Oct
12
De la Luz y otras maravillas
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
La luz es importante en nuestras vidas, tan importante que hasta hemos inventado luz artificial para alumbrar nuestras casas y ciudades y escapar de la fea oscuridad. Es una forma de radiación electromagnética a la que el ojo humano es sensible y sobre la cual depende nuestra consciencia visual del universo y sus contenidos.
La velocidad finita de la luz fue sospechada por muchos experimentadores en óptica, pero fue establecida en 1676, cuando O. Roemer (1644 – 1710) la midió. Sir Isaac Newton (1642 – 1727) investigó el espectro óptico y utilizó los conocimientos existentes para establecer una primera teoría corpuscular de la luz, en la que era considerada como un chorro de partículas que provocaban perturbaciones en el “éter” del espacio.
Sus sucesores adoptaron los corpúsculos, pero ignoraron las perturbaciones con forma de onda hasta que Thomas Young (1773 – 1829) redescubrió la interferencia de la luz en 1801 y mostró que una teoría ondulatoria era esencial para interpretar este tipo de fenómenos. Este punto de vista fue adoptado durante la mayor parte del siglo XIX y permitió a James Clerk Maxwell (1831 – 1879) mostrar que la luz forma parte del espectro electromagnético. En 1905, Albert Einstein (1879 – 1955) demostró que el efecto fotoeléctrico sólo podía ser explicado con la hipótesis de que la luz consiste en un chorro de fotones de energía electromagnética discretos, esto es, pequeños paquetes de luz que él llamó fotones y que Max Planck llamó cuanto. Este renovado conflicto entre las teorías ondulatoria y corpuscular fue gradualmente resuelto con la evolución de la teoría cuántica y la mecánica ondulatoria. Aunque no es fácil construir un modelo que tenga características ondulatorias y cospusculares, es aceptado, de acuerdo con la teoría de Bohr de la complementariedad, que en algunos experimentos la luz parecerá tener naturaleza ondulatoria, mientras que en otros parecerá tener naturaleza corpuscular. Durante el transcurso de la evolución de la mecánica ondulatoria también ha sido evidente que los electrones y otras partículas elementales tienen propiedades de partícula y onda.
El fotón es una partícula con masa en reposo nula consistente en un cuanto de radiación electromagnética (cuanto de luz). El fotón también puede ser considerado como una unidad de energía igual a hf, donde h es la constante de Planck y f es la frecuencia de radiación en hertzios. Los fotones viajan a la velocidad de la luz, es decir, a 299.792.458 metros por segundo. Son necesarios para explicar (como dijo Einstein) el efecto fotoeléctrico y otros fenómenos que requieren que la luz tenga carácter de partícula unas veces y de onda otras.
El conocimiento de la luz (los fotones), ha permitido a la humanidad avances muy considerables en electrónica que, al sustituir los electrones por fotones (fotónica) se han construido dispositivos de transmisión, modulación, reflexión, refracción, amplificación, detección y guía de la luz. Algunos ejemplos son los láseres y las fibras ópticas. La fotónica es muy utilizada en telecomunicaciones, en operaciones quirúrgicas por láseres, en armas de potentes rayos láser y… en el futuro, en motores fotónicos que, sin contaminación, moverán nuestras naves a velocidades súper-lumínicas.
Oct
12
¡El sueño del mañana!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Si calentamos gases de oxígeno e hidrógeno por encima de 3.000° K hasta que se descomponen los átomos de hidrógeno y oxígeno, los electrones se separan de los núcleos y tenemos ahora un plasma (un gas ionizado a menudo llamado el cuarto estado de la materia, después de los gases, líquidos y sólidos). Aunque un plasma no forma parte de la experiencia común, podemos verlo cada vez que miramos al Sol. De hecho, el plasma es el estado más común de la materia en el universo.
Sigamos ahora calentando el plasma hasta 1.000 millones de grados Kelvin, hasta que los núcleos de hidrógeno y oxígeno se descomponen, y tenemos un “gas” de neutrones y protones individuales, similar al interior de una estrella de neutrones.
Si calentamos aun más el gas de nucleones hasta 10.000 millones grados K, estas partículas subatómicas se convertirían irremisiblemente en quarks disociados. Ahora tenemos un gas de quarks y leptones (los electrones y neutrinos).
Está claro que, si calentamos este gas de quarks y leptones, aún más, la fuerza electromagnética y electrodébil se unen. Aparecen simetrías antes ausentes y las fuerzas electrodébil y fuerte se unifican y, aparecen las simetrías superiores GUT [SU (5), O (10), o E (6)].
Finalmente, a la fabulosa temperatura de 1032 K, la gravedad se unifica con la fuerza GUT, y aparecen todas las simetrías de la supercuerda decadimensional.
Hemos vuelto, con el proceso descrito, a la situación reinante en los primeros instantes del Big Bang, la simetría era total y existía una sola fuerza. Más tarde, el universo recién nacido y en expansión, comenzó a enfriarse, la simetría se rompió para crear las cuatro fuerzas de la naturaleza que hoy nos gobiernan y lo que al principio eran quarks sueltos que formaban un plasma opaco, se juntaron para formar protones y neutrones que unidos, crearon los núcleos que al ser rodeados por los electrones conformaron los átomos que más tarde creó la materia tal como ahora la conocemos, haciendo el universo transparente y apareciendo la luz.
Todo este relato anterior no es gratuito, lo expongo como una muestra de cómo pueden evolucionar las cosas de acuerdo a las condiciones reinantes y a los hechos y circunstancias que concurran. He contado lo que sucedería a un poco de agua que se calienta de manera continua. Pasa por todos los procesos de su evolución hacia atrás hasta llegar a lo que fue en origen: quarks y leptones.
De la misma manera, nuestra civilización, no puede dejar de avanzar en el conocimiento a medida que va pasando el tiempo. Nuestras necesidades (cada vez más exigentes) nos llevan a inventar nuevas tecnologías y a producir artículos de consumo más y más sofisticados que hacen más fácil y cómoda la vida, eliminan las distancias, acercan las conexiones y globaliza el mundo.
Ahora se habla de operaciones delicadas que se realizan sin ningún riesgo mediante láseres que están planificados por ordenador para intervenir con precisión milimétrica. Se avanza en lo que denominamos nanotecnología, una maravilla de artilugios microscópicos que permitirá (entre otras muchas cuestiones), colocar un fármaco en el lugar exacto de nuestro organismo, el dañado, evitando así (como ocurre ahora) que partes sanas de nuestro cuerpo soporte fármacos que ingerimos para curar partes dañadas pero que, no podemos evitar que incida de manera generalizada en todas partes. Podemos investigar en computación cuántica (teoría cuántica de la luz) que permitirá la revolución tecnológica de crear y transmitir información y crear ordenadores que permitirán cálculos a velocidades ahora imposibles en ordenadores de plasma (Juan Ignacio Cirac, físico español de 41 años, director del Departamento de teoría del Instituto Max Planck, es el autor y responsable de estos estudios). Se investiga en la energía de fusión que estará lista para cuando en los próximos cincuenta años, cuando sea difícil extraer gas y petróleo, se pueda suministrar la demanda mundial que está en aumento creciente.
El que tenga la fortuna de vivir a finales de este siglo XXI y a comienzos del XXII, podrá disfrutar de maravillas ahora impensables. A mediados del siglo XXII, por ejemplo, comenzará a ser utilizado otro medio de transporte que, poco a poco, desbancará al automóvil terrestre que ahora abarrotan las calles y carreteras.
Para desplazarnos por la ciudad, por las calles, tendremos aceras móviles que nos llevaran a cualquier parte. Traslados más rápidos serán cosa de vagones subterráneos o de naves voladores que suplirán a los coches y desterrarán, casi por completo, los accidentes de tráfico que nuestro sistema actual de transporte nos hace padecer.
También en los desplazamientos largos se verá un cambio radical. Modernas naves súper rápidas nos llevarán de un continente a otros lejanos en la décima fracción de tiempo que emplean los actuales aviones.
La carrera espacial, en el 2250, será un hecho tangible y modernas naves tripuladas cruzaran el vacío estelar de nuestro sistema solar visitando las colonias terrestres de Marte, Europa, Titán, Ganímedes o en las minas de Azufre de Io.
Para entonces, modernas naves surcarán el espacio exterior camino de estrellas lejanas, ocupadas por sofisticados robots que irán enviando al planeta Tierra datos y fotografías del cosmos que permitirá confeccionar rutas y mapas para próximos viajes tripulados en aeronaves espaciales que utilizaran nuevas técnicas de desplazamiento basada en la curvatura del espaciotiempo que, permitirá por vez primera, vencer o mejor burlar la barrera de la velocidad de la luz sin traspasarla.
Pero volvamos al presente.
emilio silvera
Oct
12
¡Son tantas las cosas que no sabemos!
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Nuestro Sol fusiona hidrogeno en helio a razón de 4.654.000 toneladas por segundo. De esta enorme cantidad de hidrógeno, 4.650.000 toneladas se convierten en helio. Las 4.000 toneladas restantes son lanzadas al espacio en forma de luz y calor, energía termonuclear de la que, una parte, llega al planeta Tierra y hace posible la vida.
Resulta pues que el combustible nuclear de las estrellas es el hidrógeno que mediante su fusión hace posible que genere tal enormidad de energía. Así lleva el Sol unos 4.500 millones de años y se espera que al menos durante un período similar nos esté regalando su luz y su calor.
Pero ¿tenemos hidrógeno en el planeta Tierra para tal empresa de fusión nuclear?
La verdad es que sí. La fuente de suministro de hidrógeno con la que podemos contar es prácticamente inagotable…
¡El agua de los mares y de los océanos!
Todos sabemos que el hidrógeno es el elemento más ligero y abundante del universo. Está presente en el agua y en todos los compuestos orgánicos. Químicamente, el hidrógeno reacciona con la mayoría de los elementos. Fue descubierto por Henry Cavendisch en 1776. El hidrógeno se utiliza en muchos procesos industriales, como la reducción de óxidos minerales, el refinado del petróleo, la producción de hidrocarburos a partir de carbón y la hidrogenación de los aceites vegetales y, actualmente, es un candidato muy firme para su uso potencial en la economía de los combustibles de hidrógeno en la que se usan fuentes primarias distintas a las energías derivadas de combustibles fósiles (por ejemplo, energía nuclear, solar o geotérmica) para producir electricidad, que se emplea en la electrólisis del agua. El hidrógeno formado se almacena como hidrógeno líquido o como hidruros de metal.
Bueno, tantas explicaciones sólo tienen como objeto hacer notar la enorme importancia del hidrógeno. Es la materia prima del universo, sin él no habría estrellas, no existiría el agua y, lógicamente, tampoco nosotros podríamos estar aquí sin ese preciado elemento.
Cuando dos moléculas de hidrógeno se junta con una de oxígeno (H2O), tenemos el preciado líquido que llamamos agua y sin el cual la vida no sería posible.