Dic
13
Nuevos Materiales, nuevos procesos, nuevos dispositivos.
por Emilio Silvera ~ Clasificado en Física ~ Comments (0)
En los últimos años se han desarrollado materiales que, debido a su estructura nanométrica, presentan nuevas propiedades, y por tanto tienen aplicaciones en campos tan diversos como son la transmisión de información mediante luz, el almacenamiento de datos, la generación y el transporte de energía eléctrica, la síntesis de catalizadores, la elaboración de textiles más resistentes, o la implantación de nuevos implantes óseos.
El gran número de nuevos materiales y dispositivos demostradores que se han desarrollado en estos años ha sido fruto, por un lado del desarrollo de sofisticadas técnicas de síntesis, caracterización y manipulación que se han puesto a punto y, por otro, del gran avance en los métodos de computación en la nanoescala (técnicas ab-initio, dinámica molecular, etc.) que se han probado en las grandes instalaciones dedicadas al cálculo científico de altas prestaciones. Es precisamente la combinación de experimentos punteros con métodos teóricos precisos un elemento esencial para comprender un gran número de procesos y mecanismos que operan en la nanoescala. En concreto, una de las aportaciones teóricas más importantes al desarrollo de la Nanotecnología ha llegado de la mano de la Teoría de Funcionales de la Densidad (DFT, en sus siglas en inglés) por la que en 1998 Walter Kohn recibió el Premio Nobel en Química, compartido con John A. Pople, “padre” de la Química Cuántica. Con respecto al desarrollo experimental, cabe resaltar el alto grado de desarrollo de las técnicas SPM para ver y manipular la materia a escala nanométrica en multitud de ambientes diferentes (ultra alto vacío, humedad controlada, celdas catalíticas, temperaturas variables,…). Esta capacidad nos ha permitido diseñar nuevos experimentos con los que comprender el comportamiento de nuevos materiales y dispositivos. Dado la gran variedad de materiales y sus aplicaciones, es imposible en un artículo presentar una visión completa de la situación de la Nanotecnología, por lo que nos vamos a limitar a presentar algunos ejemplos que ilustran el estado actual de este campo.
Dic
13
¡Aquellas Civilizaciones!
por Emilio Silvera ~ Clasificado en Rumores del Saber ~ Comments (0)
Filósofos naturales, matemáticos…Grandes pensadores.
¡Aquellas Civilizaciones del pasado! En verdad podemos decir que hemos conocido todas las raíces de la Ciencia desde Babilonia hasta los mayas. La verdad es que, la Historia de la Ciencia con la que podemos contar es, una versión redescubierta.
El logro científico más importante en toda la Historia de Occidente se atribuye generalmente a Nicolás Copérnico, que en su lecho de muerte publicó De Revolutionibus orbium caelestium. El historiador de la Ciencia Thomas Kuhn dio el nombre de “Revolución Copernicana” al conjunto de logros de este astrónomo nacido en Polonia. Representaba la ruptura definitiva con la Edad Media, un desplazamiento desde la religión hacia la ciencia, desde el dogma hacia el laicismo ilustrado. ¿Qué hizo Copérnico para convertirse en el científico más importante de todos los tiempos?
En la Escuela aprendimos que en el siglo XVI Copérnico transformó la concepción del Sistema solar, situando al Sol, en vez de la Tierra en el centro de dicho Sistema, rectificando así la obra del astrónomo griego del siglo II al que se conoce como Tolomeo. Al construir un sistema heliocéntrico, Copérnico levantó un muro de fuego entre Oriente y Occidente, entre la cultura de la magia y la superstición y la cultura científica.
Copérnico hizo más que trasladar el centro del Sistema solar de la Tierra al Sol. Esta traslación es en sí mismo importante, pero dentro de un punto de vista matemático resulta trivial. Otras culturas habían sugerido esta idea previamente. Doscientos años antes de Pitágoras, ciertos filósofos del norte del la India habían llegado a comprender que la gravitación hace que el Sistema solar se mantenga unido y que, por consiguiente, el Sol, por ser el objeto de mayor masa, tenía que estar en el centro de este Sistema. El astrónomo de la Gracia antigua Aristarco de Samos había presentado un sistema heliocéntrico en el siglo III a, de C. Los Mayas habían propuesto la idea de un sistema solar heliocéntrico hacia el año 1000 d. de C. La tarea de Copérnico fue más importante. Tuvo que reparar las resquebrajadas matemáticas del sistema de Tolomeo.
Dic
12
La Astronomía del pasado
por Emilio Silvera ~ Clasificado en Astronomía y Astrofísica ~ Comments (0)
Las culturas antiguas eran a menudo más realistas en su relación con los cielos. Durante las últimas décadas hemos llegado a reconocer la sofisticación astronómica de las culturas antiguas no occidentales. El libro de Otto Neugebauer, titulado The Exact Sciences in Antiquity y publicado en 1957, se convirtió en un texto fundamental y estimuló el nacimiento de un nuevo campo multidisciplinario: la astronomía arqueológica.
Anthony Aveni, profesor de astronomía y antropología de la Colgate University, define la astronomía arqueológica como el estudio de la práctica y la utilización de la astronomía en las culturas antiguas de todo el mundo, tomando en consideración todo tipo de evidencias, tanto escritas como no escritas. Aunque la astronomía arqueológica sólo existe desde principios de la década de 1970, ha tenido ya un éxito considerable como instrumento para interpretar los avances astronómicos de las culturas prerrenacentistas. Esta disciplina se ha expandido finalmente hasta abarcar culturas de todos los lugares del planeta, después de la revitalización que le aportaron las interpretaciones del astrónomo de la Smithsonian Institution Gerald Hawskins relativas a los alineamientos de Stonehenge, basándose en trabajos anteriores de sir Norman Lockyer realizados entre finales del siglo XIX y principios del XX.
En la mayoría de las culturas antiguas en las que tuvo importancia observar el cielo los astrónomos actuaban como sacerdotes. Aunque los templos y juegos de pelota de los mayas y los aztecas, cuidadosamente orientados, tenían una doble función como observatorios astronómicos, fueron también templos y construcciones dedicados a la práctica de rituales civiles y religiosos. Con el uso de los templos-observatorios, los pueblos antiguos de México y de los Andes establecían un vínculo entre los astros y sus propias vidas a través de augurios y profecías. Aunque este maridaje entre la astrología y la astronomía, que era común a todas las culturas más antiguas no occidentales, ha desacreditado sus esfuerzos a los ojos de algunos expertos, los logros alcanzados han perdurado hasta nuestro días.
La astrología fue tenida en gran estima durante muchos años en Occidente. Johannes Kepler, el fundador de la astronomía planetaria, al mismo tiempo se ganaba el sustento en parte haciendo horóscopos, igual que su mentor, el aristócrata danés Tycho Brahe, que a veces ha sido considerado como el primer gran observador astronómico europeo.
Dic
12
¡Volcanes!
por Emilio Silvera ~ Clasificado en Naturaleza ~ Comments (0)
Las erupciones volcánicas
Últimamente, en las noticias, nos comunican sucesos de erupciones volcánicas en distintos lugares de la Tierra con la consiguiente evacuación de personas para evitar muertes innecesarias. El Caos y la destrucción que nos puede dar la variedad de colores, olores y sabores que, junto con la belleza destruida o construida cambia el paisaje del lugar donde puedan ocurrir acontecimientos como este. Así ha venido ocurriendo desde que el mundo es mundo.
Los volcanes han existido desde los inicios de la Tierra hace 4.500 millones de años. Si bien las erupciones volcánicas pueden destruir la flora y la fauna en su entorno, la lava enriquece el suelo con variados minerales. La mayor parte de los volcanes están situados a lo largo de los límites activos de las placas continentales. Los volcanes submarinos se hallan en regiones donde tienen lugar nueva formación de corteza terrestre, como en la dorsal oceánica. Estos volcanes pueden formar islas.
Los volcanes terrestres se encuentran, por lo general, en zonas de subducción, que se hallan especialmente en el Océano Pacifico. Los volcanes situados en las regiones costeras están distribuidos como una “sarta de perlas” y constituyen el anillo de fuego del Pacífico., en el que se encuentran más del 80% de los volcanes actuales. Además, los “puntos calientes” donde la fusión interna de la corteza crea magma, producen volcanes que son independientes de las placas continentales y sus limites. Un ejemplo de de este grupo lo constituyen los volcanes de Hawai.
Los volcanes se alimentan de las cámaras magmáticas, una especie de bolsas de rocas fundidas, a más de 1 km bajo la corteza terrestre. Si la presión en la cámara sobrepasa un determinado nivel (que es que parece que ha ocurrido en el de la imagen), el magma asciende por fisuras y grietas y forma una chimenea volcánica.
Dic
12
Estamos obligados a saber
por Emilio Silvera ~ Clasificado en Física ~ Comments (2)
¿Cómo sabemos las cosas que pensamos que sabemos?
¿A qué se refieren los científicos cuando dicen que ellos “conocen” lo que hay dentro del un átomo, por ejemplo, o lo que pasó en los tres primeros minutos de vida del Universo?
Se refieren a que tienen lo que ellos denominan un modelo del átomo, o del universo temprano, o lo que sea en que ellos estén interesados, y que este modelo encaja con el resultado de sus experimentos, o sus observaciones del mundo. Este tipo de modelo científico no es una representación física de la cosa real, del mismo modo que un modelo de avión representa un avión de tamaño natural, sino que es una imagen mental que se describe mediante un grupo de ecuaciones matemáticas.
Los átomos y las moléculas que componen el aire que respiramos, por ejemplo, se pueden describir en términos de un modelo en el que imaginamos cada partícula como si fuera una pequeña esfera perfectamente elástica (una diminuta bola de billar), con todas las pequeñas esferas rebotando unas contra las otras y contra las paredes del recipiente.
Ésa es la imagen mental, pero es sólo la mitad del modelo; lo que lo hace un modelo científico es describir el modo como se mueven las esferas y rebotan unas contra otras mediante un grupo de leyes físicas, escritas en términos de ecuaciones matemáticas. En este caso, estas son esencialmente las leyes del movimiento descubiertas por Isaac Newton hacen más de 300 años.
Utilizando estas leyes matemáticas es posible predecir, por ejemplo, qué le pasará a la presión ejercida por un gas si se aplasta hasta la mitad de su volumen inicial. Si hacemos el experimento, el resultado que se obtiene encaja con la predicción del Modelo (en este caso la presión se doblará), lo que lo convierte en un buen modelo.