que ha pasado. No sabemos comprender lo que es el Tiempo natural, el que nació con el Big Bang, el que vino acompañado de la Entropía, y, para nuestro entendimiento en sociedad, nos hemos inventado un Tiempo ficticio, ese Tiempo del reloj en el que hemos cuantizado en segundos su marcha.
De esa manera, hemos fijado los “tiempos” para levantarnos, trabajar, comer y dormir, celebrar eventos, señalar celebraciones y momentos de manera tal que todos nos entendemos y sabemos en qué momento será celebrado el suceso.
También hemos dividido el Tiempo en Pasado, Presente y Futuro, cuando lo cierto es que solo existe un Tiempo que es el Presente, ese Tiempo en el que estamos confinados, el Pasado es el Tiempo que se fue y el Futuro es el Tiempo que vendrá, en el que nunca podremos estar. Nuestro Tiempo Futuro (que nunca podremos conocer), será el Tiempo de otros . Sin embargo, para ellos… ¡También será Tiempo Presente!
Nunca nadie nos dijo a qué velocidad se mueve realmente el Tiempo, y, con la llegada de Einstein y su Teoría, nos dijo que el Tiempo y su transcurrir es relativo y depende de a qué velocidad podamos viajar y si lo hacemos a la velocidad de c (la de la luz en el vacío), el Tiempo se ralentiza, como también lo haría cerca de una singularidad generadora de una descomunal fuerza de Gravedad.
Todavía me cuesta creer que parámetros ajenos al propio Tiempo determinen su velocidad, y, en ese punto me viene a la memoria la escena de cuando vamos viajando a 120 Km/h, y, los árboles del borde de la carretera “corren” alejándose de nosotros. Bueno, esa es la sensación que percibimos y la realidad es que somos nosotros los que nos alejamos de los árboles. ¿No pasará lo mismo con los viajeros de una nave espacial que viaja a velocidad enorme, y, al moverse más rápido que el propio tiempo, la sensación de los viajeros es que el Tiempo se está frenando?
Lo cierto es que no sabemos lo que el Tiempo.
Emilio Silvera V.
Sep
11
El divagar de la mente
por Emilio Silvera ~
Clasificado en La materia tiene memoria ~
Comments (0)
Los procesos científicos que comentamos en este lugar lugar, los fenómenos del Universo que hemos debatido y, también
, los misterios y secretos que el inmenso Cosmos nos oculta han contribuido, aunque inadvertidamente, a comprometer e involucrar a nuestra especie en la vastedad del universo. La astronomía al destrozar las esferas cristalinas que, según se decía, aislaban la Tierra de los ámbitos etéreos que se hallan por encima de la Luna, nos puso en el universo. La Física cuántica destruyó la metafórica hoja de cristal que supuestamente separaba al observador distante del mundo observado; descubrimos que estamos inevitablemente enredados en aquello que estudiamos.

La Astrofísica, al demostrar que la materia es la misma en todas partes y que en todas partes obedece a las mismas leyes, reveló una unidad cósmica que se extiende la fusión nuclear en las estrellas hasta
la química de la vida que allí se produce a lo largo de todo el Universo. La evolución darwiniana, al destacar que todas las especies de la vida terrestre están relacionadas y que todas surgieron de la materia ordinaria, puso de manifiesto que no hay ninguna muralla que nos separe de las otras criaturas de la Tierra, o del planeta que nos dio la vida: que estamos hechos del mismo material del que están hechos los mundos.
La convicción de que, en cierto sentido, formamos una unidad con el universo, por supuesto, ha sido afirmada antes muchas veces, en otras esferas de pensamiento. Hahvé creó a Adán del polvo; el griego Heráclito escribió que “todas las cosas son una sola”; Lao-tse, en China, describió al hombre y la naturaleza como
gobernados por un solo principio (“lo llamó el Tao”); y la creencia en la unidad de la Humanidad con el cosmos estaba difundida los pueblos anteriores a la escritura, como lo puso de relieve el jefe indio suquamish Seattle, quien declaró en su lecho de muerte que, “todas las cosas están conectadas, como la sangre que une a una misma familia. Todo es como una misma familia, os lo digo”.

Pero
hay algo sorprendente en el hecho de que la misma concepción general ha surgido de ciencias que se enorgullecen de su lúcida búsqueda de hechos objetivos, empíricos. los mapas de cromosomas y los registros fósiles que representan las interconexiones de todos los seres vivos de la Tierra, hasta la semejanza de las proporciones químicas cósmicas con las de las especies vivas terrestres, nos muestran que realmente formamos parte
del universo en su conjunto.

La verificación científica de nuestra participación en las acciones del cosmos tiene
, luego, muchas implicaciones. Una de ellas es, si la vida inteligente ha evolucionado en este planeta, también puede haberlo hecho en otras partes. La Teoría de la evolución de Darwin, aunque no explica el antiguo enigma de por qué existe la vida, deja claro que la vida puede surgir de la materia ordinaria y evolucionar hasta una forma
“inteligente”, al menos en un planeta como la Tierra que gira alrededor de una estrella como el Sol (más de diez mil millones en la Vía Láctea solamente) y, presumiblemente, más que unos pocos planetas semejantes a la Tierra, podemos especular que no somos la única especie que ha estudiado el universo y se ha preguntado sobre su papel en él.

Nuestra comprensión de la relación entre
la Mente el el Universo puede depender de que podamos tomar con otra especie inteligente con la cual compararnos. Raramente la ciencia ha obtenido buenos resultados al estudiar fenómenos de los que sólo tenía un ejemplo: Las leyes de Newton y Einstein habrían sido mucho más difíciles -quizá imposibles- de fortmular si sólo hubiese habido un planeta para someterlas a prueba, y a menudo se dice que el problema de la cosmología es que sólo tenemos un universo para examinar. (El descubrimiento de la evolucoión cósmica reduce un poco esta
dificultad al ofrecer a nuestra consideración el muy diferente del universo en los primeros momentos de la evolución cósmica.) La cuestión de la vida extraterrestre, pues, va más allá de problemas como
el de si estamos solos en el universo, o si podemos esperar tener compañía cósmica o si debemos temer invasiones exteriores; también es un modo de examinarnos a nosotros mismos y nuestra relación con el resto de la Naturaleza.

Aunque mucho de esto es, el interés reciente por la vida extraterrestre puede
considerarse como un resultasdo del último vuelco en la fortuna del materialismo, la doctrina filosófica según la cual es posible explicar los sucesos exclusivamente en términos de interacciones materiales, sin recurrir a conceptos insustanciales tales como el espíritu. El darwinismo engendró una nueva actitud de respeto hacia las potencialidades de la materia ordinaria: un montón de barro en un charco de agua de lluvia empieza a parecer mágico, si se piensa que sus iguales de antaño lograron elevarse hasta dar origen a todo el conjunto de la vida terrestre, inclusive la del individuo que contempla el barro. Una persona reflexiva, recordando que su ascendencia se remonta, a través de los mamíferos, hasta los peces, los aminoácidos, los azúcares de la materia prebiótica, no puede estar de acuerdo con Martín Lutero en que la Tierra es “sucia” y “nociva”, o aceptar el veredicto de la Christia Sciencie de que “no hay vida, verdad, sustancia ni inteligencia en la materia”.

¿La Vida? ¡Podría estar presente en tantos lugares! El Universo es inmenso, está lleno de galaxias de estrellas y de mundos. Pensar en la remota posibilidad de que la vida, solamente apareciera aquí, en la Tierra, es ir contra la lógica y despreciar las leyes de la Naturaleza que, en todas partes, actúa de la misma manera.
Históricamente, los materialistas se han inclinado a pensar que hay vida en otros mundos. El atomista Metrodoro escribió en el siglo IV a. de C. que “considerar la Tierra el único mundo poblado en el espacio infinito es tan absurdo como afirmar que en todo un campo sembrado de mijo sólo un grano crecerá”. Cinco siglos más tarde, el epicuréo Lucrecio sostuvo que “hay infinitos mundos iguales y diferentes de este
mundo nuestro”. La Iglesia católica romana, convencida de que los seres humanos son esencialmente espíritus inmateriales, se sintió amenazada por el punto de vista materialista: cuando Giordiano Bruno, el decano renacentista del misticismo popular, afirmaba que la materia “es en verdad toda la naturaleza y la madre de todo lo vivo, y declaró que Dios “es glorificado, no en uno, sino en incontables soles; no es una sola Tierra, sino en mil, que digo, en infinidad de mundos”, fue atado a una estaca de hierro y quemado vivo, el 19 de febrero de 1600, en la Piazza Campo dei Fiori de Roma.
Sin embargo, cuando la ciencia creció también lo hizo el materialismo, y con él la creencia de una pluralidad de mundos. Podríamos seguir por este
camino y filosofar sobre lo que fue, lo que es y, lo que probablemente será pero, el tiempo se me acaba y, luego, no quisiera cerrar este sin dejar una falsa sensación.

Es cuerioso como los humanos tendemos a simbolizarlo todo, sabemos del ADN y de cómo estamos conformados, tratamos de indagar sobre la conciencia y los mecanismos de la Mente, ese lugar inmaterial que genera el cerebro y del que surgen las ideas y los pensamientos, allí está todo lo somos y también, en ese misterioso lugar, se crean los sentimientos que crecen y crecen. Sin embargo, tendemos a idealizar los sentimientos con el corazón. ¿Por qué será?
![]()
Algunas formas de materia evolucionada, guardan en sus recuerdos esa memoria de la que hablamos
Sí, la materia tiene
memoria y deja sus huellas por todas partes… ¡Hay que saber buscar! En el lugar más inesperado la materia habrá evolucionado hasta el protoplasma vivo que nos llevará hasta la vida, ese estado en el que la materia puede llegar a generar pensamientos, y, hasta sentimientos.
La Ciencia está muy bien, el materialismo viene a poner nuestros pies en el suelo y hacer
que no fijemos en las cosas tal como son o, al menos, tal como creemos que son. Sin embargo, una cuestión me tiene desconcertado: ¿Cómo podemos sentir en la que sentimos? ¿De donde vienen esos sentimientos? ¿Será quizá una muestra suprema de la evolución del mundo material? ¿Tendrá memoria la materia?
Por si acaso, yo dejaría aquí un gran signo de interrogación, ya que, hemos alcanzado una pequeña cota de la altísima montaña que nos hemos propuesta escalar, y, luego, no sabemos lo que nos podremos encontrar cuando
lleguemos a cotas más elevadas, ya que, pensar en llegar al final…no parece nada fácil.
Algunos creen que lo saben todo y otros creen que no saben nada, los primeros dejaran de buscar, los segundos seguirán el camino tratando de saciar la curiosidad que nunca estará satisfecha.
Emilio Silvera V.
Sep
11
Abundancia Cósmica de los Elementos
por Emilio Silvera ~
Clasificado en Los Elementos ~
Comments (0)

Se encuentran elementos esenciales para la vida alrededor de una estrella joven. Usando el radiotelescopio ALMA (Atacama Large Millimeter/submillimeter Array), un grupo de astrónomos detectó moléculas de azúcar presentes en el gas que rodea a una estrella joven, similar al sol. Esta es la primera vez que se ha descubierto azúcar en el espacio alrededor de una estrella de estas características. Tal hallazgo demuestra que los elementos esenciales para la vida se encuentran en el momento y lugar adecuados para poder existir en los planetas que se forman alrededor de la estrella.
La abundancia, distribución y comportamiento de los elementos químicos en el Cosmos es uno de los tópicos clásicos de la astrofísica y la cosmoquímica. En geoquímica es también importante realizar este estudio ya que:

– Una de las principales finalidades de la Geoquímica es establecer las leyes que rigen el comportamiento, distribución, proporciones relativas y relaciones entre los distintos elementos químicos.
– Los datos de abundancias de elementos e isótopos en los distintos tipos de estrellas nos van a servir para establecer hipótesis del origen de los elementos.
– Los datos de composición del Sol y las estrellas nos permiten establecer hipótesis sobre el origen y evolución de las estrellas. Cualquier hipótesis que explique el origen del Sistema Solar debe explicar también el origen de la Tierra, como planeta de dicho Sistema Solar.
– Las distintas capas de la Tierra presentan abundancias diferentes de elementos. El conocer la abundancia cósmica nos permite tener un punto de referencia común. Así, sabiendo cuales son las concentraciones normales de los elementos en el cosmos las diferencias con las abundancia en la Tierra nos pueden proporcionar hipótesis de los procesos geoquímicos que actuaron sobre la Tierra originando migraciones y acumulaciones de los distintos elementos, que modificaron sus proporciones y abundancias respecto al Cosmos.

La tabla periódica de los elementos es un arreglo sumamente ingenioso que permite presentar de manera lógica y estructurada las más simples sustancias de las que se compone todo: absolutamente todo lo que conocemos. Todos los elementos que conocemos, e incluso con lo que todavía no nos hemos encontrado, tienen un lugar preciso en ella, cuya posición nos permite conocer muchas de sus características. Ese grupo de casi cien ingredientes permite crear cualquier cosa. Pero no siempre fue así.

Me gusta la Gran Nebulosa de Orión. Hay ahí tantas cosas, nos cuenta tantas historias…
FUENTES DE DATOS DE ABUNDANCIAS COSMICAS DE LOS ELEMENTOS. Estos datos deben obtenerse a partir del estudio de la materia cósmica. La materia cósmica comprende: Gas interestelar, de muy baja densidad (10-24 g/cm3) y Nébulas gaseosas o nubes de gas interestelar y polvo.
Las nébulas gaseosas se producen cuando una porción del medio interestelar está sujeta a radiación por una estrella brillante y muy caliente, hasta tal punto se ioniza que se vuelve fluorescente y emite un espectro de línea brillante (que se estudian por métodos espectroscopios). Por ejemplo las nébulas de “Orión” y “Trífidos”. Las ventajas de estas nébulas difusas para el estudio de las abundancias son:
![[Espada+de+Orion.jpg]](http://4.bp.blogspot.com/_hfB00NeNnmw/Sdv45L0CS1I/AAAAAAAAAms/31O1WKtM1Nc/s1600/Espada%2Bde%2BOrion.jpg)
‑ Su uniformidad de composición.
‑ El que todas sus partes sean accesibles a la observación, al contrario de lo que ocurre en las estrellas.
También tiene desventajas:
‑ Solo se observan las líneas de los elementos más abundantes.
‑ Cada elemento se observa solo en uno o pocos estadios de ionización aunque puede existir en muchos.
‑ La mayoría de las nébulas exhiben una estructura filamentosa o estratiforme es decir que ni la D ni la T son uniformes de un punto a otro. A partir del medio interestelar (gas interestelar y nébulas gaseosas) se están formando continuamente nuevas estrellas.

Las estrellas se forman a partir del gas y el polvo de las Nebulosas
En las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético big bang donde se formaron los elementos más simples: Hidrógeno, Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos simples en el big bang y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas.

Sir Fred Hoyle
No me parece justo hablar de los elementos sin mencionar a Fred Hoyle y su inmensa aportación al conocimiento de cómo se producían en las estrellas. Él era temible y sus críticas de la teoría del big bang hizo época por su mordacidad. Hoyle condenó la teoría por considerarla epistemológicamente estéril, ya que parecía poner una limitación temporal inviolable a la indagación científica: el big bang era una muralla de fuego, más allá de la cual la ciencia de la çepoca no sabía como investigar. Él no concebía y juzgó “sumamente objetable que las leyes de la física nos condujeran a una situación en la que se nos prohíbe calcular que ocurrió en cierto momento del tiermpo”. En aquel momento, no estaba falto de razón.
Pero no es ese el motivo de mencionarlo aquí, Hoyle tenía un dominio de la física nuclear nunca superado entre los astrónomos de su generación, había empezado a trabajar en la cuestión de las reacciones de la fusión estelar a mediado de los cuarenta. Pero había publicado poco, debido a una batalla continua con los “arbitros”, colegas anónimos que leían los artículos y los examinaban para establecer su exactitud, cuya hostilidad a las ideas más innovadoras de Hoyle hizo que éste dejara de presentar sus trabajos a los periódicos. Hoyle tuvo que pagar un precio por su rebeldía, cuando, en 1951, mientras él, permanecía obstinadamente entre bastidores, Ernest Opik y Edwin Sepeter hallaron la síntesis en las estrellas de átomos desde el Berilio hasta el Carbono. Lamentando la oportunidad perdida, Hoyle rompió entonces su silencio y en un artículo de 1954 demostró como las estrellas gigantes rojas podían corvertir Carbono en Oxígeno 16.

El Sol, dentro de 5.000 millones de años, será una Gigante roja primero y una enana blanca después
Pero, sigamos con la historia de Hoyle. Quedaba aún el obstáculo insuperable del hierro. El hierro es el más estable de todos los elementos; fusionar núcleos de hierro para formar nucleos de un elemento más pesado consume energía en vez de liberarla; ¿cómo, pues, podían las estrellas efectuar la fusión del hierro y seguir brillando? Hoyle pensó que las supernovas podían realizar la tarea, que el extraordinario calor de una estrella en explosión podía servir para forjar los elementos más pesados que el hierro, si el de una estrella ordinaria no podía. Pero no lo pudo probar.
Luego, en 1956, el tema de la producción estelar de elementos recibió nuevo ímpetu cuando el astrónomo norteamerciano Paul Merril identificó las reveladoras líneas del Tecnecio 99 en los espectros de las estrellas S. El Tecnecio 99 es más pesado que el hierro. También es un elemento inestable, con una vida media de sólo 200.000 años. Si los átomos de Tecnecio que Merril detectó se hubiesen originado hace miles de millones de años en el big bang, se habrían desintegrado desde entonces y quedarían hoy muy pocos de ellos en las estrellas S o en otras cualesquiera. Sin embargo, allí estaban. Evidentemente, las estrellas sabían como construir elementos más allá del hierro, aunque los astrofísicos no lo supiesen.

Estrella muy evolucionada que se transforma en otra cosa
Las estrellas de tecnecio son estrellas cuyo espectro revela la presencia del elemento tecnecio. Las primeras estrellas de este tipo fueron descubiertas en 1952, proporcionando la primera prueba directa de la nucleosíntesis estelar, es decir, la fabricación de elementos más pesados a partir de otros más ligeros en el interior de las estrellas. Como los isótopos más estables de tecnecio tienen una vida media de sólo un millón de años, la única explicación para la presencia de este elemento en el interior de las estrellas es que haya sido creado en un pasado relativamente reciente. Se ha observado tecnecio en algunas estrellas M, estrellas MS, estrellas MC, estrellas S, y estrellas C.

Estimulado por el descubrimiento de Merril, Hoyle reanudó sus investigaciones sobre la nucleosíntesis estelar. Era una tarea que se tomó muy en serio. De niño, mientras se ocultaba en lo alto de una muralla de piedra jugando al escondite, miró hacia lo alto, a las estrellas, y resolvió descubrir qué eran, y el astrofísico adulto nunca olvidó su compromiso juvenil. Cuando visitó el California Institute Of Technology, Hoyle estuvo en compañía de Willy Fowler, un miembro residetente de la facultad con un conocimiento enciclopédico de la física nuclear, y Geoffrey y Margaret Burbidge, un talentoso equipo de marido y mujer que, como Hoyle, eran escépticos ingleses en la relativo al Big Bang.
Hubo un cambio cuando Geoffrey Burbidge, examinando datos a los que recientemente se había eximido de las normas de seguridad de una prueba atómica en el atolón Bikini, observó que la vida media de uno de los elementos radiactivos producidos por la explosión, el californio 254, era de 55 días. Esto sonó familiar: 55 días era justamente el período que tardó en consumirse una supernova que estaba estudiando Walter Baade. El californio es uno de los elementos más pesados; si fuese creado en el intenso calor de estrellas en explosión, entonces, suguramente los elementos situados entr el hierro y el californio -que comprenden, a fin de cuentas, la mayoría de la Tabla Periódica- también podrían formarse allí. Pero ¿cómo?.

Nucleosíntesis estelar
Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio.

Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y hacia el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado hacia afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.
Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la forma de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caído en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.

Supernova que calcina a un planeta cercano. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es: H, He, (Li, Be, B) C, N, O… Fe.
¿Apreciáis la maravilla?

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente. Esos materiales para la vida sólo se pudieron fabricar el las estrellas, en sus hornos nucleares y en las explosiones supernovas al final de sus vidas. Esa era la meta de Hoyle, llegar a comprender el proceso y, a poder demostrarlo.
“El problema de la síntesis de elementos -escribieron- está estrechamente ligado al problema de la evolcuión estelar.” La curva de abundancia cósmica de elementos que mostraba las cantidades relativas de las diversas clases de átomos en el universo a gran escala. Pone ciertos límites a la teoría de cómo se formaron los elementos, y, en ella aparecen por orden creciente:
Como reseñamos antes la lista sería Hidrógeno, Helio, Carbono, Litio, Berilio, Boro, Oxígeno, Neón, Silicio, Azufre, Hierro (damos un salto), Plomo, Torio y Uranio. Las diferencias de abundancias que aparecen en los gráficos de los estudios realizados son grandes -hay, por ejemplo, dos millones de átomos de níquel por cada cuatro átomos de plata y cincuenta de tunsgteno en la Vida Láctea- y por consiguiente la curva e abundancia presenta una serie de picos dentados más accidentados que que la Cordillera de los Andes. Los picos altos corresponden al Hidrógeno y al Helio, los átomos creados en el Big Bang -más del p6 por ciento de la materia visible del universo- y había picos menores pero aún claros para el Carbono, el Oxígeno, el Hierro y el Plomo. La acentuada claridad de la curva ponía límites definidos a toda teoría de la síntesis de elementos en las estrellas. Todo lo que era necesario hacer -aunque dificultoso) era identificar los procesos por los cuales las estrellas habían llegado preferentemente a formar algunos de los elementos en cantidades mucho mayores que otros. Aquí estaba escrita la genealogía de los átomos, como en algún jeroglífico aún no traducido: “La historia de la materia escribió Hoyle, Fwler y los Burbidge_…está oculta en la distribuciíón de la abundancia de elementos”

E Hidrógeno, Helio, Litio.
En las estrellas de la serie principal: Carbono, Nitrógeno, Oxígeno.
En las estrellas moribundas: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc, Plomo, Torio y Uranio.
Como habeis podido comprobar, nada sucede por que sí, todo tiene una explicación satisfactoria de lo que, algunas veces, decimos que son misterios escondidos de la Naturaleza y, sin embargo, simplemente se trata de que, nuestra ignorancia, no nos deja llegar a esos niveles del saber que son necesarios para poder explicar algunos fenómenos naturales que, exigen años de estudios, observaciones, experimentos y, también, mucha imaginación.

En la imagen de arriba se refleja el proceso Triple Alpha descubierto por Hoyle:
Amigos míos, son las 5,53 h., me siento algo cansado de teclear y me parece que con los datos aquí expuestos podéis tener una idea bastante buena de la formación de elementos en el cosmos y de cómo las estrellas son las máquinas creadoras de la materia cada vez más compleja y, el Universo, nos muestra de qué mecanismos se vale para poder traer elementos que más tarde formarán parte de los planetas, de los objetos en ellos presentes y, de la Vida.
Emilio Silvera V.
Sep
11
¿Cambio Climático? La Tierra siempre ha sido cambiante
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Nos quieren hacer comulgar con ruedas de molino con el dichoso “Cambio Climático“, y, lo cierto es que, la Tierra, nuestro querido planeta, ha pasado a lo largo de su existencia por distintas fases y grandes cambios evolutivos, como sabemos, lo que se produce en el irreversible caminar del Tiempo, todo evoluciona a menor y mayor escala, nada permanece estático, todo cambia y nada permanece.
En algunas de las regiones donde en el presente podemos ver los actuales desiertos, antes (hace millones de años), lo que allí había eran mares y grandes océanos.
Se empeñan en meternos en la ecuación de los cambios, como si nosotros (los humanos), tuviéramos ese poder de hacer cambiar la Naturaleza que, realmente cambia por sí sola y se recicla conforme a reglas en las que no podemos tener participación alguna.
Las placas tectónicas, los volcanes, los terremotos, los Tsunamis, las grandes tormentas y los huracanes… ¿Qué tenemos nosotros que ver con todo eso? Sin embargo, no pocos grupos interesados y siempre con la intención de tenernos sometidos (de una u otra manera), no dejan de amenazar con dicho “Cambio Climático” para indicarnos como debemos vivir, lo que debemos comer, si podemos o no podemos viajar, impedir que circulemos libremente por la ciudades… ¡Vaya panda de canallas”
- ¡No podéis comer carne! el cambio climático no lo aconseja!
- Si no tenéis un vehículo muy caro tampoco podéis entrar en el centro de la ciudad.
- Necesitamos una Sociedad baja en Carbono (que dicho sea de paso es el eslabón de la Vida).
- Evitar los gases de efecto invernadero (¿Cómo el que emiten los volcanes? ¿Cuándo podemos nosotros generar 4esos gases?
Podríamos seguir y llenar muchas páginas explicando que, nuestra especie, nunca ha tenido el poder de cambiar nada en lo que ya tiene programado la propia Naturaleza que sucederá de todas las maneras.
Emilio Silvera V.
Sep
10
Cada vez es menor la capacidad de asombrarnos
por Emilio Silvera ~
Clasificado en El Universo y... ¿nosotros? ~
Comments (8)
Sabemos del Universo que no sabemos cómo surgió, si está sólo o acompañado, si es cíclico y se reproduce una y otra vez, si cada vez que surge también viene acompañado por los mismos procesos que nos llevan hacia la vida…
.

“Hubble capta una galaxia a 13.000 millones de años luz. El Telescopio Espacial Hubble de la NASA ha detectado una de las galaxias pequeñas más lejanas jamás vista, mirando a través de una lupa cósmica gigante. El objeto diminuto se encuentra a más de 13.000 millones de años luz de distancia.”
La imagen de arriba tomada por el Telescopio Espacial Hubble, fue cedida en su día por la NASA y, en ella, podemos contemplar la inmensidad de un Universo que no hemos llegado a conocer y, como nos pasa en tantas otras cuestiones, nos tenemos que conformar construyendo Modelos que nos aproximen a lo que pudo ser y que no reflejan, necesariamente, lo que fue.



Nuestro Sol, esa estrella mediana, amarilla del tipo G2V que, nos calienta y hace posible que la vida en el planeta Tierra esté presente. Ese suceso de la vida consciente en un planeta idóneo para la evolución de la materia hacia niveles de impensables rendimientos como, de hecho, son las ideas y los pensamientos, nos llevan a pensar que, nuestro Universo, “parece” que tenía un plan predeterminado para nosotros. Bueno, al menos eso nos gusta pensar para sentirnos más importantes.

Más allá de lo que el ojo puede ver
Sólo conocemos el Universo que nos ha dejado ver la luz, esa radiación electromagnética a la que es sensible el ojo humano, y, otras de ondas más cortas que mediante telescopios hemos podido captar, son las referencias visuales que del Universo tenemos y, hay que decir que, cuando podamos captar las ondas gravitatorias que emiten los Agujeros Negros, podremos ver un Universo nuevo.

Muchas son las maneras en las que hemos querido representar y “ver” a nuestro Universo. El concepto de un universo holográfico no es nada nuevo. Los sufíes del siglo XII llegaron a la conclusión de que “el macrocosmos es el microcosmos”. El Profeta egipcio Hermes Trismegisto dijo que la cuna de la comprensión universal es la clave y está en comprender que “el pequeño es como el grande”. Los alquimistas medievales tenían otro lema: “Como es arriba, es abajo”. Con el paso de los tiempos se han establecido unas claves para entender la realidad en que vivimos.

Claro que, para nosotros, no será fácil saber si, nuestra realidad, es la auténtica realidad del Universo. Estamos inmerso en nuestro “propio mundo”, el mundo de nuestros sentidos que nos hacen ver y sentir un universo propio, particular y supeditado a las potestades que dichos sentidos puedan tener… A partir de ahí… ¿Quién sabe?
¡Se dicen tantas cosas! ¡Nos cuentan tantas historias!

Por ahí he podido leer que: “Hoy en día los superordenadores utilizan una técnica llamada “cuadrícula de cromodinámica cuántica”, una técnica que funciona a partir de las leyes físicas que rigen el Universo, capaz de simular con cierto grado de éxito pequeñas porciones del mismo en una escala de una billonésima de metro, un poco más grande que el núcleo de un átomo.

Para los investigadores, con el tiempo las simulaciones más potentes serán capaces de modelar en la escala de una molécula, luego de una célula e incluso de un ser humano. Para ello dicen que deberán pasar varias generaciones de equipos cada vez más potentes, tanto, que podrían simular porciones del Universo lo suficientemente grandes como para entender las limitaciones a las que se verían sometidos los procesos físicos que conocemos. Estas limitaciones serían la prueba de que, como dice Bostrom, vivimos en una simulación informática.”
Siempre hemos conjeturado, construido teorías y Modelos tratando de expresar lo que creemos que fue.
![]()

Lo único cierto es, que nadie sabe “la verdad” de en qué estamos inmersos y, sin embargo, todo el mundo habla y, como un profetas, nos dicen lo que fue, lo que es y hasta se atreven con lo que será… ¡Ilusos! De ilusión también se vive pero…, la cruda realidad vendrá de manos de la Naturaleza que, como debemos saber, siempre impone su ley.
Lo prudente es seguir avanzando y procurando desvelar “el saber del mundo”, y, mientras tanto, cuando queramos explicar alguna cosa decir: Por ejemplo, referido al átomo. Parece que el átomo se comporta como si, en su interior, tuviera protones y neutrones que, a su vez, pueden estar conformados por Quarks y, ese núcleo, parece estar rodeado por partículas denominadas electrones que hacen el conjunto atómico que. unidos, llegan a formar moléculas y estas la materia.

Si el reloj del Universo es el Tiempo… ¡No sabemos a qué velocidad se mueve! Pero eso sí, inventamos teorías para elucubrar que su movimiento es relativo y se puede frenar si andamos más rápido que él, o, que incluso se puede parar si se acerca a un Agujero Negro.
Ni conocemos el reloj (para nosotros eterno) del Universo, ni tampoco conocemos ese árbol del que tanto hablamos, el de la vida que resulta ser algo que nosotros mismos representamos y que no podemos explicar. ¿Se habrá visto mayor paradoja?
Eso se preguntaba Enrico Fermi, el físico Italiano, y, se conoce como “La Paradoja de Fermi!
Y si no estamos sólos, ¿por qué no están aquí? Bueno, seguramente por la misma razón por la que nosotros tampoco podemos estar allí. La Empresa nos sobrepasa y, seguramente, también a “ellos”, les viene grande. ¡Distancias inauditas! ¡Velocidades inalcanzables! ¡Tiempo de evolución de miles de millones de años! Todo eso junto, conforma la imposibilidad en la que nos encontramos de poder, estrechar la mano de esos seres que, como nosotros, pensarán en ese día que, cuando llegue (si es que llega), marcará un hito universal.
“Ellos” no están aquí por la misma razón que nosotros no estamos “allí”: Las insalvables distancias que nos separan y la limitación que nos impone el Universo de viajar a mayor velocidad que c (la velocidad de la luz en el vacío), con los medios actuales, tardaríamos 30.000 años en llegar a la estrella más cercana, Próxima Centauri.
¡Los hemos imaginado de tantas maneras! Lo hemos intentado y continuamos en el empeño pero… Las cosas no serán fáciles para poder, algún día, decir que no estamos solos en el inmenso Universo.

Muchos antes que nosotros han intentado descubrir nuestro lugar en el mundo, los secretos que la Naturaleza esconde, el por qué el Universo nos muestra cosas que no siempre llegamos a comprender, y, seguimos intentando llegar a esa “verdad” que incansables perseguimos. Y, mientras tanto conseguimos saber donde estamos, de donde venimos y hacia donde vamos, seguimos enredados cuestiones tales como:
“La Paradoja de Olbers en acción. A medida que se consideran las estrellas situadas en capas y capas más lejanas a la Tierra el cielo debería verse más y más luminoso.”

Sí, somos conscientes -al menos algunos- de nuestras limitaciones y, sabiendo eso, no cedemos en el empeño de saber, lo que el Universo es, y, de paso, si podemos captar algún dato esencial sobre nosotros… ¡mucho mejor!
Incluso tenemos dudas fundadas en saber, a ciencia cierta, en qué clase de universo estamos: ¿Es plano, es abierto, es cerrado? La cantidad de materia que contenga nuestro Universo, eso que llaman Omega y que determina la Densidad Crítica, dirá la última palabra sobre el tema para conocer cómo será el final que aguarda al inmenso universo.

Como las podemos observar, sí podemos explicar su evolución. Sin embargo, si alguien nos pregunta: ¿Cómo se formaron las galaxias? La única respuesta seria que podríamos dar sería… ¡No lo sabemos! Nadie ha podido dar una razón convincente de cómo se pudieron formar las galaxias a pesar de la expansión de Hubble. ¿Qué había allí que generaba Gravedad y retenía la materia el tiempo suficiente para que se formaran? Nadie lo sabe. Sospecho que algo tiene que ver con eso… ¡la sustancia cósmica! o “materia primigenia” surgida en el universo en el primer momento de su existencia y que, aunque no la veamos, está dispersa por todas partes.

Lo tenéis en Internet en el formato PDF, algunas ideas interesantes que os pueden despertar la Mente
Lo que no podemos asegurar es que todos los pensamientos surgidos de las mentes humanas sean constructivos y, como tales, se encaminen en la dirección correcta de construir un mundo más justo y equitativo donde todos (que somos uno). tengan las mínimas posibilidades para vivir de manera digna sea cual fuere su procedencia o condición. La desigualdad en el mundo nos degrada como seres humanos que no han sabido alcanzar la meta de esa Ley no escrita pero que está en la mente de todos: Justicia, igualdad, equidad, y, bienestar para todos los seres del mundo.
Sin embargo, nadie puede negar que formamos parte del Universo. Somos, en realidad, la parte del Universo que puede pensar y generar ideas y pensamientos y… ¡hasta sentimientos! Lo cual, es algo tan inconmensurablemente grande que… ¿No sabemos en que podrá desembocar finalmente!.
¿A qué resultará que no somos tan insignificantes?
¡Es todo tan complejo!
¡Sabemos tan poco!
Emilio Silvera V.















Totales: 82.481.814
Conectados: 67























