Jul
12
¿Límite? Y, si no existe límite alguno
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
No hace mucho Tiempo que, un equipo de astrónomos tratando de estudiar lo que podría existir, más allá del “borde” del Universo, detectaron una enorme presencia de masa…. Supongo que sería un universo vecino del que tanto hemos hablado y de lo que nada hemos podido comprobar.
Si nosotros (el Sistema solar), está situado a 27.000 años luz del centro galáctico, nos podemos hacer una idea de lo que sería viajar hasta el borde del universo, salir de su ámbito y continuar viajando hasta encontrar ese otro universo.
Sería un viaje irrealizable para nosotros, viajar más de 80.000 años luz para salir del universo visible… ¡Será por imaginar! Si los cálculos para viajar a la estrella más próxima, nos llevan a un viaje de miles de años, cuando sólo está a 2,2 años luz de nosotros… ¡Salir del universo sería una idea demencial.
Claro que, hemos llegado a saber de la existencia de otros muchos mundos, de cúmulos de estrellas y de super-cúmulos de galaxias… ¿Por qué no de otros universos?
Jul
12
¿Por qué algunas Mentes ven más de lo que ven las demás?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Son innumerables las veces que hemos dejado aquí constancia de nuestra admiración por este personaje que, recopilando datos dispersos de otros pensadores, supo aunarlos en una sola teoría que asombró al mundo de la Física por sus postulados (que no pocos vieron como disparatados), que irrumpieron en el campo de la Física como elefante en cacharrería y lo puso todo “patas arriba”.
Poco a poco, la Teoría fue comprobada en muchos de sus postulados que resultaron ser ciertos, y, es tan compleja su exposición en alguno de los apartados que incluye que, aún hoy, más de cien años después, aún queda algún detalle por esclarecer, y, me refiero a lo que al Tiempo predice esa primera parte de la asombrosa teoría.
¡Qué la velocidad pueda influir en el transcurso del Tiempo!
En fin, amigos míos, mientras tengamos problemas por resolver, y preguntas que plantear… ¡Las cosas irán bien!
Jul
12
Sobre la Relatividad Espcial
por Emilio Silvera ~ Clasificado en Física ~ Comments (5)
En cualquier parte que podamos buscar información nos dirán:
“Henri Poincaré, matemático francés, sugirió a finales del siglo XIX que el principio de relatividad establecido desde Galileo (la invariancia galileana) se mantiene para todas las leyes de la naturaleza. Joseph Larmor y Hendrik Lorentz descubrieron que las ecuaciones de Maxwell, la piedra angular del electromagnetismo, eran invariantes solo por una variación en el tiempo y una cierta unidad longitudinal, lo que produjo mucha confusión en los físicos, que en aquel tiempo estaban tratando de argumentar las bases de la teoría del éter, la hipotética substancia sutil que llenaba el vacío y en la que se transmitía la luz. El problema es que este éter era incompatible con el principio de relatividad.”
Diagrama 1. Apariencia del espacio-tiempo a lo largo de una línea de universo de un observador acelerado.
La dirección vertical indica el tiempo, la horizontal indica la distancia espacial, la línea punteada es la trayectoria del observador en el espacio tiempo. El cuarto inferior representa el conjunto de sucesos pasados visibles al observador. Los puntos pueden representar cualquier tipo de sucesos en el espacio tiempo.
La pendiente de la línea de universo o trayectoria de la vertical da la velocidad relativa del observador.
Marie Curie y Poincaré
“Poincaré (1900) analizó la «fabulosa invención» del tiempo local de Lorentz (no estaba al tanto de que el concepto lo introdujo en realidad Woldemar Voigt en 1887), y manifestó que el concepto surge cuando se trata de sincronizar dos relojes en movimiento, mediante la emisión de señales luminosas que se supone viajan a la misma velocidad en ambas direcciones en un marco de referencia en movimiento. (en inglés) En La medida del tiempo (Poincaré, 1898), el autor analizó la dificultad de establecer la simultaneidad a distancia, y concluyó que la misma puede ser establecida por convención. También discutió el «postulado de la velocidad de la luz», y formuló el Principio de la Relatividad según el cual ningún experimento mecánico o electromagnético puede diferenciar entre un estado de movimiento uniforme y el estado de reposo.”
Mientras trabajaba evaluando solicitudes de patentes de métodos para sincronizar relojes y otros procedimientos rutinarios, Albert Einstein escribió cinco estudios científicos que revolucionaron la física de inicios del siglo XX. Ese 1905 pasó a la historia como el Annus mirabilis (“año milagroso”) del físico alemán.
En su publicación de 1905 en electrodinámica, Henri Poincaré y Albert Einstein explicaron que, con las transformaciones hechas por Lorentz, este principio se mantenía perfectamente invariable. La contribución de Einstein fue el elevar a este axioma a principio y proponer las transformaciones de Lorentz como primer principio. Además descartó la noción de tiempo absoluto y requirió que la velocidad de la luz en el vacío sea la misma para todos los observadores, sin importar si éstos se movían o no. Esto era fundamental para las ecuaciones de Maxwell, ya que éstas necesitan de una invarianza general de la velocidad de la luz en el vacío.
Como en otras ocasiones, aquí dejamos una muestra de la velocidad de la luz cuando viaja desde la Tierra a la Luna, el tiempo que tarda la línea amarilla (que asemeja el movimiento de la luz) es lo que tarda en llegar la luz desde la Tierra a la Luna.
La relatividad especial fue una teoría revolucionaria para su época, con la que el tiempo absoluto de Newton quedó relegado y conceptos como la invariabilidad en la velocidad de la luz, la dilatación del tiempo, la contracción de la longitud y la equivalencia entre masa y energía fueron introducidos.
Masa y energía son dos aspectos de la misma cosa
La aparición de la Teoría de la relatividad fue tan poco convencional como su autor. El ya famoso artículo que escribió en 1905 (con el apoyo de los trabajos de los arriba mencionados) y que enunciaba por primera vez la teoría, era algo rústico y sencillo y no mencionaba o contenía cita científico-literaria alguna, tampoco mencionaba ayuda de ninguna persona a excepción de su amigo Besso, que dicho sea de paso no era científico (él, por aquel entonces, no conocía a científico alguno). La primera conferencia de Einstein explicando la Teoría, en Zurich, no fue dada en ninguna universidad sino en el salón del Sindicato de Carpinteros, duró más de una hora, y luego repentinamente se interrumpió para preguntar la hora, explicando que no tenía reloj. Sin embargo, a pesar de los modestos comienzos, allí comenzó a reformarse los conceptos del espacio y del tiempo.
Lo cierto es que, con su teoría de la relatividad, Einstein finalmente resolvió la paradoja que se había presentado a los dieciséis años, por la que las ecuaciones de Maxwell pierden su validez si uno atrapa un haz de luz a la velocidad de la luz. Lo hizo mediante la conclusión de que no se puede acelerar la velocidad de la luz, de que la velocidad de la luz es la misma para todos los observadores, cualquiera que sea su movimiento relativo. Si un astronáuta que vuela hacia la estrella más cercana a una velocidad del cincuenta por ciento de la de la luz, , midiera la velocidad de la luz a bordo de la nave, el resultado sería exactamente igual que el que daría la medición de otro colega suyo situado en la Tierra.
Podrían ocurrir fenómenos que ni podemos imaginar pero, quedándonos en lo que más llama la atención al público en general, podríamos conseguir que el tiempo … ¡Se ralentizara y pasara más despacio para el viajero relativista! Si miráis el diagrama del Minkouski os hablará de los fenómenos que se pueden producir al viajar a la velocidad de la luz, cuando el Tiempo se ralentiza.
Diferentes sistemas de referencia para el mismo fenómeno. Claro que, en la teoría están presentes factores y trabajos que no se mencionan y, la fórmula
siguiente: es el llamado factor de Lorentz donde es la velocidad de la luz en el vacío. Contrario a nuestro conocimiento actual, en aquel momento esto era una completa revolución, debido a que se planteaba una ecuación para transformar al tiempo, cosa que para la época era imposible. En la mecánica clásica, el tiempo era un invariante. Y para que las mismas leyes se puedan aplicar en cualquier sistema de referencia se obtiene otro tipo de invariante a grandes velocidades (ahora llamadas relativistas), la velocidad de la luz. Los sucesos que se realicen en el sistema en movimiento S’ serán más largos que los del S. La relación entre ambos es esa . Este fenómeno se lo conoce como dilatación del tiempo. Si se dice que el tiempo varía a velocidades relativistas, la longitud también lo hace.
En el gráfico se escenifica la contracción de Lorentz
Para cuantificar aquella extraña situación, Einstein se vio obligado a emplear la contracción de Lorentz (En aquel momento no conocía a Lorentz al que más tarde consideraría “el hombre más grande y más noble de nuestro tiempo… una obrta de arte viviente.)” En manos de Einstein, las ecuaciones de Lorentz especifican que, cuando aumenta la velocidad a la que se desplaza un observador, sus dimensiones, y la de la nave espacial y todo aparato de medición que haya a bordo, se contrae a lo largo de su movimiento en la cantidad requerida para hacer que la medición de la velocidad de la luz sea siempre la misma.
Esta era la razón de que Michelson y Morley no hallasen ningún rastro del “arrastre del éter”. En verdad, el éter es superfluo, al igual que el espacio y el tiempo absolutos de Newton, pues no hay ninguna necesidad de un marco de referencia inmóvil. “Al concepto de reposo absoluto no le corresponde ninguna propiedad de los fenómenos, ni en la mecánica ni en la electromecánica.” Lo importante son los sucesos observables, y no puede observarse ningún suceso hasta que la luz (o las ondas de radio o cualquier otra forma de radiación electromagnética) que lleve noticias de él no llegue al observador. Einstein reemplazó el espacio de Newton por una red de haces de luz; la de ellos era una red absoluta dentro de la cual el espacio mismo se vuelve flexible.
Los observadores en movimiento experimentan también una lentificación del paso del tiempo. Un astronáuta que viaje al 90 por 100 de la velocidad de la luz sólo envejecerá a la mitad de rápido que su colega de la Tierra. Ya conocéis la paradoja de los gemelos en la que se explica tal fenómeno.
También en aquel primer artículo Einstein nos habló sobre la igualdad entre la masa y la energía. Él demostró que la masa de un cuerpo aumenta cuando absorbe energía. Se sigue de ello que su masa disminuye cuando irradia energía. Esto es verdadero no sólo para una nave espacial que se desplaza hacia las estrellas, sino también para un objeto en reposo. Una máquina fotográfica pierde algo (muy poco) de masa cuando el flash se dispara, y la gente cuya fotografía se saca se vuelve también, un poco más masiva al absorber sus cuerpos aquella radiación perdida por la máquina. Masa y energía son intercambiables.
m = E/c2
donde m es la masa del objeto, E su energía y c la velocidad de la luz. Al formular esta ecuación particularmente sencilla, que unifica los conceptos de energía y materia, y relaciona ambos con la velocidad de la luz, Einstein inicialmente estaba interesado en la masa. En cambio, si despejamos la energía, adquiere una forma más familiar y presagiosa:
En la Isla de los Museos (Berlín). Festejando el Año mundial de la Física en 2005, en el centenario de la publicación de la ecuación más famosa del mundo. Contemplada desde esta perspectiva, la teoría dice que la materia es energía congelada. Esto, por supuesto, es la clave de la fuerza nuclear y, en manos de los astrofísicos, la ecuación sería usada para descubrir los procesos termonucleares en el corazón de las estrellas.
Pero pese a todos sus variados logros, la relatividad especial no decía nada de la gravitación y, su autor, la veía incompleta. Aquella teoría sin la presencia de la otra gran fuerza más conocida del universo se veía desvalida: Había que vincularla con la masa inercial. La resistencia al cambio que ofrecen los objetos en estado de movimiento, su “peso” por decirlo así. La gravitación actúa sobre los objetos según su masa gravitacional, esto es, su “peso”. Todos sabemos lo que es la masa inercial y de ella, tendremos que hablar cuando acometamos la página sobre la relatividad general. Dejemos aquí el apunte de que, la masa inercial y la gravitación de cualquier objeto son iguales. También se podría decir que, es la masa de los cuerpos que pueblan el universo, la que moldea y modela la geometría del del Cosmos, del espacio-tiempo.
Terminemos con la misma imagen del comienzo. Causalidad e imposibilidad de movimientos más rápidos que la luz. Previo a esta teoría, el concepto de causalidad estaba determinado: para una causa existe un efecto. Anteriormente, gracias a los postulados de Laplace, se creía que para todo acontecimiento se debía obtener un resultado que podía predecirse. La revolución en este concepto es que se “crea” un cono de luz de posibilidades (Véase gráfico adjunto).
Se observa este cono de luz y ahora un acontecimiento en el cono de luz del pasado no necesariamente nos conduce a un solo efecto en el cono de luz futuro. Desligando así la causa y el efecto. El observador que se sitúa en el vértice del cono ya no puede indicar qué causa del cono del pasado provocará el efecto en el cono del futuro.
Asumiendo el principio de causalidad obtenemos que ninguna partícula de masa positiva puede viajar más rápido que la luz. A pesar que este concepto no es tan claro para la relatividad general. Pero no solo el principio de causalidad imposibilita el movimiento más rápido que el de la luz. Ya hablaremos de ello.
Emilio Silvera V.
Jul
11
La lucha eterna por la super-vivencia
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Nuestro paso por la Vida es una continuada lucha por salvar obstáculos, por conseguir tener cubiertas las necesidades básicas, por aprender para poder desenvolvernos en el entorno que nos tocó vivir. No dejamos de intentar el cubrir metas en todas la fases de nuestra existencia. Si miramos lo que ocurre en la Naturaleza a nuestro alrededor, simplemente veremos un reflejo de lo que sucede en todos los ecosistemas, los seres vivos tienen ese instinto de super-vivencia que, de manera intuitiva ,les hace sobreponerse a situaciones límites, salvar escollos y conseguir lo que necesitan para seguir adelante.
Aquí, en este mismo lugar, no pocas veces al comentar el comportamiento de los miembros de nuestra especie, me he referido a esa parte animal llevamos dentro, y, he dicho que aún estamos en el proceso de humanización. Sin embargo, habría que preguntarse: ¿Sin esa parte animal, habríamos llegado tan lejos?
El instinto de vivir nos mantiene y hace posible que sigamos adelante, y, habría que pensar en el hecho cierto de que, si el avance tecnológico nos confunde y nos hace pensar que somos invulnerables, que ya lo sabemos todo… ¡Sería el mayor merror de la Humanidad! Nunca podremos saberlo todo, siempre las preguntas serán más que las respuestas, y, si somos conscientes de que “no sabemos”, las cosas irán en la buena dirección.
¡Ah! Sobre todo, no perdamos de vista el ámbito de la Inteligencia Artificial, no somos “dioses”, y tratar de crear seres artificiales que sean conscientes de Ser… ¡Podría ser la “ruina” de nuestra especie!.
¡Qué razón tiene la Filosofía, cuando el estudio del SER, lo deja a esa rama que llaman Metafísica! ¿Cómo puede una estructura compleja, conformada por la materia, generar ideas, pensamientos, y, sobre todo ¡Sentimientos!
Emilio Silvera V.
Jul
11
¿Qué es la Vida? Ya me gustaría a mí saberlo
por Emilio Silvera ~ Clasificado en La vida ~ Comments (6)
Nanofotónica: luz + nanopartículas = Futuro tecnológico
La Nano-fotónica es la ciencia que se ocupa del estudio de las interacciones entre la materia y la luz en la escala nanométrica, así como de la fabricación de material nano-estructurado, modificado de forma natural o artificial, en sus propiedades físicas, químicas o de estructura para explorar y aumentar las reacciones .
Bristlecone de las Montañas Blancas de Estados Unidos. En ocasiones son gigantes y sinuosos. Rugosos o aterciopelados, mantienen posturas inconcebibles para soportar los estigmas provocados por el viento, la lluvia o por seres mucho más fugaces, como los humanos.
Muchas de las criaturas más longevas del planeta son acuáticas y la lentitud en el crecimiento y en la reproducción son unas de las características recurrentes de estas maravillas de la naturaleza.
El planeta Tierra es nuestro hogar y, a veces pienso que se comporta como un Ser vivo. Ella sola se recicla y lleva a cabo las transiciones e fase necesarias para “limpiar” lo que sobra y seguir adelante conforme a los parámetros necesarios para que la Vida, continúe hacia un futuro incierto.
Desde aquella Tierra primigenia que comenzó a enfriarse y que contenía todos los elementos necesarios para que el asombroso suceso tuviera lugar (el surgir de aquella primera célula replicante que comenzó la fascinante aventura de la vida), desde entonces, han pasado algunos miles de millones de años y, la atmósfera, los océanos, la radiación, la luz y el calos que nos envía el Sol…
Lo cierto es que no podemos contestar a esa pregunta con propiedad. Sabemos lo que son los seres vivos e incluso, es posible que existan algunas especies que estando vivas ni lo podamos saber ni las podemos detectar. Sabemos de los materiales que son necesarios para que la vida esté presente en nuestro Universo y, en éstas mismas páginas hemos expuestos amplios trabajos sobre el tema de la vida, su posible origen, de cómo se “fabrican” los materiales necesarios para su existencia, en las estrellas… Se podría decir, sin andar muy lejos de la verdad, que la vida, es la materia evolucionada hasta el nivel de la consciencia (si nos referimos ala vida en su más alta expresión).
Los meteoritos, como se ha podido demostrar en muchos estudios realizados sobre una diversidad de ellos, son portadores de aminoácidos necesarios para la vida. Recordemos aquí, por ejemplo:
“El meteorito Murchison recibe su nombre de la localidad de Murchison, Victoria en Australia. Los Fragmentos del meteorito que cayeron sobre el pueblo el 28 de septiembre de 1969. El meteorito, una condrita carbonácea tipo II (CM2) contenía aminoácidos comunes como la glicina, alanina y ácido glutámico, pero también algunos poco comunes como la isovalina y pseudoleucina. El informe incial estableció que los aminoácidos eran racémicos, apoyando la teoría de que su fuente era extraterrestre. Se aisló también una mezcla compleja de alcanos que era similar a la encontrada en el experimento de Miller y Urey. La Serina y la treonina se consideran habitualmente como contaminantes terrestres y estos compuestos se encontraban notablemente ausentes en las muestras.”
Fragmento del meteorito Murchison y partículas individuales aisladas (se muestran en el tubo de ensayo).
“Más investigaciones encontraron que algunos aminoácidos estaban presentes en exceso enantiomérico. La homoquiralidad se considera una propiedad biológica única. Se ponían en entredicho algunas afirmaciones sobre la base de que los aminoácidos que entran en las proteínas no eran racémicos en el meteorito, mientras que el resto si lo eran. En 1997 las investigaciones mostraron que los enantiómeros individuales de Murchison estaban enriquecidos con el isótopo 15N del nitrógeno en comparación con sus correspondientes terrestres, lo que confirmaba una fuente extraterrestre del exceso del enantiómero L-enantiomer en el sistema solar. A la lista de materiales orgánicos identificados en el material del meteorito se le añadió el poliol en 2001″
Par de granos del meteorito Murchison.
“Abundando en la idea de que la homoquiralidad (la existencia de solo aminoácidos de la serie L y azúcares de la serie D) fue provocada por la deposición de moléculas quirales de los meteoritos, la investigación demostró en 2005 que los aminoácidos como la L–prolina es capaz de catalizar la formación de azúcares quirales. La catálisis es no lineal, lo que significa que la prolina en un exceso enantio-mérico del 20% produce una alosa con un exceso enantiomérico del 55% comenzando con el benziloxiacetaldeido en una reacción secuencial de tipo aldólica en un disolvente como el DMF. En otras palabras una pequeña cantidad de aminoácidos quirales podrían explicar la evolución de los azúcares de serie D.”
Muchos de los meteoritos hallados en la Tierra y venidos del espacio exterior traen muestras de la materia necesaria para la vida
Imagen: Fotografía de uno de los fragmentos del meteorito. Las muestras fueron recuperadas para su análisis en un estudio financiado por la NASA | H. Siegfried Via ABC. La teoría de la Panspermia, que defiende la aparición de la Vida en la Tierra como consecuencia de la llegada a nuestro planeta procedente del espacio exterior de las primeras formas de vida, tiene otra prueba a su . No es la primera vez que se descubren aminoácidos en un meteorito. Anteriormente, científicos del centro Goddard de Astrobiología los habían encontrado en las muestras del cometa Wild-2 y en varios meteoritos ricos en carbono.
Aunque parezca amorfo y feo en algunas de sus formas y estados, el Carbono puede llegar a conformar las cosas más bellas, tales como… ¡La Vida! Podría ser que, ese elemento llamado Carbono sea el más importante que exista si tenemos en cuenta que el carbono es el elemento en el que está fundamentada la vida. Las propiedades químicas del carbono le permiten a este elemento unirse con una gran cantidad de átomos distintos para formar moléculas enormes y complejas.
Cada cosa viviente está basada en el carbono, hasta la fecha no se ha encontrado ninguna clase de vida basada en otro elemento. Está en nuestra atmósfera, en la corteza de la tierra y en los cuerpos de las plantas y animales. respiramos, exhalamos dióxido de carbono. Cuando las plantas respiran, toman el dióxido de carbono. Sin carbono, la vida no podría darse. El carbono es el bloque básico todas las formas de vida en la Tierra. Afortunadamente, es también uno de los elementos más abundantes en nuestro planeta. Al igual que toda la materia, el carbono ni se crea ni se destruye, por lo que todos los organismos vivos deben encontrar una manera de volver a utilizar continuamente el suministro finito que se encuentra disponible.
El Carbono está presente en todo el Universo. Incluso existen estrellas de Carbono
“R Leporis (Estrella carmesí de Hind) es una estrella variable de la constelación de Lepus, cerca del límite con Eridanus. Visualmente es una estrella de un color rojo vívido, cuyo brillo varía entre magnitud aparente +5,5 y +11,7. A una distancia aproximada de 1100 años luz, R Leporis pertenece a la rara clase de estrellas de carbono, siendo su tipo espectral C6. En estas estrellas, los compuestos de carbono no permiten pasar la luz azul, por lo que tienen un color rojo intenso.
La primera imagen es un Gráfico comparativo del tamaño de varios objetos astronómicos dentro de la escala de un año luz. De izquierda a derecha, las nebulosas Ojo de Gato y Stingray y la nube molecular Barnard 68. La segunda imagen es R. Lepori.
Un año luz es una unidad de distancia que equivale aproximadamente a 9,46 × 1012 km (9 460 730 472 580,8 km).”
El carbono es el elemento químico que sustenta toda la vida en la Tierra. En la naturaleza existen 92 elementos químicos en natural. Es decir, 92 tipos distintos de átomos. Son las pequeñas piezas que se combinan entre sí para formar toda la materia conocida. Los átomos se combinan para formar moléculas, y las moléculas se unen para formar la materia. Todo lo que vemos a nuestro alrededor se forma con sólo esos 92 elementos. Incluidos nosotros mismos.
El 95% del cuerpo de los seres vivos se compone por sólo cuatro elementos: carbono, oxígeno, hidrógeno y nitrógeno. De ellos, el carbono es el más importante. Sin él, no podría formarse el ADN. Las proteínas, glúcidos, vitaminas y grasas son compuestos de carbono.
El carbono es un elemento muy abundante en el Cosmos. Los átomos de carbono se unen entre sí formando largas cadenas que sirven de base para construir otras moléculas más complejas. facilidad para enlazar moléculas es lo que permitió la evolución hasta los organismos vivos. En la tierra primitiva se dio una excelente combinación de grandes cantidades de carbono y agua, que fueron determinantes para el origen de la vida. El carbono es la base química de la vida en presencia de agua que, en el Universo, también está por todas partes.
También aquí, donde se forman los pensamientos y los sentimientos, el Carbono está presente. Los hidratos de carbono son una parte necesaria para cualquier persona sana , ya que aportan el combustible que el cuerpo necesita para su actividad física. El cerebro necesita los lípidos y otros jugos que lo mantienen “engrasado” y a punto.
El Carbono es un elemento esencial para muchas cosas, y, podríamos destacar, sin temor a equivocarnos que, la vida, es la más importante de entre todas ellas. En cualquier parte que queramos mirar nos dirán, del Carbono, cosas como éstas:
“El carbono es un elemento notable por varias razones. Sus formas alotrópicas incluyen, sorprendentemente, una de las sustancias más blandas (el grafito) y la más dura (el diamante) y, el punto de vista económico, uno de los materiales más baratos (carbón) y uno de los más caros (diamante). Más aún, presenta una gran afinidad para enlazarse químicamente con otros átomos pequeños, incluyendo otros átomos de carbono con los que puede formar largas cadenas, y su pequeño radio atómico le permite formar enlaces múltiples. Así, con el oxígeno el dióxido de carbono, vital para el crecimiento de las plantas (ver ciclo del carbono); con el hidrógeno numerosos compuestos denominados genéricamente hidrocarburos, esenciales para la industria y el transporte en la forma de combustibles fósiles; y combinado con oxígeno e hidrógeno forma gran variedad de compuestos como, por ejemplo, los ácidos grasos, esenciales para la vida, y los ésteres que dan sabor a las frutas; además es vector, a través del ciclo carbono-nitrógeno, de parte de la energía producida por el Sol.”
Hacia 1860, varios químicos sugirieron que la asimetría óptica de los compuestos orgánicos debía surgir a partir de la estructura tetraédrica del átomo de Carbono. A finales del siglo XIX, la teoría correcta fue formulada de manera independiente, por dos químicos que, de manera simultánea, dieron con la clave al sugerir que, el átomo de Carbono de un compuesto carbonado se encuentra situado en el centro de esa estructura tetraédrica, unido mediante enlaces químicos a otros cuatro átomos, situados en uno de los vértices del tetraedro. El átomo de Carbono puede albergar 8 electrones en su corteza, tiene solamente cuatro; por tanto, por decirlo de manera sencilla, dispone de cuatro plazas vacantes que pueden ser ocupadas por electrones de las cortezas de otros cuatro átomos.
La teoría que es correcta, fue expuesta por el joven francés Joseph Achille Le Bel, y el otro, el joven neerlandés llamado Jacobus Henricus van´t Hoff, ambos razonaron que tal estructura tetraédrica será asimétrica y no superponible a su imagen especular.
Los bioquímicos, es decir, los químicos que estudian los procesos de los seres vivos, no pueden imaginar de vida alguno (excepto, tal vez, alguna forma inactiva muy elemental) que no requiera decenas de miles de clases distintas de tejidos, cada uno de ellos diseñado para llevar a cabo una labor altamente especializada. Pensemos, por ejemplo, en la complejidad de un ojo, que no es más que uno de los muchos órganos del cuerpo.
El ojo tiene que sintetizar compuestos determinados para poder constituir cada una de sus partes: el cristalino, los músculos que permiten cambiar la de éste último, los que abren y cierran las pupilas, las capas de la córnea, los líquidos que llenan las distintas vavidades, la retina, el coroides, la esclerótica, el nervio óptico de los vasos sanguíneos… Cada una de ellas necesita sustancias enormemente complejas que, además, deben poseer las propiedades adecuadas para hacer exactamente lo que se supone que hacen.
Miles de millones de tales tejidos especializados son esenciales para las formas vivientes de la Tierra. Es imposible imaginar que la evolución de éstos haya podido realizarse sin la ayuda del Carbono, un elemento que sobrepasa a los demás en su capacidad de formar una variedad casi ilimitada de compuestos, uno de ellos con propiedades específicas.
Tenemos que pensar que todo lo que existe, sea animado o inanimado, se trate del cerebro de un insecto, de las conexiones de nuestro cerebro o de los nanotubos de carbono, todo sin excepción, está formado por la misma cosa: Quarks y Leptones que, combinados en la debida proporción, conforman la materia presente en todo el Universo y que es poseedora de la energía que está presente por todas partes en sus distintas manifestaciones.
De todas las maneras y, aunque mirando objetivamente la realidad, seamos nosotros los que prevalecemos sobre todos los demás, no debemos presumir demasiado por ello, dado que, la diferencia entre nosotros y algunos objetos y seres de la Tierra…, no es tan grande. Seámos humildes y sencillos, reconozcamos nuestras debilidades y comprendamos que, en definitiva, sólo somos una parte más, de la Naturaleza grandiosa que define al Universo.
Organismo |
Hombre |
Alfalfa |
Bacteria |
Carbono |
19,37 % |
11,34 % |
12,14 % |
Hidrógeno |
9,31 % |
8,72 % |
9,94 % |
Nitrógeno |
5,14 % |
0,83 % |
3,04 % |
Oxígeno |
61,81 % |
77,90 % |
73,68 % |
Fósforo |
0,63 % |
0,71 % |
0,60 % |
Azufre |
0,64 % |
0,10 % |
0,32 % |
CHNOPS/ TOTAL |
97,90 % |
99,60 % |
99,72 % |
Podríamos pensar que la vida es la forma más evolucionada de la materia. Claro que, para llegar a ese nivel máximo de la vida, tendría que estar presente la consciencia.
¡El Carbono! Un elemento esencial la vida… y mucho más.
Emilio Silvera V.