domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Preludio a la relatividad: Las ecuaciones de Lorentz-Fitzgerald

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En 1.893 el físico irlandés George Fancis Fitzgerald emitió una hipótesis para explicar los resultados negativos del experimento conocido de Michelson-Morley. Adujo que toda la materia se contrae en la dirección del movimiento, y que esa contracción es directamente proporcional al ritmo (velocidad) del movimiento.

Según tal interpretación, el interferómetro se quedaba corto en la dirección del “verdadero” movimiento terrestre, y lo hacía precisamente en una cantidad que compensaba con toda exactitud la diferencia de distancias que debería recorrer el rayo luminoso. Por añadidura, todos los aparatos medidores imaginables, incluyendo los órganos sensoriales humanos, experimentarían ese mismo fenómeno.

Esquema de un interferómetro de Michelson.

Visualización de los anillos de interferencia.

Parecía como si la explicación de Fitzgerald insinuara que la naturaleza conspiraba con objeto de impedir que el hombre midiera el movimiento absoluto, para lo cual introducía un efecto que anulaba cualquier diferencia aprovechable para detectar dicho movimiento.

Este asombroso fenómeno recibió el nombre de contracción de Fitzgerald, y su autor formuló una ecuación para el mismo, que referido a la contracción de un cuerpo móvil, fue predicha igualmente y de manera independiente por H. A. Lorente (1.853 – 1.928) de manera que, finalmente, se quedaron unidos como contracción de Lorentz-Fitzgerald.

A la contracción, Einstein le dio un marco teórico en la teoría especial de la relatividad. En esta teoría, un objeto de longitud l0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud contraccion_l-f, donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

Un objeto que se moviera a 11 Km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 Km/s (la mitad de la velocidad de la luz) sería del 15%; a 262.000 Km/s (7/8 de la velocidad de la luz), del 50%. Es decir, que una regla de 30 cm que pasara ante nuestra vista a 262.000 Km/s nos parecería que mide sólo 15’24 cm, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 Km/s en números redondos, su longitud en la dirección del movimiento sería cero. Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse el universo.

El físico holandés Henrik Antón Lorentz, como hemos dicho, promovió esta idea pensando en los rayos catódicos (que ocupaban su actividad por aquellas fechas). Se hizo el siguiente razonamiento: si se comprimiera la carga de una partícula para reducir su volumen, aumentaría su masa. Por consiguiente, una partícula voladora, escorzada en la dirección de su desplazamiento por la contracción de Fitzgerald, debería crecer en términos de masa. Lorentz presentó una ecuación sobre el acrecentamiento de la masa, que resultó muy similar a la ecuación de Fitzgerald sobre el acortamiento. A 149.637 Km/s la masa de un electrón aumentaría en un 15%; a 262.000 Km/s, en un 100% (es decir, la masa se duplicaría); y a la velocidad de la luz, su masa sería infinita. Una vez más pareció que no podría haber ninguna velocidad superior a la de la luz, pues, ¿cómo podría ser una masa mayor que infinita?

El efecto Fitzgerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las ecuaciones Lorentz-Fitzgerald.

Mientras que la contracción Fitzgerald no podía ser objeto de mediciones, el efecto Lorentz sobre masas sí podía serlo, aunque indirectamente. De hecho, el muón tomó 10 veces su masa original cuando fue lanzado, a velocidades relativistas, en el acelerador de partículas, lo que confirmó la ecuación de Lorentz. Los experimentos posteriores han confirmado las ecuaciones de ambos: a velocidades relativistas, las longitudes se contraen y las masas se incrementan.

Como es conocido por todos, Einstein adoptó estos descubrimientos y los incorporó a su teoría de la relatividad especial, que aunque mucho más amplia, recoge la contracción de Fitzgerald y el aumento de la masa de Lorentz cuando se alcanzan grandes velocidades.

Algunas veces pienso que los artistas en general, y los poetas en particular, tendrían que adaptar e incluir en sus esquemas artísticos y poéticos los adelantos científicos, para asimilarlos en las diversas expresiones y sentimientos que serán después puestos al servicio del consumo humano. Estos adelantos científicos serían así coloreados con las pasiones humanas, y transformados, de alguna forma, en la sangre, y por qué no, los sentimientos de la naturaleza humana. Posiblemente, de haberlo hecho, el grado general de conocimiento sería mayor. De todas las maneras, no dejamos de avanzar en el conocimiento de la Naturaleza.

La Vuelta al Mundo en 80 Telescopios

Hacemos mil y un inventos para poder llegar a lugares que, hasta hace muy poco tiempo se pensaba que nos estaban vedados. Y, a pesar de ello, la cultura científica, en general es pobre.

Sólo uno de cada tres puede definir una molécula o nombrar a un solo científico vivo. De veinticinco licenciados escogidos al azar en la ceremonia de graduación de Harvard, sólo dos pudieron explicar por qué hace más calor en verano que en invierno. La respuesta, dicho sea de paso, no es “porque el Sol está más cerca”; no está más cerca. El eje de rotación de la Tierra está inclinado, así que cuando el hemisferio norte se inclina hacia el Sol, los rayos son más perpendiculares a la superficie, y la mitad del globo disfruta del verano. Al otro hemisferio llegan rayos oblicuos: es invierno. Es triste ver cómo aquellos graduados de Harvard podían ser tan ignorantes. ¡Aquí los tenemos con faltas de ortografía!

Por supuesto, hay momentos brillantes en los que la gente se sorprende. Hace años, en una línea de metro de Manhattan, un hombre mayor se las veía y deseaba con un problema de cálculo elemental de su libro de texto de la escuela nocturna; no hacía más que resoplar. Se volvió desesperado hacia el extraño que tenía a su lado, sentado junto a él, y le preguntó si sabía cálculo. El extraño afirmó con la cabeza y se puso a resolverle al hombre el problema. Claro que no todos los días un anciano estudia cálculo en el metro al lado del físico teórico ganador del Nobel de Física, T. D. Lee.

Leon Lederman cuenta una anécdota parecida a la del tren, pero con final diferente. Salía de Chicago en un tren de cercanías cuando una enfermera subió a él a la cabeza de un grupo de pacientes de un hospital psiquiátrico local. Se colocaron a su alrededor y la enfermera se puso a contarlos: “uno, dos tres…”. Se quedó mirando a Lederman y preguntó “¿quién es usted?”; “soy Leon Lederman” – respondió – “ganador del premio Nobel y director del Fermilab”. Lo señaló y siguió tristemente “sí, cuatro, cinco, seis…”. Son cosas que ocurren a los humanos; ¡tan insignificantes y tan grandes! Somos capaces de lo mejor y de lo peor. Ahí tenemos la historia para ver los ejemplos de ello.

Pero ahora más en serio, es necesario preocuparse por la incultura científica reinante, entre otras muchas razones porque la ciencia, la técnica y el bienestar público están cada día más conectados. Y, además, es una verdadera pena perderse la concepción del mundo que, en parte, he plasmado en estas páginas. Aunque aparezca incompleta, se puede vislumbrar que posee grandiosidad y belleza, y va asomándose ya su simplicidad.

“El proceso de la ciencia es el descubrimiento a cada paso de un nuevo orden que dé unidad a lo que desde hacía tiempo parecía desunirlo.

Es lo que hizo Faraday cuando cerró el vínculo que unió la electricidad y el magnetismo.

Es lo que hizo Clerk Maxwell cuando unió aquélla y éste con la luz.

Einstein unió el tiempo y el espacio, la masa a la energía y relacionó las grandes masas cosmológicas con la curvatura y la distorsión del tiempo y el espacio para traernos la gravedad en un teoría moderna; y dedicó los últimos años de su vida al intento de añadir a estas similitudes otra manera nueva y más avanzada, que instaurara un orden nuevo e imaginativo entre las ecuaciones de Maxwell y su propia geometría de la gravitación.

Clic para ampliar Clic para ampliar

Clic para ampliar Clic para ampliar

Clic para ampliar Clic para ampliar

Algunos momentos de la vida del Maestro

Cuando Coleridge intentaba definir la belleza, volvía siempre a un pensamiento profundo: la belleza, decía, es la “unidad de la variedad”.

La ciencia no es otra cosa que la empresa de descubrir la unidad en la variedad  desaforada de la naturaleza, o más exactamente, en la variedad de nuestra experiencia que está limitada por nuestra ignorancia.”

Hay muchas cosas que no podemos controlar, sin embargo, algo dentro de nosotros, nos envía mensajes sobre lo que podría ser importante para que nos fijemos mejor y continuemos profundizando.

Para comprender mejor el panorama, hagamos una excursión hasta la astrofísica; hay que explicar por qué la física de partículas y la astrofísica se han fundido no hace muchos años, en un nivel nuevo  de intimidad, al que alguien llamó la conexión espacio interior/espacio exterior.

Mientras los expertos del espacio interior construían aceleradores, microscopios cada vez más potentes para ver qué pasaba en el dominio subnuclear, los colegas del espacio exterior sintetizaban los datos que tomaban unos telescopios cada vez más potentes, equipados con nuevas técnicas cuyo objeto era aumentar su sensibilidad y la capacidad de ver detalles finos. Otro gran avance fueron los observatorios establecidos en el espacio, con sus instrumentos para detectar infrarrojos, ultravioletas, rayos X y rayos gamma; en pocas palabras, toda la extensión del espectro electromagnético, muy buena parte del cual era bloqueado por nuestra atmósfera opaca y distorsionadora.

?Hasta donde llegaremos?

La síntesis de la cosmología de los últimos cien años es el modelo cosmológico estándar. Sostiene que el universo empezó en forma de un estado caliente, denso, compacto, hace unos 15.000 millones de años. El universo era entonces infinitamente, o casi infinitamente, denso; infinita, o casi infinitamente, caliente. La descripción “infinito” es incómoda para los físicos; los modificadores son el resultado de la influencia difuminadota de la teoría cuántica. Por razones que quizá no conozcamos nunca, el universo estalló, y desde entonces ha estado expandiéndose y enfriándose.

Ahora bien, ¿cómo se han enterado de eso los cosmólogos? El modelo de la Gran Explosión (Big Bang) nació en los años treinta tras el descubrimiento de que las galaxias (conjuntos de 100.000 millones de estrellas, aproximadamente) se estaban separando entre sí, descubrimiento hecho por Edwin Hubble, que andaba midiendo sus velocidades en 1.929.

Hubble tenía que recoger de las galaxias lejanas una cantidad de luz que le permitiera resolver las líneas espectrales y compararlas con las líneas de los mismos elementos de la Tierra. Cayó en la cuenta de que todas las líneas se desplazaban sistemáticamente hacia el rojo. Se sabía que una fuente de luz que se aparta de un observador hace justo eso. El desplazamiento hacia el rojo era, de hecho, una medida de la velocidad relativa de la fuente y del observador.

Más tarde, Hubble halló que las galaxias se alejaban de él en todas las direcciones; esto era una manifestación de la expansión del espacio. Como el espacio expande las distancias entre todas las galaxias, la astrónoma Hedwina Knubble, que observase desde el planeta Penunbrio en Andrómeda, vería el mismo efecto o fenómeno: las galaxias se apartaría de ella.

Cuanto más distante sea el objeto, más deprisa se mueve. Esta es la esencia de la ley de Hubble. Su consecuencia es que, si se proyecta la película hacia atrás, las galaxias más lejanas, que se mueven más deprisa, se acercarán a los objetos más próximos, y todo el lío acabará juntándose y se acumulará en un volumen muy, muy pequeño, como, según se calcula actualmente, ocurría hace 15.000 millones de años.

La más famosa de las metáforas científicas te pide que imagines que eres una criatura bidimensional, un habitante del Plano. Conoces el este y el oeste, el norte y el sur, pero arriba y abajo no existen; sacaos el arriba y debajo de vuestras mentes. Vivís en la superficie de un globo que se expande. Por toda la superficie hay residencias de observadores, planetas y estrellas que se acumulan en galaxias por toda la esfera; todo bidimensional. Desde cualquier atalaya, todos los objetos se apartan a medida que la superficie se expande sin cesar. La distancia entre dos puntos cualesquiera de este universo crece. Eso es lo que pasa, precisamente, en nuestro mundo tridimensional. La otra virtud de esta metáfora es que, en nuestro universo, no hay ningún lugar especial. Todos los sitios o puntos de la superficie sin democráticamente iguales a todos los demás. No hay centro; no hay borde. No hay peligro de caerse del universo. Como nuestra metáfora del universo en expansión (la superficie del globo) es lo único que conocemos, no es que las estrellas se precipiten dentro del espacio. Lo que se expande es que espacio que lleva toda la barahúnda. No es fácil visualizar una expansión que ocurre en todo el universo. No hay un exterior, no hay un interior. Sólo hay este universo, que se expande. ¿En qué se expande? Pensad otra vez en vuestra vida como habitante del Plano, de la superficie del globo: en nuestra metáfora no existe nada más que la superficie.

 

Es mucho lo que podemos imaginar pero, lo cierto es, como nos decía Popper: “Cuánto más profundizo en el conocimiento de las cosas más consciente soy de lo poco que se. Mientras que mis conocimientos son finitos, mi ignorancia es ilimitada.”

Dos consecuencias adicionales de gran importancia que tiene la teoría del Big Bang acabaron por acallar la oposición, y ahora reina un considerable consenso. Una es la predicción de que la luz de la incandescencia original (presuponiendo que fue muy caliente) todavía está a nuestro alrededor, en forma de radiación remanente. Recordad que la luz está constituida por fotones, y que la energía de los fotones está en relación inversa con la longitud de onda. Una consecuencia de la expansión del universo es que todas las longitudes se expanden. Se predijo, pues, que las longitudes de onda, originalmente infinitesimales, como correspondía a unos fotones de gran energía, han crecido hasta pertenecer ahora a la región de las microondas, en la que las longitudes son unos pocos milímetros.

En 1.965 se descubrieron los rescoldos del Big Bang, es decir, la radiación de fondo de microondas. Esos fotones bañan el universo entero, y se mueven en todas las direcciones posibles. Los fotones que emprendieron viaje hace miles de millones de años cuando el universo era más pequeño y caliente, fueron descubiertos por una antena de los laboratorios Bell en Nueva Jersey.

Imagen del WMAP de la anisotropía de la temperatura del CMB.

 

Así que el descubrimiento hizo imprescindible medir la distribución de las longitudes de onda, y se hizo. Por medio de la ecuación de Planck, esta medición de la temperatura media de lo que quiera (el espacio, las estrellas, polvo, un satélite, los pitidos de un satélite que se hubiese colado ocasionalmente) que haya estado bañándose en esos fotones.

Las mediciones últimas efectuadas por la NASA con el satélite COBE dieron un resultado de 2’73 grados sobre el cero absoluto (2’73 ºK). Esta radiación remanente es una prueba muy potente a favor de la teoría del Big Bang caliente.

Los astrofísicos pueden hablar tan categóricamente porque han calculado qué distancias separaban a dos regiones del cielo en el momento en que se emitió la radiación de microondas observadas por el COBE. Ese momento ocurrió 300.000 años después del Big Bang, no tan pronto como sería deseable, pero sí lo más cerca del principio que podemos.

Resulta que temperaturas iguales en regiones separadas del espacio que nunca habían estado en contacto y cuyas separaciones eran tan grandes que ni siquiera a la velocidad de la luz daba tiempo para que las dos regiones se comunicasen, y sin embargo, sí tenían la misma temperatura. La teoría del Big Bang no podía explicarlo; ¿un fallo?, ¿un milagro? Se dio en llamar a eso la crisis de la causalidad, o de la isotropía.

De la causalidad porque parecía que había una conexión causal entre distintas regiones del cielo que nunca debieran haber estado en contacto; de la isotropía porque donde quiera que mires a gran escala verás prácticamente el mismo patrón de estrellas, galaxias, cúmulos y polvo estelar. Se podría sobrellevar esto en un modelo del Big Bang diciendo que la similitud de las miles de millones de piezas del universo que nunca estuvieron en contacto es puro accidente. Pero no nos gustan los “accidentes”: los milagros están estupendamente si jugamos a la lotería, pero no en la ciencia. Cuando se ve uno, los científicos sospechan que algo más importante se nos mueve entre bastidores. Me parece que mi inclinación científica me hace poco receptivo a los milagros. Si algo para habrá que buscar la causa.

El segundo éxito de gran importancia del modelo del Big Bang tiene que ver con la composición de nuestro universo. Puede parecer que el mundo está hecho de aire, tierra, agua y fuego, pero si echamos un vistazo arriba y medimos con nuestros telescopios espectroscópicos, apenas sí encontramos algo más que hidrógeno, y luego helio. Entre ambos suman el 98% del universo que podemos ver. El resto se compone de los otros noventa elementos. Sabemos gracias a nuestros telescopios espectroscópicos las cantidades relativas de los elementos ligero, y hete aquí que los teóricos del Big Bang dicen que esas abundancias son precisamente las que cabría esperar. Lo sabemos así.

El universo prenatal tenía en sí toda la materia del universo que hoy observamos, es decir, unos cien mil millones de galaxias, cada una con cien mil millones de soles. Todo lo que hoy podemos ver estaba comprimido en un volumen muchísimos menos que la cabeza de un alfiler. La temperatura era alta, unos 1032 grados Kelvin, mucho más caliente que nuestros 273 ºK actuales. Y en consecuencia la materia estaba descompuesta en sus componentes primordiales.

Una imagen aceptable de aquello es la de una “sopa caliente”, o plasma, de quarks y leptones (o lo que haya dentro, si es que hay algo) en la que chocan unos contra otros con energías del orden de 1018 GeV, o un billón de veces la energía del mayor colisionador que cualquier físico pueda imaginarse construir. La gravedad era rugiente, con su poderoso (pero aún mal conocido) influjo en esta escala microscópica.

Tras este comienzo fantástico, vinieron la expansión y el enfriamiento. A medida que el universo se enfriaba, las colisiones eran menos violentas. Los quarks, en contacto íntimo los unos con los otros como partes del denso grumo que era el universo infantil, empezaron a coagularse en protones, neutrones y los demás hadrones. Antes, esas uniones se habrían descompuesto en las inmediatas y violentas colisiones, pero el enfriamiento no cesaba; aumentaba con la expansión y las colisiones eran cada vez más suaves.

A los tres minutos de edad, las temperaturas habían caído lo bastante como para que pudiesen combinarse los protones y los neutrones, y se formaran núcleos estables. Este fue el periodo de nucleosíntesis, y como se sabe lo suficiente de física nuclear se pueden calcular las abundancias relativas de los elementos químicos que se formaron. Son los núcleos de elementos muy ligeros; los más pesados requieren de una “cocción” lenta en las estrellas.

Claro que, los átomos (núcleos más electrones) no se formaron hasta que la temperatura no cayó lo suficiente como para que los electrones se organizaran alrededor de los núcleos, lo que ocurrió 300.000 años después, más o menos. Así que, en cuanto se formaron los átomos neutros, los fotones pudieron moverse libremente, y ésta es la razón de que tengamos una información de fotones de microondas todavía.

La nucleosíntesis fue un éxito: las abundancias calculadas y las medidas coincidían. Como los cálculos son una mezcla íntima de física nuclear, reacciones de interacción débil y condiciones del universo primitivo, esa coincidencia es un apoyo muy fuerte para la teoría del Big Bang.

En realidad, el universo primitivo no era más que un laboratorio de acelerador con un presupuesto ilimitado. Nuestros astrofísicos tenían que saberlo todo acerca de los quarks y los leptones y las fuerzas para construir un modelo de evolución del universo. Los físicos de partículas reciben datos de su experimento grande y único. Por supuesto, para los tiempos anteriores a los 10-13 segundos, están mucho menos seguros de las leyes de la física. Así que, los astrofísicos azuzan a los teóricos de partículas para que se remanguen y contribuyan al torrente de artículos que los físicos teóricos lanzan al mundo con sus ideas: Higgs, unificación de cuerdas vibrantes, compuestos (qué hay dentro de los quarks) y un enjambre de teorías especulativas que se aventuran más allá del modelo estándar para construir un puente que nos lleve a la descripción perfecta del universo, de la Naturaleza. ¿Será posible algún día?

Esperemos a ver qué pasa con la historia que comenzaron Grabielle Veneziano, John Schwartz, André Neveu, Pierre Ramond, Jeff Harvey, Joel Sheik, Michael Green, David Gross y un dotado flautista de Hamelin que responde al nombre de Edward Witten.

La teoría de cuerdas es una teoría que nos habla de un lugar muy distante. Dice Leon Lederman que casi tan distante como Oz o la Atlántida; hablamos del dominio de Planck. No ha forma de que podamos imaginar datos experimentales en ese tiempo tan lejano; las energías necesarias (las de la masa de Planck) no están a nuestro alcance, lo que significa que no debemos perseverar.

¿Por qué no podemos encontrar una teoría matemáticamente coherente (sin infinitos) que describa de alguna manera Oz? ¡Dejar de soñar, como de reír, no es bueno!

Pero en verdad, al final de todo esto, el problema es cuánta masa gravitatoria hay en el universo. Que si la masa crítica, que si el universo abierto, plano o cerrado… la materia y energía del universo es más de la que se ve. Pasa lo contrario que con nuestra sabiduría (al menos eso decimos nosotros – me incluiré -), que parece mucha y en realidad es tan poca como la materia bariónica (el 4-5% del total). Creo que nuestra ignorancia (haciendo un símil) es equivalente a la materia oscura, nos queda un 95% de la capacidad del cerebro por descubrir. Por eso precisamente, debemos tener la esperanza de poder alcanzar las teorías soñadas y poder desvelar algún día estos misterios como los de la materia oscura, la masa del neutrino, o si los quarks están hechos de objetos más pequeños aún. ¡Todo llegará!

Sabemos representar los Modelos de Universo que imaginamos, y, aún no hemos llegado a saber qué es el Universo. Todo es, como dijo aquel, la belleza que se nos regala: “La unidad de la variedad”. Además, no debemos olvidar que, todo lo grande está hecho de cosas pequeñas.

¡Buena lectura!

emilio silvera


  1. Apuntes de Física: Teorías y leyes (7ª parte) « Diario de un explorador, el 15 de abril del 2010 a las 10:42

    […] su hipótesis de la contracción (hecho por el cual se denomina a la ecuación que lo representa fórmula de la contracción de Lorentz-Fitzgerald). Ambas manifestaciones confluyen en la que se supone es la paradoja más célebre de entre las […]

 

  1. 1
    Ramon Marquès
    el 10 de marzo del 2009 a las 21:56

    Hola Emilio:

    Sobre la contracción de Fitgerald-Lorentz. Yo entiendo que es como el efecto Doppler aplicado a la materia. No en vano la materia, como realidad última, es un complejo vibratorio, el cual es objeto del citado efecto Doppler al moverse.

    Sobre la expansión del universo como la superficie de una esfera. Yo no entiendo porqué ha de ser la superficie, me parece lógico que sea toda la esfera y que nosotros estemos dentro de la esfera, como si estuviéramos dentro de un globo que se incha.

    Emilio, como siempre me interesa tu sabia opinión. Un abrazo. Ramon Marquès

    Responder
  2. 2
    emilio silvera
    el 11 de marzo del 2009 a las 6:51

    Amigo Ramón, a veces, cuando leo tus comentarios me tengo que sonreir, ya que, al ver sus contenidos me da la impresión de que nos enseñó el mismo maestro por lo cercano que están nuestros pareceres sobre estos temas que tanto nos gusta.

    Un abrazo amigo.

    Responder
  3. 3
    ernesto
    el 9 de mayo del 2011 a las 5:41

    enhorabuena por el blog me he convertido en un lector avido especialmente cuando viajo, a pesar de no tener conocimientos de fisica es fascinante la manera que escribe don Emilio.
    me gustaria hacer una pregunta y si es una tonteria ruego no haya muchas risas:
    “una partícula voladora, escorzada en la dirección de su desplazamiento por la contracción de Fitzgerald, debería crecer en términos de masa”
    si la materia no se crea ni se destruye, ¿de donde sale esa masa que supuestamente aumenta con la velocidad?

    Responder
    • 3.1
      emilio silvera
      el 9 de mayo del 2011 a las 6:50

      Amigo Ernesto:
      Su pregunta, al venir de una persona no versada en Física, no es motivo de risa alguna, sino que, por el contrario es muy lógica, toda vez que, no deja de ser un fenómeno extraño lo que se produce cuando algo viaja a la velocidad de la luz o cerca de ella. Me explico:
      Todo el secreto está en que la Materia, no puede moverse más rápida que la velocidad de la luz, y, por otra parte, entra en escena la propiedad de la Materia que es, a un mismo tiempo, un concentrado de masa y energía (E = mc2).
      Una vez que sabemos eso, piensa que una partícula lanzada a velocidad relativista, cercana a c (la velocidad de la Luz de 299.792.458 metros por segundo -redondeando 300.000 Km/s)-, cuando aumenta la velocidad y va acercándose a los 299.793 kilómetros por segundo, que es la velocidad de la luz en el vacío, se encuentra con la imposibilidad física que impone nuestro Universo, es decir, nada puede viajar más rápido que la luz, y, es entonces cuando, la energía añadida que impulsa a esa partícula no puede hacerla correr más y se convierte en masa.
      El fenómeno se conoce como “masa relativista”, es decir, la masa de un cuerpo (partícula en este caso) que es medida por un observador con respecto al cual ese cuerpo se mueve. De acuerdo con la teoría especial de la relatividad de Einstein, la masa m de un cuerpo moviendose a velocidad v está dada por:
      m = mo/√(1 -v2), donde mo es su masa en reposo y c es la velocidad de la luz. La masa relativista sólo difiere significativamente de la masa en reposo si la velocidad a la que viaja es una fracción apreciable de la velocidad de la luz. Si v = c/2, por ejemplo, la masa relativista es un 15% mayor que la masa en reposo.
      Todo esto ha sido más que comprobado en los aceleradores de partículas como el LHC y otros. Se ha podido ver, por ejemplo, como un muón (una partícula de la familia del electrón), al ser lanzada a velocidades cercanas a los 300.000 Km/segundo, aumentó su masa unas diez veces, es decir, la energía cinética de la velocidad que la impulsaba, a medida que se acercaba al muro infranqueable de la velocidad de la luz, en lugar de convertirla en velocidad, la convertía en masa.
      Espero haberte aclarado un poco tus dudas.
      Saludos amigo Ernesto. ¡Ah! Y no dejes de pasarte por aquí, encontraras cosas muy curiosas que ocurren en la Naturaleza.
       

      Responder
      • 3.1.1
        kike
        el 9 de mayo del 2011 a las 11:04

        Ya que vamos de preguntas, tengo una, también de profano:

         Si la luz es al mismo tiempo onda y partícula, ¿Como es posible que en su comportamiento como partícula no tenga masa?

         Supongo que la luz, cuando viaja por el vacío, su medio óptimo que le permite alcanzar su velocidad tope, actuará únicamente como onda, obviando de esta forma la obligatoriedad de acrecentar masa, pero eso ¿No sería dotar a la luz de un comportamiento inteligente?. Bien es verdad que la naturaleza nos da constantes pruebas de su “inteligencia”, de la que creo que aún no se conocen las causas.

         Un afectuoso saludo Maese.

        Responder
        • 3.1.1.1
          emilio silvera
          el 10 de mayo del 2011 a las 6:16

          Hola, amigo Kike:
          ¡La Luz! y ¡El Fotón! que es su cuanto, aparte de maravillarnos desde siempre, también desde siempre nos ha traído de cabeza. Es uno de los grandes misterios que nos quedan por desvelar: ¿Qués es en realidad ma luz? Algunas veces he pensado que es la forma más delicada que la materia puede adoptar, es decir, la esencia de la materia misma.
          Tu lanzas hipótesis y haces preguntas que son muy acertadas: “Si la luz es al mismo tiempo onda y partícula, ¿Como es posible que en su comportamiento como partícula no tenga masa?”, “¿No sería dotar a la luz de un comportamiento inteligente?”
          La primera pregunta es muy certera y nuestro amigo Ramón trata de contestarla más abajo, y, en cuanto a la segunda…es tan profunda que yo me atrevería a contestar con otra pregunta: ¿Qué sabemos nosotros en realidad, sobre la verdadera naturaleza de la luz?
          Sabemos lo que nos dice cualquier diccionario de Física, es decir: El fotón es una partícula con masa nula en reposo y que consiste en un cuanto de radiación electromagnética. El fotón también puede ser considerado como una unidad de energía igual a hf, donde h es la constante de Planck y f es la frecuencia de la radiación en hertzios. Los fotones viajan a la velocidad de la luz. Son necesarios para explicar el efecto fotoeléctrico y otros fenómenos que requieren que la luz tenga caracter de onda unas veces y de partículas otras dependiendo de la situación y el medio en el que se estén moviendo.
          Pero, además de todo eso, el fotón, el cuanto de luz, es mucho, muchísimo más que desconocemos. De hecho, nadie me puede quitar de la cabeza el pensamiento de que, en última instancia, todos nosotros estamos conformados por cuantos de luz, es decir, energía pura.
          Un abrazo amigo.
           

      • 3.1.2
        ernesto
        el 11 de mayo del 2011 a las 7:55

        Querido Emilio, gracias por la como siempre excelente explicacion! me parece que lo he entendido perfectamente.  El problema de entender el mecanismo “real” de este fenomeno me imagino que es el mismo problema de desconocer la “estructura del espacio-tiempo” que es lo que causaria todos estos efectos incluida la gravedad.

        Responder
  4. 4
    Ramon Marquès
    el 9 de mayo del 2011 a las 19:20

    Hola kike: Yo creo que el fotón no tiene masa porque nunca es una patícula, actúa como partícula a veces pero siempre es un complejo ondulaturio.
    Un afectuoso saludo. Ramon Marquès

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting