Jul
19
¡Es tan bonito saber!
por Emilio Silvera ~ Clasificado en Física ~ Comments (6)
Cuando los físicos trabajan con las matemáticas de la nueva teoría de supercuerdas, Einstein, sin que nadie le llame, allí aparece y se hace presente por medio de las ecuaciones de campo de la relatividad general que, como por arte de magia, surgen de la nada y se hacen presentes en la nueva teoría que todo lo unifica y también todo lo explica; posee el poder demostrar que todos los sorprendentes sucesos que se producen en nuestro universo (desde la frenética danza de una partícula subatómica que se llama quark hasta el majestuoso baile de las galaxias o de las estrellas binarias bailando un valls, la bola de fuego del Big Bang y los agujeros negros) todo está comprendido dentro de un gran principio físico en una ecuación magistral.
Esta nueva teoría requiere conceptos nuevos y matemáticas muy avanzados y nos exige cambiar nuestra manera actual de entender el espacio, el tiempo y la materia. Llevará cierto tiempo adaptarse a ella hasta instalarnos en un nivel en el que resulte cómodo su manejo y su entendimiento. No obstante, vista en su propio contexto, la teoría de cuerdas emerge como un producto impresionante pero natural, a partir de los descubrimientos revolucionarios que se han realizado en la física del último siglo. De hecho, gracias a esta nueva y magnifica teoría, veremos que el conflicto a que antes me refería existente entre la mecánica cuántica y la relatividad general no es realmente el primero, sino el tercero de una serie de conflictos decisivos con los que se tuvieron que enfrentar los científicos durante el siglo pasado, y que fueron resueltos como consecuencia de una revisión radical de nuestra manera de entender el universo.
El primero de estos conceptos conflictivos, que ya se había detectado nada menos que a finales del siglo XIX, está referido a las desconcertantes propiedades del movimiento de la luz.
Isaac Newton y sus leyes del movimiento nos decía que si alguien pudiera correr a una velocidad suficientemente rápida podría emparejarse con un rayo de luz que se esté emitiendo, y las leyes del electromagnetismo de Maxwell decían que esto era totalmente imposible. Einstein, en 1905, vino a solucionar el problema con su teoría de la relatividad especial y a partir de ahí le dio un vuelco completo a nuestro modo de entender el espacio y el tiempo que, según esta teoría, no se pueden considerar separadamente y como conceptos fijos e inamovibles para todos, sino que por el contrario, el espacio-tiempo era una estructura maleable cuya forma y modo de presentarse dependían del estado de movimiento del observador que lo esté midiendo.
Jul
19
¿Energía? ¿Campos de Higgs?
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (6)
¿Quién no conoce el proyecto del CERN con el LHC? quieren sondear lo que llaman el campo de Higgs y tratar de encontrar las respuesta a la manera en que las partículas adquieren su masa a través del Bosón del Higgs.
Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.
Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.
La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por P. Zeeman, en 1896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.
Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W–, y Z0, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?
Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electro débil (Weinberg-Salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles. En la unidad hay cuatro partículas mensajeras sin masa los W+, W–, Z0 y fotón que llevan la fuerza electro-débil. Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen los teóricos. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.
Jul
19
Superconductividad
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
¿Puede ser el vacío superconductor?
No podemos perder de vista la Física de metales a muy bajas temperaturas. A estas temperaturas, los “fenómenos cuánticos” dan lugar a efectos muy sorprendentes, que se describen con teorías cuánticas de campos, exactamente iguales a las que se utilizan en la Física de Partículas elementales. La Física de Partículas elementales no tiene nada que ver con la Física de Bajas Temperaturas, pero las matemáticas son muy parecidas.
En algunos materiales, el “campo” que se hace importante a temperaturas muy bajas podría ser el que describe como los átomos oscilan alrededor de sus posiciones de equilibrio, o el que describe a los electrones en este tipo de material. A temperaturas muy bajas nos encontramos con los “cuantos” de esos campos. Por ejemplo, el “fonón” es el cuanto del sonido. Su comportamiento recuerda al fotón, el cuanto de la luz, salvo que los números son muy diferentes: los fonones se propagan con la velocidad del sonido, a cientos o quizá miles de metros por segundo, y los fotones lo hacen a la velocidad de la luz que es de 299.792.458 m por segundo, ¡un millón de veces más deprisa! Las partículas elementales en las que estamos interesados generalmente tienen velocidades cercanas a la luz.
Uno de los “fenómenos cuánticos” más espectaculares que tienen lugar en los materiales muy fríos es la llamada superconductividad, fenómeno consistente en el hecho de que la resistencia que presenta ese material al paso de la corriente eléctrica se hace cero. Una de las consecuencias de este estado es que el material no admite la más mínima diferencia de potencial eléctrico, porque ésta sería inmediatamente neutralizada por una corriente eléctrica “ideal”. El material tampoco admite la presencia de campos magnéticos porque, de acuerdo con las ecuaciones de Maxwell, la creación del campo magnético está asociada con una corriente eléctrica inducida, que al no encontrar resistencia neutralizaría completamente el campo magnético. Por tanto, en el interior de un superconductor no se puede crear ni un campo eléctrico ni magnético. Esta situación sólo cambia si las corrientes inducidas son muy elevadas, como ocurre cuando se somete el superconductor a los campos de imanes muy potentes y que perturban el material. No siendo capaz de resistir una fuerza tan brutal, pierde la superconductividad y se rinde permitiendo la existencia de un campo magnético en su interior.
Jul
16
El milagro de nuestras mentes
por Emilio Silvera ~ Clasificado en La Mente - Filosofía ~ Comments (2)
Una galaxia es simplemente una parte pequeña del universo, nuestro planeta es una mínima fracción infinitesimal de esa galaxia, y nosotros mismos podríamos ser comparados (en relación a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes. Sin embargo, todo forma parte de lo mismo, y aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en las otras.
Pocas dudas pueden caber a estas alturas del hecho de que poder estar hablando de estas cuestiones, es un milagro en sí mismo.
Después de millones y millones de años de evolución, se formaron las consciencias primarias que surgieron en los animales con ciertas estructuras cerebrales de alta complejidad, que podían ser capaces de construir una escena mental, pero con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.
La consciencia de orden superior (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras. Como mínimo, requiere una capacidad semántica y, en su forma más desarrollada, una capacidad lingüística.
Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos, y aunque son muchos los estudios y experimentos que se están realizando, su complejidad es tal que de momento los avances son muy limitados. Estamos tratando de conocer la máquina más compleja y perfecta que existe en el universo.
Si eso es así, resultará que después de todo no somos tan insignificantes como en un principio podría parecer, y sólo se trata de tiempo. En su momento y evolucionadas, nuestras mentes tendrán un nivel de conciencia que estará más allá de las percepciones físicas tan limitadas. Para entonces sí estaremos totalmente integrados y formando parte, como un todo, del universo que ahora presentimos.
Jul
16
La Evolución por la energía
por Emilio Silvera ~ Clasificado en General ~ Comments (3)
El universo entero es energía. En sus formas diferentes la energía cambia continuamente y lo mismo hace que brillen las estrellas del cielo, que los planetas giren, que los estables átomos formen moléculas y materia, que las plantas crezcan o que las civilizaciones evolucionen.
La ciencia del siglo XIX reconoció la universalidad de la energía y supo ver que la Humanidad sin energía que hiciera el trabajo más duro, no evolucionarían en el bienestar social y el saber.
De todas maneras, aún hoy día, a comienzos del siglo XXI, no tenemos un conocimiento unificado de todos los ámbitos y disciplinas, que relacionados de una u otra manera con la energía, nos presente una visión global y completa de este problema. Los estudios energéticos modernos se presentan fragmentados, divididos en disciplinas, y los científicos que trabajan en cada una de ellas están muy ocupados para leer el resultado obtenido en los otros estudios.
Los geólogos, por ejemplo, al tratar de entender las grandes fuerzas que transforman la superficie del planeta por el movimiento de las placas tectónicas, rara vez están al día de los descubrimientos en las otras ramas de la energética moderna, donde se estudia desde el esfuerzo de un corredor de élite hasta el vuelo de un colibrí.
Los ingenieros se preocupan por las plantas generadoras de electricidad y piensan poco en las constantes fundamentales de la energía o en los cambios que determinaron la evolución de las sociedades antes de la llegada de la civilización de los combustibles fósiles.
Energía es todo, desde el Sol hasta un embarazo; desde el pan que comemos hasta un microchip. Sin embargo, es difícil que un técnico pueda pensar en ello cuando está centrado en resolver el problema del momento.