miércoles, 25 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




De Einstein a las Supercuerdas

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hasta hoy no se ha logrado, ni mucho menos, inventar una teoría de campo que incluya la gravedad. Se han dado grandes pasos, pero la brecha “científicounificante” es aún muy grande. El punto de partida, la base, ha sido siempre la relatividad y conceptos en ella y con ella relacionados, por la excelencia que manifiesta esa teoría para explicar la física gravitatoria cósmica. El problema que se plantea surge de la necesidad de modificar esta teoría de Einstein sin perder por ello las predicciones ya probadas de la gravedad a gran escala y resolver al mismo tiempo el problema de la gravedad cuántica en distancias cortas y de la unificación de la gravedad con las otras fuerzas de la naturaleza. Desde la primera década del siglo XX se han realizado intentos que buscan la solución a este problema, y que han despertado gran interés.

Después de la explosión científica que supuso la teoría de la relatividad general de Einstein que asombró al mundo, surgieron a partir e inspiradas por ella, todas esas otras teorías que antes he mencionado desde la teoría Kaluza-Klein a la teoría M.

Es de enorme interés el postulado que dichas teorías expone. Es de una riqueza incalculable el grado de complejidad que se ha llegado a conseguir para desarrollar y formular matemáticamente estas nuevas teorías que, como la de Kaluza-Klein o la de supercuerdas (la una en cinco dimensiones y la otra en 10 ó 26 dimensiones) surgen de otra generalización de la relatividad general tetradimensional einsteniana que se plantea en cuatro dimensiones, tres espaciales y una temporal, y para formular las nuevas teorías se añaden más dimensiones de espacio que, aunque están enrolladas en una distancia de Planck, facilitan el espacio suficiente para incluir todas las fuerzas y todos los componentes de la materia, tratando de postularse como la Teoría de Todo.

La Gran Teoría Unificada que todo lo explique es un largo sueño acariciado y buscado por muchos. El mismo Einstein se pasó los últimos treinta años de su vida buscando el Santo Grial de la teoría del todo en la física, unificadora de las fuerzas y de la materia. Desgraciadamente, en aquellos tiempos no se conocían elementos y datos descubiertos más tarde y, en tales condiciones, sin las herramientas necesarias, Einstein no podría alcanzar su sueño tan largamente buscado. Si aún viviera entre nosotros, seguro que disfrutaría con la teoría de supercuerdas o la teoría M, al ver como de ellas, sin que nadie las llame, surgen, como por encanto, sus ecuaciones de campo de la relatividad general.

La fuerza de la naturaleza, en el universo primitivo del Big Bang, era una sola fuerza y el estado de la materia es hoy conocido como “plasma”; las enormes temperaturas que regían no permitía la existencia de protones o neutrones, todo era como una sopa de quarks. El universo era opaco y estaba presente una simetría unificadora.

Más tarde, con la expansión, se produjo el enfriamiento gradual que finalmente produjo la rotura de la simetría reinante. Lo que era una sola fuerza se dividió en cuatro. El plasma, al perder la temperatura necesaria para conservar su estado, se trocó en quarks que formaron protones y neutrones que se unieron para formar núcleos. De la fuerza electromagnética, surgieron los electrones cargados negativamente y que, de inmediato, fueron atraídos por los protones de los núcleos, cargados positivamente; así surgieron los átomos que, a su vez, se juntaron para formar células y éstas para formar los elementos que hoy conocemos. Después se formaron las estrellas y las galaxias que sirvieron de fábrica para elementos más complejos surgidos de sus hornos nucleares hasta completar los 92 elementos naturales que conforma toda la materia conocida. Existen otros elementos que podríamos añadir a la Tabla, pero estos son artificiales como el plutonio o el einstenio.

Estos conocimientos y otros muchos que hoy posee la ciencia es el fruto de mucho trabajo, de la curiosidad innata al ser humano, del talento de algunos y del ingenio de unos pocos, todo ello después de años y años de evolución pasando los descubrimientos obtenidos de generación en generación.

¿Cómo habría podido Einstein formular su teoría de la relatividad general sin haber encontrado el Tensor métrico del matemático alemán Riemann?

¿Qué formulación del electromagnetismo habría podido hacer James C. Maxwell sin el conocimiento de los experimentos de Faraday?

La relatividad especial de Einstein, ¿habría sido posible sin Maxwell y Lorentz?

¿Qué unidades habría expuesto Planck sin los números de Stoney?

Así podríamos continuar indefinidamente, partiendo incluso, del átomo de Demócrito, hace ahora más de 2.000 años. Todos los descubrimientos e inventos científicos están apoyados por ideas que surgen desde conocimientos anteriores que son ampliados por nuevas y más modernos formulaciones.

Precisamente, eso es lo que está ocurriendo ahora con la teoría M de las supercuerdas de Witten. Él se inspira en teorías anteriores que, a su vez, se derivan de la original de A. Einstein que pudo surgir, como he comentado, gracias al conocimiento que en geometría aportó Riemann con su tensor métrico.

Y no sería extraño que, al igual que Einstein pudo salir del callejón sin salida en el que estaba metido, hasta que por fin apareció la geometría espacial curva de Riemann para salvarlo que, de la misma manera, Witten y otros, puedan salir del escollo en el que han quedado aprisionados con la teoría de supercuerdas, gracias a las funciones modulares de aquel extraño matemático llamado Ramanujan que, como Riemann, murió antes de cumplir los treinta y cinco años.

En el ranking de los científicos más importantes del mundo, elaborado en función del impacto de los artículos publicados por cada cual en las revistas científicas, los trabajos realizados y los libros, etc, que es un buen indicador de la carrera de cada uno, no parece haber ninguna duda en que Ed Witten, el físico-matemático estadounidense, tiene el número uno de esa lista, y muy destacado sobre el segundo. Aunque es Físico Teórico, en 1.990, la Unión Internacional de Matemáticos le concedió la Medalla Field, algo así como el primeo Nobel en matemáticas que no concede la Academia Sueca. Es la figura más destacada en el campo de las supercuerdas, un complicado entramado teórico que supera el gran contrasentido de que las dos vertientes más avanzadas de la física, la teoría relativista de la gravitación y la mecánica cuántica, sean incompatibles pese a que cada una por separado estén más que demostradas.

Ningún físico se siente cómodo con este divorcio recalcitrante, aunque no todos tienen la misma confianza en esta concepción de las supercuerdas, en que las partículas elementales (electrones, quarks, etc) son modos de vibración de cuerdas de tamaño inimaginablemente pequeño (10-33 cm) que existen en universos con 11 dimensiones en lugar de las cuatro cotidianas, tres de espacio y una de tiempo de la teoría de A. Einstein. Las supercuerdas están en ebullición desde que hace unos veinte años Witten dio un fuerte tirón a toda la cuestión al sintetizar brillantemente ideas que estabas en el ambiente y que nadie había sido capaz de formular a plena satisfacción de todos, ya que, esta especialidad de supercuerdas y de las 11 dimensiones exige un nivel y una profundidad matemática que sólo está al alcance de unos pocos. Este trabajo de Witten desembocó en lo que hasta ahora todos denominan teoría M (Witten, como ya he comentado antes, se refería en su exposición de la nueva teoría – o mejor, nuevo planteamiento – a magia, misterio y matriz).

La teoría de supercuerdas tiene tantas sorpresas fantásticas que cualquiera que investigue en el tema reconoce que está llena de magia. Es algo que funciona con tanta belleza… Cuando cosas que no encajan juntas e incluso se repelen, si se acerca la una a la otra alguien es capaz de formular un camino mediante el cual, no sólo no se rechazan, sino que encajan a la perfección dentro de ese sistema, como ocurre ahora con la teoría M que acoge con naturalidad la teoría de la relatividad general y la teoría mecánico-cuántica; ahí, cuando eso se produce, está presente la belleza.

Lo que hace que la teoría de supercuerdas sea tan interesante es que el marco estándar mediante el cual conocemos la mayor parte de la física es la teoría cuántica y resulta que ella hace imposible la gravedad. La relatividad general de Einstein, que es el modelo de la gravedad, no funciona con la teoría cuántica. Sin embargo, las supercuerdas modifican la teoría cuántica estándar de tal manera que la gravedad no sólo se convierte en posible, sino que forma parte natural del sistema; es inevitable para que éste sea completo.

Un sistema como el Modelo Estándar, que acoge todas las fuerzas de la naturaleza, dejando aparte la fuerza gravitatoria, no refleja la realidad de la naturaleza, está incompleto.

Hace muchos años que la física persigue ese modelo, la llaman Teoría de Todo y debe explicar todas las fuerzas que interaccionan con las partículas subatómicas que conforman la materia y, en definitiva, el universo, su comienzo y su final, el hiperespacio y los universos paralelos. Esa es la teoría de supercuerdas.

¿Por qué es tan importante encajar la gravedad y la teoría cuántica? Porque no podemos admitir una teoría que explique las fuerzas de la naturaleza y deje fuera a una de esas fuerzas. Así ocurre con el Modelo Estándar que deja aparte y no incluye a la fuerza gravitatoria que está ahí, en la naturaleza.

La teoría de supercuerdas se perfila como la teoría que tiene implicaciones si tratamos con las cosas muy pequeñas, en el microcosmos; toda la teoría de partículas elementales cambia con las supercuerdas que penetra mucho más; llega mucho más allá de lo que ahora es posible.

En cuanto a nuestra comprensión del universo a gran escala (galaxias, el Big Bang…), creo que afectará a nuestra idea presente, al esquema que hoy rige y, como la nueva teoría, el horizonte se ampliará enormemente; el cosmos se presentará ante nosotros como un todo, con un comienzo muy bien definido y un final muy bien determinado.

Para cuando eso llegue, sabremos lo que es, como se genera y dónde están situadas la esquiva materia oscura y energía invisible que sabemos que están ahí, pero no sabemos explicar ni el qué ni el por qué.

La Humanidad, aún en proceso de humanización, para su evolución necesita otro salto cuantitativo y cualitativo del conocimiento que les permita avanzar notablemente hacia el futuro. Ese avance está supeditado a que la teoría M, la versión más avanzada de supercuerdas, se haga realidad.

Todos los avances de la Humanidad han estado siempre cogidos de la mano de las matemáticas y de la física. Gracias a estas dos disciplinas del saber podemos vivir cómodamente en ciudades iluminadas en confortables viviendas. Sin Einstein, pongamos por ejemplo, no tendríamos láseres o máseres, pantallas de ordenadores y de TV, y estaríamos en la ignorancia sobre la curvatura del espaciotiempo o sobre la posibilidad de ralentizar el tiempo si viajamos a gran velocidad; también estaríamos en la más completa ignorancia sobre el hecho cierto y demostrado de que masa y energía (E = mc2), son la misma cosa.

Como ese ejemplo podríamos aportar miles y miles. Es necesario continuar avanzando en el conocimiento de las cosas para hacer posible que, algún día, dominemos las energías de las estrellas, de los agujeros negros y de las galaxias. Ese dominio será el único camino para que la Humanidad que habita el planeta Tierra, pueda algún día, lejano en el futuro, escapar hacia las estrellas para instalarse en otros mundos lejanos. Ese es nuestro inevitable destino. Llegará ese irremediable suceso que convertirá nuestro Sol en una gigante roja, cuya órbita sobrepasará Mercurio, Venus y posiblemente el planeta Tierra. Pero antes, en el proceso, las temperaturas se incrementarán y los mares y océanos del planeta se reconvertirán en vapor. Toda la vida sobre el planeta será eliminada y para entonces, si queremos sobrevivir y preservar la especie, estaremos ya muy lejos, buscando nuevos mundos habitables en algunos casos, o instalados como colonizadores de otros planetas. Mientras tanto, el Sol habrá explotado en nova y se convertirá en una estrella enana blanca. Sus capas exteriores serán lanzadas al espacio estelar y el resto de la masa del Sol se contraerá sobre sí misma. La fuerza de gravedad reducirá más y más su diámetro, hasta dejarlo en unos pocos kilómetros, como una gran pelota de enorme densidad que poco a poco se enfriará.  Un cadáver estelar.

Ese es el destino del Sol que ahora hace posible la vida en nuestro planeta, enviándonos su luz y su calor, sin los cuales, no podríamos sobrevivir.

Para cuando eso llegue (faltan 4.000 millones de años), la Humanidad tendrá que contar con medios tan avanzados que ahora sólo podríamos imaginar. Las dificultades que habrá que vencer son muchas y, sobre todo, increíblemente difíciles de superar.

¿Cómo podremos evitar las radiaciones gamma y ultravioletas?

¿En qué clase de naves podremos escapar a esos mundos lejanos?

¿Seremos capaces de vencer la barrera de la velocidad de la luz?

Nuestros ingenios espaciales, nuestra naves hoy (estamos en la edad primitiva de los viajes espaciales), pueden alcanzar una velocidad máxima de 40 ó 50 mil kilómetros por hora y, además, la mayor parte de su carga es el combustible necesario para moverla.

La estrella más cercana al Sol es Alfa Centauro; un sistema triple, consistente en una binaria brillante y una enana roja débil a 2º, llamada Próxima Centauro. La binaria consiste en una enana G2 de amplitud -0’01 y una enana K1 de magnitud 1’3. Vistas a simple vista, aparecen como una única estrella y se encuentran a 4’3 años luz del Sol.

Sabemos que 1 año luz es la distancia recorrida por la luz en un año trópico a través del espacio vacio, y equivale a 9’4607×1012 km, ó 63.240 Unidades Astronómicas, ó 0’3066 parsecs.

La  Unidad Astronómica es la distancia que separa al planeta Tierra del Sol, y equivale a 150 millones de kilómetros; poco más de 8 minutos luz.

Ahora pensemos en la enormidad de la distancia que debemos recorrer para llegar a Alfa Centauro, nuestra estrella vecina más cercana.

63.240 Unidades Astronómicas a razón de 150 millones de km. Cada una nos dará 9.486.000.000.000 de kilómetros recorridos en un año y, hasta llegar a Alfa Centauro, lo multiplicamos por 4’3 y nos resultarían 40.789.800.000.000 de kilómetros hasta Alfa. La cantidad resultante son millones de kilómetros.

Ahora pensemos que con nuestras actuales naves que alcanzan velocidades de 50.000 km/h, tratáramos de llegar a Alfa Centauro. ¿Cuándo llegaríamos, en el supuesto caso de que no surgieran problemas durante el viaje?

Bueno, en estas condiciones, los viajeros que salieran de la Tierra junto con sus familias, tendrían que pasar el testigo a las siguientes generaciones que, con el paso del tiempo (muchos, muchos siglos), olvidarían su origen y, posiblemente, las condiciones de ingravidez del espacio mutarían el físico de estos seres en forma tal que, al llegar a su destino podrían ser cualquier cosa menos humanos. Precisamente para evitar este triste final, estamos investigando, haciendo pruebas en viajes espaciales, trabajando en nuevas tecnologías y probando con nuevos materiales, y buscando en nuevas teorías avanzadas, como la teoría M, las respuesta a preguntas que hacemos y de las que hoy no tenemos respuesta, y sin estas respuestas, no podemos continuar avanzando para que, cuando llegue ese lejano día, podamos con garantía salir hacia las estrellas, hacia esos otros mundos que acogerá a la Humanidad, cuyo destino, irremediablemente, está en las estrellas. De material de estrellas estamos hechos y en las estrellas está nuestro destino.

Si finalmente el destino del universo (supeditado a su densidad crítica), es el Big Crunch, entonces la Humanidad tendrá otro problema, este aún más gordo que el anterior, para resolver.

El primero será buscar soluciones para escapar de nuestro sistema solar, lo que en un futuro lejano, y teniendo encuentra que el avance tecnológico, es exponencial, parece que dicho problema puede tener una solución dentro de los límites que la lógica nos puede imponer. El segundo parece más serio, ¡escapar de nuestro universo! Pero… ¿a dónde podríamos escapar? Stephen Hawking y otros científicos nos hablan de la posibilidad de universos paralelos o múltiples; en unos puede haber condiciones para albergar la vida y en otros no. ¿Pero cómo sabremos que esos universos existen y cuál es el adecuado para nosotros? ¿Cómo podremos escapar de este universo para ir a ese otro?

Son preguntas que nadie puede contestar hoy. La Humanidad, para saber con certeza su futuro, tendrá que seguir trabajando y buscando nuevos conocimientos y, para dentro de unos milenios (si antes no se destruye a sí misma), seguramente, habrá obtenido algunas respuestas que contestarán esta difícil pregunta que, a comienzos del siglo XXI, nadie está capacitado para contestar.

Se puede sentir la fascinación causada por la observación de la belleza que encierra el universo, la simple observación de lo que encierra nos causará asombro, aunque no se tenga preparación científica, pero el nivel de apreciación de la naturaleza, la verdadera maravilla, vendrá de comprender mejor lo que estamos viendo, que es mucho más que grandes figuras luminosas y múltiples objetos brillantes, es… la evolución… la vida.

Ensimismado en mis pensamientos me asombro del enorme talento que tenía Einstein. Su gravedad es una predicción de las supercuerdas; sus ecuaciones surgen de esta nueva teoría como por arte de magia, nadie las ha llamado, pero aparecen. Dicha aparición espontánea es una pista importante a favor de esta nueva teoría que aspira a contestar alguna de las preguntas pendientes. Por otra parte, las supercuerdas originan la idea de la supersimetría, considerada uno de los grandes descubrimientos en física.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting