miércoles, 13 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡¡SRINIVASA RAMANUJAN!!

Autor por Emilio Silvera    ~    Archivo Clasificado en Matemáticas    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Srinivasa Ramanujan nació en 1887 en Erode, India, cerca de Madrás.  Su familia de clase media alta, brahmin, la más alta de las castas hindúes, fueron destituidos y venidos a menos. Su padre trabajaba de oficinista de un comerciante de tejidos.

Con diez años, lo mismo que pasó antes con Riemann, ya destacaba y sorprendía a todos con sus enormes poderes de cálculos. Siendo niño rederivó la identidad de Euler entre funciones trigonométricas y exponenciales.

En la vida de cada científico joven hay un punto de partida, un hecho que, sin ellos saberlo, les marca el destino. Para Einstein fue la fascinación que le causó la brújula que le regaló su tío cuando estaba enfermo siendo un niño, no podía apartar la mirada de la aguja que siempre indicaba hacia el mismo sitio, y se preguntó una y mil veces por la fuerza invisible que la obligaba a dirigirse hacia esa dirección. Para Riemann, fue la lectura del libro de matemáticas de Legendre. Para Ramanujan, fue cuando se sumergió en un oscuro y olvidado libro de matemáticas escrito por George Carr. Este libro ha quedado inmortalizado desde entonces por el hecho de que señaló la única exposición conocida de Ramanujan a las modernas matemáticas occidentales. Según su hermana:

“Fue este libro el que despertó su genio. Él se propuso establecer por sí mismo las fórmulas dadas allí. Como no tenía la ayuda de otros libros, cada solución era un trabajo de investigación por lo que a él concernía… Ramanujan solía decir que la diosa Namakkal le inspiraba las fórmulas en sueños”.

Con ayuda de amigos, Ramanujan consiguió un puesto de bajo nivel del puerto de Madrás. Era un trabajo servil, con una mísera paga de 20 libras al año, pero dio libertad a Ramanujan, como a Einstein antes que él en la oficina de Patentes Suiza, para seguir sus sueños en su tiempo libre. Ramanujan, en la fascinación que en él ejercían los números, era incansable. Llenaba libretas enteras de cálculos y ecuaciones que antes veía florecer en su cabeza.

Así estaban las cosas cuando decidió escribir algunos de sus trabajos a las tres matemáticos más famosos de Inglaterra y Europa.

Dos de aquellos matemáticos, al tener en su poder las cartas enviadas por un miserable empleado sin instrucción formal alguna, sin haber comprobado su contenido, las arrojaron directamente a la basura. El tercero era el brillante matemático de Cambridge Godfrey Harold Hardy. Debido a su categoría en Inglaterra, Hardy estaba acostumbrado a recibir correo de chiflados proponiéndole los más peregrinos proyectos y, en un primer momento apenas prestó atención a la carta del joven Ramanujan.

Entre los densos garabatos advirtió muchos teoremas matemáticos que ya eran bien conocidos. Pensando que era la obra obvia de un plagiario, él también la desechó en ese primer impulso. Pero había algo que no encajaba.  Algo que inquietaba a Hardy; no podía dejar de pensar en aquella extraña carta.

Durante la cena de esa noche, 16 de enero de 1913, Hardy y su colega John Littlewood discutieron esta carta singular y decidieron echar un segundo vistazo-repaso a su contenido. Comenzaba de forma bastante inocente, con “Me permito presentarme a usted como un empleado en el departamento de contabilidad de la oficina del puerto franco de Madrás con un salario de sólo veinte libras al año”. Pero la carta del pobre empleado de Madrás contenía teoremas que eran totalmente desconocidos para los matemáticos occidentales. En total, contenía 120 teoremas. Hardy estaba atónito. Recordaba que demostrar algunos de esos teoremas:

“Me derrotó por completo. Nunca había visto nada antes que se le pareciera en lo más mínimo. Una simple ojeada a ellos es suficiente para mostrar que sólo podían estar elaborados por un matemático muy grande”.

Littlewood y Hardy alcanzaron la misma conclusión: aquello era el trabajo de un genio empeñado en derivar de nuevo 100 años de matemáticas europeas.

“Él había estado llevando a cabo una carrera imposible, un pobre y solitario hindú, completamente solo y sin ayuda, enfrentando su cerebro contra toda la sabiduría acumulada en Europa”

recordaba con asombro Hardy.

Hardy escribió a Ramanujan y, tras muchas pesquisas, uso de amistades e influencias, arregló su estancia en Cambridge en 1914. Por primera vez, Ramanujan podía comunicarse regularmente con sus iguales, la comunidad de los matemáticos europeos. Entonces comenzó el estallido de su actividad: tres cortos e intensos años de colaboración con Hardy en el Trinity Collage en Cambridge.

Hardy trató más tarde de estimar la capacidad matemática que poseía Ramanujan. Concedió a David Hilbert, universalmente conocido y reconocido como uno de los mayores matemáticos occidentales del siglo XIX, una puntuación de 80. A Ramanujan le asignó una puntuación de 100. Así mismo, Hardy se concedió un 25.

Por desgracia, ni Hardy ni Ramanujan parecían interesados en la psicología a los procesos de pensamiento mediante los cuales Ramanujan descubría estos increíbles teoremas, especialmente cuando este diluvio material brotaba de sus sueños con semejante frecuencia. Hardy señaló:

“Parecía ridículo importunarle sobre cómo había descubierto este o ese teorema conocido, cuando él me estaba mostrando media docena cada día de nuevos teoremas”.

Hardy recordaba vivamente:

“Recuerdo una vez que fui a visitarle cuando estaba enfermo en Putney. Yo había tomado el taxi número 1.729, y comenté que el numero me parecía bastante feo, y que esperaba que no fuese mal presagio”.

No. – Replicó Ramanujan postrado en su cama –. Es un número muy interesante; es el número más pequeño expresable como una suma de dos cubos en dos formas diferentes.

(Es la suma de 1 x 1 x 1 y 12 x 12 x 12, y también la suma de 9 x 9 x 9 y 10 x 10 x 10).”

Era capaz de recitar en el acto teoremas complejos de aritmética cuya demostración requeriría un ordenador moderno.

En 1919 volvió a casa, en la India, donde un año más tarde murió enfermo.

El legado de Ramanujan es su obra, que consta de 4.000 fórmulas en cuatrocientas páginas que llenan tres volúmenes de notas, todas densamente llenas de teoremas de increíble fuerza pero sin ningún comentario, o lo que es más frustrante, sin ninguna demostración. En 1976, sin embargo, se hizo un nuevo descubrimiento. Ciento treinta páginas de borradores, que contenían los resultados del último año de su vida, fueron descubiertas por casualidad en una caja en el Trinity Collage. Esto se conoce ahora con el nombre de “Cuaderno Perdido” de Ramanujan.

Comentando este cuaderno perdido, el matemático Richard Askey dice: “El trabajo de este año, mientras se estaba muriendo, era el equivalente a una vida entera de un matemático muy grande”. Lo que él consiguió era increíble. Los matemáticos Jonathan Borwien y Meter Borwein, en relación a la dificultad y la ardua tarea de descifrar los cuadernos perdidos, dijeron: “Que nosotros sepamos nunca se ha intentado una redacción matemática de este alcance o dificultad”.

Por mi parte creo que Ramanujan fue un genio matemático muy adelantado a su tiempo y que pasarán algunos años hasta que podamos descifrar al cien por ciento sus trabajos, especialmente, sus funciones modulares que guardan el secreto de la teoría más avanzada de la física moderna, la única capaz de unir la mecánica cuántica y la gravedad.

Las matemáticas de Ramanujan son como una sinfonía, la progresión de sus ecuaciones era algo nunca vísto, él trabajaba desde otro nivel, los números se combinaban y fluían de su cabeza a velocidad de vértigo y con precisión nunca antes conseguida por nadie. Tenía tal intuición de las cosas que éstas simplemente fluían de su cerebro. Quizá no los veía de una manera que sea traducible y el único lenguaje eran los números.

Como saben los físicos, los “accidentes” no aparecen sin ninguna razón. Cuando están realizando un cálculo largo y difícil, y entonces resulta de repente que miles de términos indeseados suman milagrosamente cero, los físicos saben que esto no sucede sin una razón más profunda subyacente.  Hoy, los físicos conocen que estos “accidentes” son una indicación de que hay una simetría en juego. Para las cuerdas, la simetría se denomina simetría conforme, la simetría de estirar y deformar la hoja del universo de la cuerda.

Aquí es precisamente donde entra el trabajo de Ramanujan. Para proteger la simetría conforme original contra su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto número de identidades matemáticas, que son precisamente las identidades de la función modular de Ramanujan. ¡Increíble!, pero cierto.

En resumen, he dicho que las leyes de la naturaleza se simplifican cuando se expresan en dimensiones más altas. Sin embargo, a la luz de la teoría cuántica, debemos corregir algo este sentido básico de mirar la cuestión. El enunciado correcto sería ahora: las leyes de la naturaleza se simplifican cuando se expresan coherentemente en dimensiones más altas. El añadido de la palabra coherente es crucial. Esta ligadura nos obliga a utilizar las funciones modulares de Ramanujan, que fijan en diez la dimensión del espacio-tiempo. Esto, a su vez, puede darnos la clave decisiva para explicar el origen del universo.

emilio silvera

 

  1. 1
    Abdel Majluf
    el 17 de octubre del 2009 a las 5:25

    Interezante lo desconocía y comparto tu opinión, habrá que esperar, a lo mejor la cuantica y la relatividad por fín se podran unificar.
    Pero por otro lado tal vez ya llegó el momento de cambiar esas teorías, a veces pienso que por culpa de esas teorías es que no podemos seguir avanzando, pues nuestra tecnologia se basa en una linea lógica. Pero para viajes intergalacticos esas teorías no nos sirven, pues nos hacen absurdo e imposible un viaje.
    Una vez escribí algo sobre esto y lo titulé Teorias al banquillo. Bueno otro día tal vez te hablaré al respecto.
    Saludos.

    Responder
  2. 2
    brenda
    el 11 de marzo del 2011 a las 2:00

    no conocia este personaje pero me doy cuenta de que hay personas muy valiosas y no sabemos reconocerlos ni volorarlos

    Responder
  3. 3
    emilio silvera
    el 11 de marzo del 2011 a las 7:01

    Srta. Brenda, lleva toda la razón, hay personajes a los que nunca le hemos pagado su contribución al conjunto de la Humanidad, y, Ramanujan, en sus cuadernos perdidos, tiene aún secretos que tenemos que desvelar y que, posiblemtne, nos de una agradable sorpresa el saber los mensajes que contienen.
    Este era una persona cuyos pensamientos eran números, teoremas y operaciones que a toda velocidad corrían por su cerebro dándole soluciones que otros (matemáticos muy respetados y de renombre), no sabían vislumbrar.
    Un saludo amiga.

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting