sábado, 16 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Andrómeda! ¿Una amenaza?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Andrómeda, junto a la Vía Láctea, es la galaxia más grande del Grupo Local de galaxias, en el que estamos inmersos junto a otras más pequeñas y, dicho cúmulo pertenece a otro mucho mayor. El Supercúmulo de Virgo, o Supercúmulo Local, (en inglés ‘Local Supercluster’ o LS) es el supercúmulo de galaxias que contiene al Grupo Local y con él, a nuestra galaxia, la Vía Láctea.

La galaxia Andrómeda se aproxima hacia la Vía Láctea a una velocidad de unos 420.000 km/h,​ y algunos especulan que ambas colisionarán dentro de unos 5.860 millones de años, fusionándose en una galaxia mayor,​ en el evento conocido como Lactómeda.

Claro que, pensar en las consecuencias que se derivarán de ese encuentro, no deja de parecer prematuro, ya que, más de 5.000 M de años es mucho Tiempo para poder supeditarnos a lo que podría pasar en aquel futuro tan lejano, y, habría que pensar en otros eventos que podrían estar presentes en ese inte5rmidio inconmensurable.

Pero veamos el video y pensemos que las nuevas tecnologías nos traerán nuevos datos y conocimientos que nos permitan conocer más acertadamente lo que pasará en un Tiempo en el que, nosotros, ya no estaremos aquý, e incluso, es dudoso que la misma Humanidad sea testigo de esos momentos.

 

La Importancia del Carbono

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Atomo de carbono | PPT

 

Un átomo vital: el Carbono

El carbono es el elemento de símbolo C y número atómico Z=6. Esto significa que un átomo de carbono tiene 6 protones en su núcleo y, para neutralizar dicha carga, 6 electrones en su capa electrónica, con una estructura 1s22s22p2

 

NMás - Cuatro elementos (oxígeno, carbono, hidrógeno y... | FacebookLos elementos de la vida

Los elementos de la Vida

La Vida en la Tierra está constituida sólo por un grupo reducido de elementos, entre los cuales podemos nombrar al Hidrógeno, Oxígeno, Nitrógeno, Fósforo, Azufre, y sobre todo, Carbono. El carbono es un elemento que muestra una gran facilidad para enlazarse con múltiples átomos, o consigo mismo; actúa como la goma que une las piezas de la vida. Pero, ¿a qué se debe esta versatilidad del Carbono?

 

                                                                             Estructura del Átomo de Carbono - Areaciencias

“El carbono posee 6 protones y 6 neutrones en su núcleo. Su número atómico es 6 y su masa atómica es 12. Esto significa que tiene en su núcleo 6 protones y 6 neutrones en su configuración estable, y que el núcleo está rodeado por 6 electrones.”

 

Átomo de hidrógeno - Wikipedia, la enciclopedia libreCómo es posible que en los átomos, los electrones orbiten ...

¿Cómo es posible que en los átomos, los electrones orbiten alrededor del núcleo si, según la función de onda de Schrödinger, dichos electrones están en varios sitios a la vez?

Podemos decir, de manera muy simple e incorrecta, que los electrones en un átomo, orbitan alrededor de un núcleo en forma de capas concéntricas; en cualquier átomo, cada capa puede contener cierto número de electrones. La primera acomoda sólo 2 electrones, la siguiente 8. Sin embargo el átomo de carbono posee sólo 6 electrones, 2 en la capa interna y 4 en la siguiente. Los átomos de Carbono tienden a llenar estos “agujeros” con electrones de otros átomos de las inmediaciones creando enlaces sencillos distintos, o bien pueden llenarlos con 2 o 3 electores de un mismo átomo formando un enlace doble o triple.

 

Teoría del enlace-valencia y Hibridación

Teoría del enlace-valencia y Hibridación

Los electrones de número cuántico principal 2, reorganizan sus energías formando cuatro orbitales nuevos equipotentes en su energía, se les llama “orbitales híbridos” que se distribuyen en los vértices de un tetraedro regular.

                                                                           

                                                                                Cuatro orbitales sp³.

                                                                               

                                                                        Configuración de los orbitales sp².

Un simple átomo de carbono puede de esta forma mantener unida una molécula de formaldehído, u una hilera de átomos entrelazadas por carbono puede servir de columna dorsal para una proteína .Sin embargo, los sistemas complejos, autorregulados, que viven, se reproducen y mueren, requieren moléculas mucho más sofisticadas los cuales sólo pueden ser producto de una larga evolución, la que a su vez, requiere de ciertas condiciones particulares. Estas moléculas complejas, creadas en el curso de millones de años, son los llamados polímeros orgánicos, cadenas gigantescas, anillos, retículos y glóbulos construidos a partir de unidades químicas conocidas como monómeros, de entre los cuales los aminoácidos son una variedad. Las proteínas son conjuntos enmarañados de cadenas de péptidos, los cuales consisten a su vez de cientos de aminoácidos ligados.

 

La célula, unidad fundamental de la vida. by Esau Larrea on PreziLa Célula, unidad fundamental de la vida | PPT

 

La unidad más pequeña de vida autosuficiente en la Tierra es la célula. La célula se compone esencialmente de 2 partes: el citoplasma, donde se encuentra la mayor parte de las sustancias alimenticias y un núcleo, donde existen dos ácidos que son fundamentales para la vida, el ADN y el ARN.

 

Biotecnología Sí — Por qué el ADN es más estable que el ARN?

 

El ADN  se encuentra en el núcleo es el que contiene el código genético que dice qué proteínas debe construir y cómo se colocarán los aminoácidos para construirlas, El ARN está también en el citoplasma y actúa como el mensajero del código genético al citoplasma, donde están los aminoácidos que luego formarán las proteínas.

 

Micrografías de: a la izquierda, interfase celular; después, las distintas fases de la mitosis, dentro de la fase M del ciclo celular.

Las manos son imágenes especulares entre sí. Los enantiómeros de una... | Download Scientific Diagram

Enantiómero - Wikipedia, la enciclopedia libre

 Las manos son un ejemplo típico de enantiómeros

La asimetría del átomo de carbono. Los estereoisómeros y la Vida

 

¿QUÉ ES UN CARBONO ASIMÉTRICO?. IMPORTANCIA EN LOS GLÚCIDOS. Biología -  Bioquímica.

 

Cuando un compuesto de Carbono tiene un átomo de éste asimétrico, es decir que tiene sus cuatro valencias saturadas por radicales distintos, entre otras cosas podemos distinguir dos isómeros espaciales o estereoisómeros. Esto ocurre con los glúcidos y los aminoácidos, entre otros compuestos de la vida.

Fijémonos en el glúcido bio-orgánico más simple: el Gliceraldehido. Éste tiene un átomo de carbono asimétrico; se trata del carbono 2. Fijándonos en ese carbono podemos distinguir dos isómeros espaciales o estereoisómeros; el D-gliceraldehido, cuando el –OH está a la derecha, y el L-gliceraldehido, cuando el –OH está a la izquierda. Cada una de estas estructuras es una imagen especular de la otra, se las llama estructuras enantiomorfas.

Estas dos estructuras no pueden coincidir al hacerlas girar en el espacio; son estructuras diferentes

 

                                                              Enlace carbono-carbono - Wikipedia, la enciclopedia libre

                                           Existiendo un electrón en cada uno de los orbitales.

Según esto, los cuatro átomos de hidrógeno del metano se dispondrían así:

                Cuadro de texto: Introducción a la Química Orgánica Cruz Martínez INTRODUCCIÓN A LA QUÍMICA ORGÁNICA Este tema es una introducción a la química orgánica para los alumnos de 3º de ESO. Consta de cuatro partes de las cuales las dos primeras ...EnzimasNossa imagem enantiomorfa!

                Tan diferentes que un enzima que catalice a una forma no lo hará con la enantiomorfa.

 

                                     Glucidos

 

Parece que la Vida se decidió por Glúcidos de la forma D; sólo algunos casos excepcionales de formas L, encontramos en los seres vivos (por ejemplo la vitamina C, en nosotros mismos, que es de forma L). También parece que la Vida se decidió por las formas L de los aminoácidos.

Las probabilidades de formarse ambas es la misma. ¿Porqué la Vida escoge a una y no a otra?. Ello ha sido intensamente discutido y se han propuestos las hipótesis más especulativas (como la del plano de polarización de la luz de la Luna, las arcillas de los mares primigenios primaron a unas formas y no a otras, etc.).

 

Así eran los primeros animales de la Tierra | OpenMind

 

Por tanto, aunque una Vida extraterrestre se basara en los mismos compuestos que nosotros, podría ocurrir que fuesen especulares nuestros ( y, así pues, estar tan distanciados de nosotros como si fueran de otra substancia).

 

traducciones_ani

Las macromoléculas. Ácidos Nucleicos y Proteínas.

 

                                                       traducciones_ani

La célula es capaz de alimentarse y reproducirse a partir de aminoácidos, proteínas y ácidos nucleicos. La aparición de estos compuestos orgánicos sobre la Tierra se puede estudiar si nos situamos en el medio ambiente primitivo de la Tierra. El universo está compuesto por casi el 90% de hidrógeno. Al principio la Tierra tenía una esfera muy rica en ciertos compuestos de hidrógeno como el vapor de agua, amoníaco, metano, sulfuro de hidrógeno, cianuro  de hidrógeno, etc…; y también había un océano de agua líquida con gases atmosféricos disueltos en ella. Los elementos de la atmósfera y de la corteza terrestre reaccionaron entre sí formando moléculas mas complicadas, por ejemplo los aminoácidos. Con esta finalidad eran preciso una fuente de energía. En este entonces, la atmósfera carecía de oxigeno libre, imposibilitándose de formar el tan conocido ozono que impide el paso de los rayos ultravioleta del sol, tan dañinos para el hombre, pero tan favorable para la formación de las primeros moléculas vitales de la Tierra.

 

Proteínas

En este momentos los aminoácidos libre comenzaron a unirse formando proteínas. Estas a su vez, capaces de aprovechar el oxígeno deben haber elaborado el oxígeno que hoy en día tiene nuestra atmósfera. Luego este oxígeno se pudo agrupar formando el ozono el cual impidió el flujo de radiación ultravioleta, deteniendo la posibilidad de seguí creando organismos. En adelante, los nuevos organismo serían los herederos de esos primeros creados por la radiación solar. En un famoso experimento los investigadores americanos Miller y Urey aplicaron, descargas eléctricas en un recipiente conteniendo una mezcla de hidrógeno, metano, nitrógeno y amoníaco. Al final se comprobó que se habían formado distintas sustancias y combinaciones orgánicas. Se había generado, los bloques constituyentes de una proteína. Se considera que eran capaces de alimentarse y reproducirse. Más adelante fueron formando colonias. Las células se hicieron más interdependientes, dando lugar a los seres pluricelulares que poco a poco evolucionaron y se perfeccionaron. El resto es bastante conocido.

Otras “vidas”

 

                                                 

 

Si nosotros tenemos Ordenadores personalizados que atienden a nuestras instrucciones y se ocupan de necesidades cotidianas en la casa, en la oficina, en la fábrica y, que son capaces de realizar planteamientos matemáticos en minutos que, los seres vivos que los inventaron, tardarían meses en finalizar. Si, de la misma manera, hemos mandado Jet robotizados a Marte y lunas para “ver” y que nos cuenten…¿Qué podría impedir que criaturas inteligentes de otros mundos, nos tuvieran puesta vigilancias y, al ver como somos, se estén pensando visitarnos.

 

     Astronomía | Ciutat de les Arts i les CiènciesQue compuestos químicos delatarían la existencia de vida en otro planeta? | Actualidad | Investigación y Ciencia

 

       En cualquier parte del Universo pudiera estar presente esas otras posibles formas de vida

Es concebible la existencia de vida en otros sistemas solares, a modo de estructuras complejas autorreproductoras, aunque no tengan por qué ser ácidos nucleicos, ni siquiera compuestos derivados del carbono. Los métodos experimentales que se utilizan para descubrir vida en otros planetas se basan en el supuesto de la bioquímica del carbono; se hace difícil, por tanto, el reconocimiento de otras posibles formas de vida alienígenas.

Se ha sugerido que el átomo de Silicio (inmediatamente debajo del Carbono en el Sistema Periódico, lo cual indica una composición electrónica similar en su última capa) puede funcionar de manera semejante al Carbono; pero su radio atómico es excesivo para formar con éxito cadenas grandes o muy grandes y complejas de Silicio-Silicio. Pero… ¿Quién sabe?.

 

Será la vida, un principio esencial para la coherencia del Universo? : Blog  de Emilio Silvera V.

 

¡La Vida! la Complejidad del Universo… ¡Lo único le da sentido! ¿Qué sentido tendría un universo sin vida?

Emilio Silvera V.

¡La Vida! Ese misterio

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Por mucho que hayamos hablado sobre el misterio de la vida y su presencia en el Universo… ¡No podemos dar ninguna respuesta que lo explique! Todo son conjeturas y teorías de cómo pudo pasar, y, nos agarramos al “Ajuste fino”, mencionamos la posibilidad de una presencia Cósmica, y, sobre todo, si empleamos la lógica, solo podemos deducir de lo poco que sabemos que, la Vida pulula por todo el Universo.

Moléculas vivas sorprendentes

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

En matemáticas se pueden trazar líneas precisas y concretas que dividan en dos clases entes de naturaleza matemática. Una estructura geométrica se puede superponer o no a su imagen especular. Una estructura asimétrica puede tener una lateralidad a la derecha o bien a la izquierda.

Cualquier número entero positivo es par o impar, y no hay ninguno de tales números para el cual su situación  a este respecto ofrezca la menor duda. Pero en el mundo, si exceptuamos el nivel subatómico de la teoría cuántica, las lineas divisortias son casi siempre difusas. El alquitrán, ¿es sólido o líquido?. Lo cierto es que, la mayoría de las propiedades físicas se “mueven” en un espectro continuo que hace que vayan cambiando de manera imperceptible de un extremo a otro del mismo.

 

Los Estados de la materia y los cambios de los estados de la materia -  Solido, líquido y gaseoso

Estrellas, que son y como evolucionan. – Astro Gredos

El paso del tiempo convierte en líquido, gas o sólido algunos materiales y, a otros, los deforma hasta perder su estructura original para convertirlos en lo que antes no eran. Nada permanece, todo cambia. Sea cual fuere la línea de división, habrá algunos casos en los que no podamos definirla y, en otros, habrá objetos tan próximos a ella que el lenguaje ordinario no será lo suficientemente preciso como para poder afirmar a qué lado pertenece. Y, la propiedad de la vida, está, precisamente, en uno de esos continuos.

Para porbar esto basta que consideremos los virus: son las estructuras biológicas más pequeñas que se conocen  con la propiedad de poder “comer” (absorber sustancias situadas en sus proximidades), crecer y fabricar copias exactas de sí mismas.

 

Identificada una característica de los virus que los hace más propensos a  saltar de animales a humanos

Son mucho más pequeños que una bacteria (en realidad, algunos virus infectan las bacterias) y pasan sin dificultad a través de un filtro de porcelana fina que, aunque a nosotros nos parezca que está completamente sellada y su superficie es totalmente hermética y lisa, para ellos, tan “infinitamente” pequeños, ofrece miles de huecos por los que poder colarse.

 

Nuevas grabaciones en vídeo de un virus que infecta a las células sugiere que los virus se expanden mucho más rápido de lo que pensábamos. El descubrimiento de este mecanismo permitirá crear nuevos fármacos para hacer frente a algunos virus. En la punta de un alfiler caben millones de ellos. De hecho, los virus tienen el tamaño de una décima de micrómetro (diezmillonésima parte del metro).

El mundo de lo muy pequeño es fascinante y, por ejemplo, si hablamos de átomos, se necesitarían aproximadamente una cantidad para nosotros inconmensurable de átomos (602.300.000.000.000.000.000.000) para lograr un solo gramo de materia. Fijáos que hablamos de lo pequeño que pueden llegar a ser los virus y, sin embargo, el Hidrógeno con un sólo protón es el átomo más ligero y su masa es 400.000 veces menor que la masa de un virus, como antes dije, el organismo vivo más pequelo que se conoce. El virus más diminuto conocido mide unos o,00000002 m; su tamaño es 2.000 veces mayor que el del átomo. Y, en la punta del alfiler que antes mencionamos cabrían 60.000.000.000 (sesenta mil millones) de átomos.

 

Estas son las imágenes microscópicas del coronavirus Covid-2019 - José  Cárdenas

 

Como los virus son menores que la longitud de onda de la luz, no pueden observarse con un microscopio luminoso ordinario, pero los bioquímicos disponen de métodos ingeniosos que les permiten deducir su estructura, ya que pueden verlos mediante bombardeos con rayos X u otras partículas elementales.

En ralidad, se puede decir que un cristal “crece”, pero lo hace de un modo ciertamente trivial. Cuando se encuentra en una solución que contiene un compuesto semejante a él, dicho compuesto se irá depositando sobre su superficie; a medida que esto ocurre, el cristal se va haciendo mayor, pero el virus, igual que todos los seres vivos, crece de una manera más asombrosa: toma elementos de su entorno, los sintetiza en compuestos que no están presentes en el mismo y hace que se combinen unos con otros de tal manera que lleguen a dar una estructura compleja, réplica del propio virus.

 

 

Los virus sólo se multiplican en células vivientes. La célula huésped debe proporcionar la energía y la maquinaria de síntesis, también los precursores de bajo peso molecular para la síntesis de las proteínas virales y de los ácidos nucleicos. El ácido nucleico viral transporta la especificidad genética para cifrar todas las macromoléculas específicas virales en una forma altamente organizada.

 

Científicos capturaron el momento exacto en el que el coronavirus infecta  una célula - Infobae

 

El poder que tienen los virus de infectar, e incluso matar, un organismo, se debe precisamente a esto. Invade las células del organismo anfitrión, detiene su funcionamiento y lo sustituye, por decirlo de alguna manera, por otros nuevos. Ordena a la célula que deje de hacer lo que normalmente hace para que comience a fabricar las sustancias necesarias para crear copias de sí mismo, es decir, del virus invasor.

El primer virus que se descubrió, y uno de los más estudiados, es el virus sencillo que produce la “enfermedad del mosaico” en la planta del tabaco. Cristaliza en forma de barras finas que pueden observarse a través del microsopio electrónico. Recientemente se ha descubierto que cada barra es, en realidad, una estructura helicoidal orientada a la derecha, formada por unas 2.000 moléculas idénticas de proteína, cada una de las cuales contiene más de 150 subunidades de aminoácidos.

 

Las moléculas de proteínas se enrollan alrededor de una barra central imaginaria que va de un extremo a otro del cristal. Sumergido en la proteína (y no en la parte central, como podría pensar un estudiante) hay una única hebra helicoidal, enroscada hacia la derecha, de un compuesto de carbono llamado ácido nucleico. El ácido nucleico es una proteína, pero igual que éstas es un polímero: un compuesto con una molécula gigante formada por moléculas más pequeñas enlazadas de manera que formen una cadena.
Un polímero es una macromolécula en la que se repite n veces la misma estructura básica (monómero). En el caso del hule, las cadenas pueden tener desde n=20 000 hasta n=100 000.
Resultado de imagen de La doble hélice del ADN consiste en dos polinucleótidos enlazados a través de puentes de hidrógeno entre bases de cada cadena.Resultado de imagen de La doble hélice del ADN consiste en dos polinucleótidos enlazados a través de puentes de hidrógeno entre bases de cada cadena.
La doble hélice del ADN consiste en dos polinucleótidos enlazados a través de puentes de hidrógeno entre bases de cada cadena. b) Una timina de un lado se une con una adenina del otro. c) Una citosina con una guanina. Las unidades menores , llamadas nucleótidos están constituidas por átomos de Carbono, Oxñigeno, Nitrógeno, Hidrógeno y Fósforo; pero donde las proteínas tienen unas veinte unidades de aminoácidos, el ácido nucleico tiene solamente cuatro nucleótidos distintos. Se pueden encadenar miles de nucleótidos entre sí, como lo hacen las subunidades de aminoácidos de las proteínas en una variedad practicamente infinita de combinaciones, para formar cientos de miles de millones de moléculas de ácido nucleico. Exactamente igual que los aminoácidos, cada nucleótido es asimétrico y orientado a la izquierda. A causa de ello, la espina dorsal de una molécula de ácido nucleico, igual que la de una molécula de proteína, tiene una estructura helicoidal orientada hacia la derecha.
Recientemente se han descubiertos unas moléculas sorprendentes con irregularidades en su quiralidad. Por ejemplo, existen segmentos anómalos de ADN que se enroscan al revés. Este ADN “zurdo” se halló por primera vez en un tubo de ensayo, pero en 1987 se ideó un procedimiento para identificar dichos segmentos anómalos en células vivas. El papel del ADN invertido no está claro, y pudiera estar implicado en los mecanismos que ponen en marcha mutaciones que nos lleven a ser hombres y mujeres del futuro con otros “poderes” que vayan más allá para que, de esa manera, podamos llegar a comprender la Naturaleza de las cosas y, en definitiva, nuestra propia naturaleza que, de momento, sigue siendo un gran misterio para nosotros.
La célula: la unidad más pequeña con vida - Hidden Nature
Las células son el elemento más pequeño dentro de la compleja estructura de los seres vivos y suponen la base de sus niveles de organización, al crear tejidos que dan lugar a los órganos vitales.
Esta cosita tan pequeñita… ¡tendría tanto que contarnos! La quiralidad está a menudo asociada a la presencia de carbonos asimétricos. Un carbono asimétrico es aquel que se une a cuatro sustituyentes diferentes. Un ejemplo de carbono asimétrico lo tenemos en la molécula de Bromocloroyodometano. El carbono está unido a bromo, cloro, yodo e hidrógeno, cuatro sustituyentes diferentes que lo convierten en quiral o asimétrico. La molécula y su imagen en un espejo son diferentes, ningún giro permite superponerlas. La relación entre una molécula y su imagen especular no superponible es de enantiómeros.
PairCreation.svg
Lo cierto es que todo está hecho de esas pequeñas partículas… Quarks y Leptones. Las estudiamos y observamos los comportamientos que en situaciones distintas puedan tener y, una de las cuestiones que resultó curioso constatar es que,   existen partículas subatómicas que podríamos llamar pares y otras que podríamos llamar impares, porque sus combinaciones y desintegraciones cumplen las mismas propiedades que la suma de enteros pares e impares. Una partícula de paridad par puede partirse en dos de paridad par, o en dos de paridad impar, pero nunca en una de paridad par y otra de paridad impar (esto implica la conservación de la paridad). Y, de la misma manera que existen principios de conservación para la paridad, el momento angular, la materia…, también es un hecho irreversible ese principio que nos lleva a saber que, a partir de la materia “inerte”, surgieron los “seres” más pequeños que conocemos y que hicieron posible el surgir de la inmensa variedad de formas de vida que la evolución hizo llegar hasta nosotros que, estamos aquí hablando de todas estas cuestiones curiosas que nos llevan a saber, un poco más, del mundo en el que vivimos, de la Naturaleza y, de nosotros.
Emilio Silvera V.

Desde los átomos hasta las estrellas: Un largo viaje

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

enero 2010 – María Izquierdo Rojo

 

“Pues yo he sido a veces un muchacho y una chica,

Un matorral y un pájaro y un pez en las olas saladas.”

Resultado de imagen de Empédocles, el padre de aquellos primitivos elementos formados por Agua, tierra, aire y fuego

Esto nos decía Empédocles, el padre de aquellos primitivos elementos formados por Agua, tierra, aire y fuego que, mezclados en la debida proporción, formaban todas las cosas que podemos ver a nuestro alrededor. Claro que, él no podía llegar a imaginar hasta donde pudimos llegar después en la comprensión de la materia a partir del descubrimiento de las partículas “elementales” que formaban el átomo. Pero sí, con sus palabras, nos quería decir que, la materia, una veces está conformando mundos y, en otras, estrellas y galaxias.

 

 

Sí, hay cosas buenas y malas pero todas deben ser conocidas para poder, en el primer caso aprovecharlas, y en el segundo, prevenirlas. Está claro, y nuestra Historia nos lo cuenta que, no siempre hemos sabido ver donde estaba situada la mala para poder prevenirla y, esa ignorancia nos costó muy cara. Precisamente por eso es bueno saber sobre el por qué de las cosas.

 

 

Pero demos un salto en el tiempo y viajemos hasta los albores del siglo XX cuando se hacía cada vez más evidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años despuès del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de enormes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más sobre los átomos y las estrellas.

 

La manipulación controlada de átomos, la mejor investigación gallega del año

        Conseguimos tener los átomos en nuestras manos

El intento de lograr tal comprensión exigió una colaboración cada vez mayor entre los astrónomos y los físicos nucleares. Su trabajo llevaría, no sólo a resolver la cuestión de la energía estelar, sino también al descubrimiento de una trenza dorada en la que la evolución cósmica se entrelaza en la historia atómica y la estelar.

 

Resultado de imagen de La estructura del átomoResultado de imagen de La estructura del átomo

 

La Clave: Fue comprender la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radiactividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”).

 

 

El átomo de Demócrito era mucho más de lo que él, en un principio intuyó que sería. Hoy sabemos que está conformado por diversas partículas de familias diferentes: unas son bariones que en el seno del átomo llamamos nucleones, otras son leptones que giran alrededor del núcleo para darle estabilidad de cargas, y, otras, de la familia de los Quarks, construyen los bariones del núcleo y, todo ello, está, además, vigilado por otras partículas llamadas bosones intermedios de la fuerza nuclear fuerte, los Gluones que, procuran mantener confinados a los Quarks.

Pero no corramos tanto, la física atómica aún debería recorrer un largo camino para llegar a comprender la estructura que acabamos de reseñar. De los trs principales componentes del átomo -el protón, el neutrón y el electrón-, sólo el electrón había sido identificado (por J.J. Thomson, en los últimos años del siglo XIX). Nadie hablaba de energía “nuclear” pues ni siquiera se había demostrado la existencia de un núcleo atómico, y mucho menos de sus partículas constituyentes, el protón y el neutrón, que serían identificados, respectivamente, por Thomson en 1913 y James Chawick en 1932.

 

De importancia capital resultó conocer la existencia del núcleo y que éste, era 1/100.000 del total del átomo, es decir, casi todo el átomo estaba compuesto de espacios “vacíos” y, la materia así considerada, era una fracción infintesimal del total atómico.

Rutherford, Hans Geiger y Ernest Marsden se encontraban entre los Estrabones y Tolomeos de la cartografía atómica, en Manchester , de 1909 a 1911, sondearon el átomo lanzando corrientes de “partículas alfa” subatómicas -núcleos de helio- contra delgadas laminillas de oro, plata, estaño y otros metales. La mayoría de partículas Alfa se escapaban a través de las laminillas, pero, para sombro de los experimentadores, algunas rebotaban hacia atrás. Rutherford pensó durante largo tiempo e intensamente en este extraño resultado; era tan sorprendente, señalaba, como si una bala rebotase sobre un pañuelo de papel. Finalmente, en una cena en su casa en 1911, anunció a unos pocos amigos que había dado con una explicación: que la mayoría de la masa de un átomo reside en un diminuto núcleo masivo. Ruthertford pudo calcular la carga y el diámetro máximo del núcleo atómico. Así se supo que los elementos pesados eran más pesados que los elementos ligeros porque los núcleos de sus átomos tienen mayor masa.

Átomo de hidrógeno - Wikipedia, la enciclopedia libre

 

Todos sabemos ahora, la función que desarrollan los electrones en el átomo. Pero el ámbito de los electrones para poder llegar a la comprensión completa, tuvo que ser explorado, entre otros, por el físico danés Niels Bohr, quien demostró que ocupaban órbitas, o capas, discretas que rodean al núcleo. (Durante un tiempo Bohr consideró el átomo como un diminuto sistema solar, pero ese análisis, pronto demostró ser inadecuado; el átomo no está rígido por la mecánica newtoniana sino por la mecánica cuántica.)

        Si dos átomos tienen el mismo número másico, pertenecen al mismo electrón?  - Quora

Entre sus muchos otros éxitos, el modelo de Bohr revelaba la base física de la espectroscopia. El número de electrones de un átomo está determinado por la carga eléctrica del núcleo, la que a su vez se debe al número de protones del núcleo, que es la clave de la identidad química del átomo. Cuando un electróncae  de una órbita externa a una órbita interior emite un fotón. La longitud de onda de este fotón está determinada por las órbitas particulares entre las que el electrón efectúa la transición.

 

Líneas de Fraunhofer - Wikipedia, la enciclopedia libre

 

Esta es la razón de que un espectro que registra las longitudes de onda de los fotones, revele los elementos químicos que forman las estrellas u otros objetos que sean estudiados por el espectroscopista. En palabras de Max Planck, el fundador de la física cuántica, el modelo de Bohr del átomo nos proporciona “la llave largamente buscada de la puerta de entrada al maravilloso mundo de la espectroscopia, que desde el descubrimiento del análisis espectral (por Fraunhoufer) había desafiado obstinadamente todos los intentos de conocerlo”.

 

Resultado de imagen de Estrellas titilando en la noche oscura -Imagen GifsResultado de imagen de Estrellas titilando en la noche oscura -Imagen Gifs

 

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

Es un gran triunfo del ingenio humano el saber de qué, están conformadas las estrellas, de qué materiales están hechas. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir: “Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”. El hombre se vistió de gloria con la, desde entonces, famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.

Pero, por maravilloso que nos pueda parecer el haber llegado a la comprensión de que los espectros revelan saltos y tumbos de los electrones en sus órbitas de Bohr, aún nadie podía hallar en los espectros de las estrellas las claves significativas sobre lo que las hace brillar. En ausencia de una teoría convincente, se abandonó este campo a los taxonomistas, a los que seguían obstinadamente registrando y catalogando espectros de estrellas, aunque no sabían hacia donde los conduciría esto.

En el Laboratorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban delante de “calculadoras”, mujeres solteras en su mayoría y, de entre ellas, Henrietta Leavitt, la investigadora pionera de las estrellas variables Cefeidas que tan útiles serían a Shapley y Hubble.

 

Henrietta Swan Leavitt - Wikipedia, la enciclopedia libre

    Henrietta Leavitt

Imagen de Sirio A, la estrella más brillante del cielo tomada por el Telescopio Hubble  (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.

Fue Cannon quien, en 1915, empezó a discernir la forma en una totalidad de estrellas en las que estaba presente la diversidad, cuando descubrió que en una mayoría, las estrellas, pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación, ahora generalizado en la astronomía estelar, ordena los espectros por el color, desde las estrellas O blanco-azuladas, pasando por las estrellas G amarillas como el Sol, hasta estrellas rojas M. Era un rasgo de simplicidad debajo de la asombrosa variedad de las estrellas.

 

Resultado de imagen de Las HiadesResultado de imagen de Las Pléyades

 

Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacta danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, las Híades y las Pléyades. Los cúmulos como estos son genuinos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador poco experimentado salta entusiasmado cuando recorre con el telescopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta un amarillo apagado.

 

                                                                            Las Híades desde más cerca

Hertzsprung utilizó los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado diagrama Hertzsprung-Russell.

 

Diagrama Hertzsprung-Russell | Geofrik's Blog

 

El progreso en física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como barrera de Coulomb, y por un tiempo frustró los esfuerzos de las físicos teóricos para comprender como la fusión nuclear podía producir energía en las estrellas.

CESAR ¿De qué están hechas las estrellas?

La línea de razonamiento que conducía a esa barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. (Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de Hidrógeno consiste en un solo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno. (Recordemos que la masa es igual a la energía: E = mc2.) En el calor de una estrella, los protones son esparcidos a altas velocidades -el calor intenso significa que las partículas involucradas se mueven a enormes velocidades- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. Esta era la base de la conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra que la energía subatómica, la cual, como se sabe, existe en abundancia en toda materia”.

 

                                 

                                   Plasma en ebullición en la superficie del Sol

Hasta el momento todo lo que hemos repasado está bien pero, ¿Qué pasa con la Barrera de Coulomb? Los protones están cargados positivamente; las partículas de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del interior de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromagnéticos y fundirse en un solo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con el rostro radiante, riéndose de las ecuaciones que afirmaban que no podía brillar.

 

El efecto túnel: traspasando paredes

Figura que muestra de manera artística el cambio de color cuando en una cavidad subnanométrica se produce el efecto túnel cuántico.

Afortunadamente, en el ámbito nuclear, las reglas de la Naturaleza no se rigen por las de la mecánica de la física clásica, que tienen validez para grandes objetos, como guijarros y planetas, pero pierden esa validez en el reino de lo muy pequeño. En la escala nuclear, rigen las reglas de la indeterminación cuántica.  La mecánica cuántica demuestra que el futuro del protón sólo puede predecirse en términos de probabilidades: la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando, la atravesará. Este es el “efecto túnel cuántico”; que permite brillar a las estrellas.

Resultado de imagen de los protones pueden superar la Barrera de CoulombResultado de imagen de los protones pueden superar la Barrera de Coulomb

George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb.

Resultado de imagen de Efecto Triple Alfa

Con este mecanismo la Naturaleza encuentra el camino para sintetizar Carbono a partir del Helio

Esta historia es mucho más extensa y nos llevaría hasta los trabajos de Hans Bethe, Edward Teller y otros, así como, al famoso Fred Hoyle y su efecto Triple Alfa y otras maravillas que, nos cuentan la historia que existe desde los átomos a las estrellas del cielo.

Emilio Silvera V.