Nov
16
Nada es eterno. No existen ni la eternidad ni el infinito.
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es el de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de hidrógeno, helio, carbono, etc, para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior formando una nebulosa planetaria, mientras que el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro que solo sera frenada por la degeneracion de los electrones al ponerse en marcha en Principio de excluson de Pauli. Sabiendo eso, el hombre debe poner los medios para que antes de que llegue ese momento (dentro de algunos miles de millones de años), la Humanidad pueda escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, tenga agua corriente por estar situados en la zona habitable y tengan la atmósfera y las temperaturas adecuadas para acogerla.
Pero el problema no es tan fácil y se extiende a la totalidad del universo que, aunque mucho más tarde, también está abocado a la muerte térmica, el frío absoluto si se expande para siempre como un universo abierto y eterno, o el más horroroso de los infiernos, si estamos en un universo cerrado y finito en el que un día, la fuerza de gravedad, detendrá la expansión de las galaxias que comenzarán a moverse de nuevo en sentido contrario, acercándose las unas a las otras de manera tal que el universo comenzará, con el paso del tiempo, a calentarse, hasta que finalmente se junte toda la materia-energía del universo en una enorme bola de fuego de millones de grados de temperatura, el Big Crunch. Según los datos con loos que contamos, la Densidad Crítica del Universo puede ser la ideal para que se expanda para siempre.
El irreversible final está entre los dos modelos que, de todas las formas que lo miremos, es negativo para la Humanidad (si es que para entonces aún existe). En tal situación, algunos ya están buscando la manera de escapar.
Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiuniverso, esto es, que existen infinidad de universos conectados los unos a los otros. Unos tienen constantes de la naturaleza que permiten la vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.
Nov
16
¿Qué son los gases nobles? ¿Cómo llegamos aquí?
por Emilio Silvera ~ Clasificado en Química ~ Comments (9)
En alguna ocasión todos hemos oído mencionar la palabra “gases nobles”, y sin embargo no siempre sabemos lo que son y el por qué le llaman así.
Los elementos que reaccionan difícilmente o que no reaccionan en absoluto con otros elementos se denominan “inertes”. El nitrógeno y el platino son ejemplos de elementos inertes.
En la última década del siglo pasado se descubrieron en la atmósfera una serie de gases que no parecían intervenir en ninguna reacción química. Estos nuevos gases (helio, neón, argón, kripton, xenón y radón) son más inertes que cualquier otro elemento y se agrupan bajo el nombre de gases inertes.
Los elementos inertes reciben a veces el calificativo de “nobles” porque esa resistencia a reaccionar con otros elementos recordaba un poco a la altanería de la aristocracia. El oro y el platino son ejemplos de “metales nobles”, y por la misma razón se llaman a veces “gases nobles” a los gases inertes. Hasta 1962, el nombre más común era el de gases inertes, quizá porque lo de nobles parecía poco apropiados en sociedades democráticas.
La razón de que los gases inertes sean inertes es que el conjunto de electrones de cada uno de sus átomos está distribuido en capas especialmente estables. La más exterior, en concreto, tiene 8 electrones. Así la distribución electrónica del neón es (2,8) y la del argón (2,8,8). Como la adición o sustracción de electrones rompe esta distribución estable, no pueden producirse cambios electrónicos. Lo cual significa que no pueden producirse reacciones químicas y que estos elementos son inertes.
Ahora bien, el grado de inercia depende de la fuerza con que el núcleo, cargado positivamente y situado en el centro del átomo sujeta a los 8 electrones de la capa exterior. Cuantas más capas electrónicas haya entre la exterior y el centro, más débil será la atracción del núcleo central sobre los electrones de esa última capa de electrones.
Nov
15
El fascinante mundo que no podemos ver
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (5)
El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).
Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856 – 1940), el problema de su estructura, si la hay, no está resuelto. Conocemos su masa y su carga negativa que responden a 9,1093897 (54) x 10-31 kg la primera y, 1,602 177 33 (49) x 10-19 culombios, la segunda, y también su radio clásico: no se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.
Lo cierto es que, el electrón, es una maravilla en sí mismo. El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.
¡No por pequeño, se es insignificante!
Recordémoslo, todo lo grande está hecho de cosas pequeñas.
Nov
15
Lo que creemos que sabemos
por Emilio Silvera ~ Clasificado en Física Relativista ~ Comments (5)
Para el cosmólogo, la única certeza es que el Universo morirá un día. Algunos creen que la muerte final del Universo llegará en la forma del big crunch. La gravitación invertirá la expansión cósmica generada por el big bang y comprimirá las estrellas y las galaxias, de nuevo, en una masa primordial. A medida que las estrellas se contraen, las temperaturas aumentan espectacularmente hasta que toda la materia y la energía del universo están concentradas en una colosal bola de plasma ardiente que será el resultado final de la destrucción del Universo tal como lo conocemos.
Todas las formas de vida serán borradas de la faz de los mundo que las pudieran contener: evaporadas por las enormes temperaturas o aplastadas, ¡qué más dá! No habrá escape.
Científicos y filósofos, como Charles Darwin y Bertrand Russell, han escrito lamentándose de la futilidad de nuestras míseras existencias, sabiendo que nuestra civilización morirá inexorablemente cuando llegue el fin de nuestro mundo. Las leyes de la física, aparentemente, llevan la garantía de una muerte final e irrevocable para todas las formas de vida, inteligente o no, del Universo.
Yo, como Gerald Feinberg, físico de la Universidad de Columbia (ya desaparecido), creo que sí puede haber, quizá sólo una esperanza de evitar la calamidad final.
Nov
15
El Comienzo de todo
por Emilio Silvera ~ Clasificado en AIA-IYA2009 ~ Comments (0)
A los 10-34 [seg.] después del principio, cuando termina el periodo inflacionario, la gravedad había empezado a frenar la expansión del universo. La temperatura se mantenía a 1026 °K; las densidades cósmicas, aunque descendiendo, todavía eran lo suficientemente grandes como para que una masa equivalente a la de Júpiter pudiera caber en el interior de una pelota de fútbol. Los bosones Higgs X, que habían hecho su estreno al finalizar la inflación, completaron la separación de las cuatro fuerzas fundamentales de la naturaleza, dividiendo la superfuerza en las fuerzas electromagnética y nuclear débil. En el proceso, leptones y antileptones evolucionaron a variantes como electrones y positrones, que son sensibles al electromagnetismo, y neutrinos y antineutrinos, que responden a la fuerza nuclear débil.
Con la expansión controlada y temperaturas inferiores, las colisiones fueron mucho menos energéticas de lo que había sido durante el periodo inflacionario, lo cual dio como resultado cada vez menos masivas partículas. Los choques aniquiladores entre materia y antimateria produjeron fotones, portadores de fuerza electromagnética, que se descompusieron en parejas electrón-positrón casi sin masa.